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Modelling issue : Structured models in biology.

Collective motion of bacteria

The bacteria E. Coli
moves thanks to flagella :

From Howard Berg’s lab

and with a so-called run and tumble
process :

straight swimming for 1s
and

change of direction for 0.1s.
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Modelling issue : Structured models in biology.

Collective migration: Bacterial travelling pulses

The kinetic point of view is the most relevant for this situation (population
structured by the velocity).

J. Saragosti et al, Directional persistence of ..., PNAS (2011).
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Modelling issue : Structured models in biology.

Modelling of Darwinian evolution

We study the

Darwinian evolution
of populations

which are structured by:

1 phenotypical traits,
2 position in space.
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Modelling issue : Structured models in biology.

Interaction between invasion and evolution

Cane toads invasion

Figure : From Urban et al 2006

Spatial sorting : Dynamic selection of traits along the invasion.
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Modelling issue : Structured models in biology.

1 Other examples : Tumor growth, age structured populations ...

2 Common feature : Propagation phenomena with local diversity.

Aim of this talk : Study qualitatively and quantitatively propagation effects in
structured models (speed, shape of the front).

Here, study of 2 types of models:

Kinetic reaction-transport equations (after the bacteria motivation),

Reaction-diffusion-mutation equations (darwinian evolution motivation).
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Reminder on reaction-diffusion fronts (Fisher-KPP equation).

The Fisher-KPP equation (1937)

(Only space)

∂tρ = D∂xxρ︸ ︷︷ ︸
unbiaised movement = diffusion

+ rρ(1− ρ)︸ ︷︷ ︸
Reproduction + saturation effect = logistic growth

(Fisher)

A travelling wave solution of speed c is
a translated profile U,

ρ(t, x) = U(x − ct) ,

with the natural limit conditions{
U(−∞) = 1 stable equilibrium,
U(+∞) = 0 unstable equilibrium.
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Figure : KPP fronts.
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Reminder on reaction-diffusion fronts (Fisher-KPP equation).

The possible speeds for the fronts

Theorem (Kolmogorov, Petrovsky, Piskunov, 1937)

There exists a minimal speed c∗ := 2
√
rD such that for all speed c ≥ c∗, there

exists a travelling wave solution of speed c . If the initial data has compact
support then the front propagates with the minimal speed c∗.

Heuristic:

Speed given by the linearized equation at the edge (ρ� 1) (pulled front).

∂tρ = D∂xxρ+ rρ ,

We seek exponential decay : ρ(t, x) = exp(−λ(x − c(λ)t)) (λ > 0).

Dispersion relation cλ = Dλ2 + r .

Minimal speed c∗ c(λ) = Dλ+ r
λ ≥ 2

√
rD := c∗ .
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Travelling waves and accelerating fronts in kinetic equations.

Kinetic reaction transport equations

Density of bacteria f (t, x , v) at time t, position x and speed v .
Space density ρ :=

∫
V
f (v)dv .

The velocity set V : symmetric, bounded or unbounded ; vmax ≤ +∞.

The model (Schwetlick 2000 - Cuesta, Hittmeir, Schmeiser 2010):

∂t f + v∂x f︸ ︷︷ ︸
Free run

= (M(v)ρ− f )︸ ︷︷ ︸
Tumbling

+ rρ (M(v)− f )︸ ︷︷ ︸
Growth with saturation

(1)

where the distribution M on the space V satisfies∫
V

M(v)dv = 1,
∫
V

vM(v)dv = 0,
∫
V

v2M(v)dv = D. (2)

This is a kinetic analogous to the Fisher-KPP equation
∂tρ = D∂xxρ+ rρ(1− ρ)
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Travelling waves and accelerating fronts in kinetic equations.

We assume here that vmax < +∞.

Definition

f (t, x , v) = µ (ξ = x − ct, v) ,

Speed : c ∈ R+, Profile : µ ∈ C2 (R× V ,R+).

Far field conditions : µ (−∞, ·) = M, µ (+∞, ·) = 0.

Main equation :

(v − c)∂ξµ = (M(v)ν − µ) + rν (M(v)− µ) , ξ ∈ R, v ∈ V . (3)

where ν is the macroscopic density associated to µ, that is ν (ξ) =
∫
V
µ (ξ, v) dv .
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Travelling waves and accelerating fronts in kinetic equations.

