Principes du maximum

Faisons-nous la main, en dimension un.

EXERCICE 1 (Sans terme d'ordre 0). Soient I = [0, 1] et $b \in L^{\infty}(I)$. Soit $u \in C^{2}(I)$ telle que :

$$\forall x \in I, \quad -u''(x) + b(x)u'(x) \le 0.$$

1. Montrer que soit u est constante sur I, soit u n'admet pas de maximum sur I. On pourra utiliser la fonction suivante (avec ε , α et x_0 convenablement choisis):

$$\forall x \in I$$
, $w(x) = u(x) + \varepsilon(e^{\alpha(x-x_0)} - 1)$.

2. On suppose de plus que $u \in \mathcal{C}^2(I) \cap \mathcal{C}^1(\overline{I})$ et que u est non constante. Dans le cas où u atteint son maximum en x = 0 (resp. x = 1), montrer que u'(0) < 0 (resp. u'(1) > 0).

EXERCICE 2 (Avec terms d'ordre 0). Soient $I =]0,1[, b, c \in L^{\infty}(I) \text{ avec } c \geq 0.$ Soit $u \in \mathcal{C}^2(I)$ telle que :

$$\forall x \in I, \quad -u''(x) + b(x)u'(x) + c(x)u(x) \le 0.$$

- 1. Montrer que soit u est constante sur I, soit u n'admet pas de maximum **positif** sur I.
- 2. On suppose de plus que $u \in \mathcal{C}^2(I) \cap \mathcal{C}^1(\overline{I})$, que son maximum est positif et que u est non constante. Dans le cas où u atteint son maximum en x = 0 (resp. x = 1), montrer que u'(0) < 0 (resp. u'(1) > 0).

Principes du maximum. Les énoncés des exercices 1 et 