Existence of travelling waves for bounded speeds

1 Parabolic limit : (t, x , r) 7→
(
ε−2t, ε−1x , r → rε2

)
:

The scaling limit is the Fisher-KPP equation.

Theorem (Cuesta, Hittmeir, Schmeiser)

Let the wave speed satisfy s ≥ 2
√
rD. For ε small enough, there exists a travelling

wave solution of speed s.

2 Existence result in the kinetic regime:

Theorem (B., Calvez, Nadin)

Assume that vmax < +∞. There exists travelling front solutions for all c ≥ c∗.

Remark: c∗ ≤ 2
√
rD.
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Travelling waves and accelerating fronts in kinetic equations.

Finding the speed : Dispersion relation

Solutions of the linearized problem of type e−λ(x−c(λ)t)Qλ(v).
Spectral problem :

For all λ, find c(λ) such that there exists a Maxwellian Qλ such that

∀v ∈ V , (1 + λ (c(λ)− v))Qλ(v) = (1 + r)

∫
V

M(v)Qλ(v)dv . (4)

Proposition

We have c∗ = minλ>0 c(λ), where c(λ) is a solution of

(1 + r)

∫
V

M(v)

1 + λ(c(λ)− v)
dv = 1 . (5)

No solution when V is unbounded (vmax = +∞)
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Travelling waves and accelerating fronts in kinetic equations.

Approximation of vmax = +∞ :

Here M(v) = C (Vmax) exp
(
− v2

2

)
1|v |≤Vmax

.
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Figure : Speed as a function of time.

c(t) ∼
√

t =⇒ x(t) ∼ t 3
2
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Travelling waves and accelerating fronts in kinetic equations.

Infinite speed of propagation

Theorem (B., Calvez, Nadin)

We suppose that M(v) > 0, for all v ∈ R. With a suitable initial data, one has,
for all c > 0,

lim
t→+∞

sup
x≤ct
|M(v)− f (t, x , v)| = 0 .
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Travelling waves and accelerating fronts in kinetic equations.

Front acceleration when V is unbounded

With a suitably constructed pair of sub- and super- solutions,

Theorem (B., Calvez, Nadin)

Let M(v) = 1
σ
√
2π

exp
(
− v2

2σ2

)
. Under suitable hypothesis on the initial data,

1 Propagation bounded from above by t
3
2 : For all ε > 0, one has

lim
t→+∞

sup
|x|≥(1+ε)σ

√
2r(t+1)3/2

ρ(t, x)→ 0 .

2 Propagation bounded from below by t
3
2 : For all γ > 0, ε > 0, we have

lim
t→+∞

(
sup

x≤(1−ε)σ( r
r+2 t)3/2

ρ(t, x)

)
≥ 1− γ .

References. J. Garnier, Accelerating solutions in integro-differential equations, SIAM Journal on
Mathematical Analysis. 43(4) (2011)
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Travelling waves and accelerating fronts in kinetic equations.

Conclusions

Bounded velocities : Minimal speed of propagation, Profiles given by a
spectral problem : As for Fisher-KPP.

Unbounded velocities : Accelerated propagation, (almost) exact rate in the
Gaussian case ( ∼ t

3
2 ) : Even if the diffusive limit is Fisher-KPP.

Emeric Bouin (UMPA - ENS de Lyon) 19 / 29



Travelling waves for the cane toads model.

1 Modelling issue : Structured models in biology.

2 Reminder on reaction-diffusion fronts (Fisher-KPP equation).

3 Travelling waves and accelerating fronts in kinetic equations.

4 Travelling waves for the cane toads model.

Emeric Bouin (UMPA - ENS de Lyon) 20 / 29



Travelling waves for the cane toads model.

The cane toads model

"Kinetic" type of model : density of toads f (t, x , θ).

t ∈ R+: time, x ∈ R: space variable, θ ∈ Θ: phenotypical trait.

Space Diffusion, Mutations, Reproduction.

∂t f = θ∂xx f + α∂θθf + r f (1− ρ) , (t, x , θ) ∈ R+ × R×Θ,

ρ(t, x) =
∫

Θ
f (t, x , θ′) dθ′ , (t, x) ∈ R+ × R.

with Neumann boundary conditions in θ ∈ Θ := [θmin > 0, θmax < +∞].

References.
L. Desvillettes et al., Infinite dimensional reaction-diffusion ..., preprint CMLA (2004)

N. Champagnat et al., Invasion and adaptive evolution ..., J. Math. Biol. (2007)

O. Bénichou et al., Front acceleration ..., Phys. Rev. E (2012)
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Travelling waves for the cane toads model.

Travelling waves

Definition

We say that a function f (t, x , θ) is a travelling front solution of speed c ∈ R+ if it
can be written

f (t, x , θ) = µ (ξ = x − ct, θ) ,

where the profile µ ∈ C2 (R×Θ) is nonnegative, satisfies

lim inf
ξ→−∞

µ (ξ, ·) > 0, lim
ξ→+∞

µ (ξ, ·) = 0,

and solves{
−c∂ξµ = θ∂ξξµ+ α∂θθµ+ rµ(1− ν), (ξ, θ) ∈ R×Θ,

∂θµ(ξ, θmin) = ∂θµ(ξ, θmax) = 0, ξ ∈ R.

where ν is the macroscopic density associated to µ, that is ν (ξ) =
∫
V
µ (ξ, θ) dθ.
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Travelling waves for the cane toads model.

Edge of the front

Linear problem at infinity :

Ansatz : µ(ξ, θ) = exp(−λξ)Qλ(θ),

We plug this ansatz in ...{
−c∂ξµ = θ∂ξξµ+ α∂θθµ+ rµ, (ξ, θ) ∈ R×Θ,

∂θµ(ξ, θmin) = ∂θµ(ξ, θmax) = 0, ξ ∈ R.
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Travelling waves for the cane toads model.

Spectral problem

and we obtain:

(S)


α∂2θθQλ(θ) +

(
−λc(λ) + θλ2 + r

)
Qλ(θ) = 0 ,

∂θQλ(θmin) = ∂θQλ(θmax) = 0 ,

Qλ(θ) > 0 .

Unique solution by the Krein-Rutman theorem iff Θ is bounded :

For all λ > 0, there exists a unique c(λ) ∈ R+,

such that there exists Qλ(θ) > 0

satisfying (S).
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Travelling waves for the cane toads model.

Spatial sorting at the edge of the front.

The eigenvector Qλ(θ) gives the distribution of the motilities at the edge of the
front going with speed c(λ).

Qλ(θ) is increasing ! =

More toads with the biggest legs at
the edge of the front.

Qλ(θ) concentrates to δθ=θmax when
α→ 0.
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Phenotypic distribution at the edge of the front

Reference. R. Shine and al, An evolutionary process that assembles phenotypes through space
rather than through time, PNAS (2011)
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Travelling waves for the cane toads model.

Existence of cane toads waves

Theorem

Let Θ be bounded and c* = infλ>0 c(λ). Then there exists a traveling wave
solution of the cane toads model of speed c*.

−c∗∂ξµ = θ∂ξξµ+ α∂θθµ+ rµ(1− ν), (ξ, θ) ∈ R×Θ,
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Figure : The front for α = 1 and r = 20 (left). Trait profiles (right).
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Travelling waves for the cane toads model.

A Leray-Schauder type argument

No maximum principle : Abstract homotopy argument.

Three main ingredients :
1 Spectral problem,
2 An homotopy to come back to a constant diffusivity

gτ (θ) = θ + τ (θ − θmin),

3 Energy estimate to get the a priori bound on the fixed points.

Reference. M. Alfaro and al, Travelling waves in a nonlocal reaction-diffusion equation as a
model for a population structured by a space variable and a phenotypical trait, CPDE (to appear)
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Travelling waves for the cane toads model.

What about unbounded Θ ?

A WKB approach can (formally) show an acceleration of the front
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New scaling :

(t, x , θ) 7→
(
t

ε
,
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)
⇓

x(t) ≈ 4
3

(
r3/4α1/4

)
t3/2

Data from Urban et al. (Am. Nat. 2008): 1.63± 0.13 (Gordonvale-Timber Creek,
for which spatial sorting is presumably the main effect).
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Thank you for your attention !

Figure : Female cane toad. Rick Shine’s lab (University of Sydney).
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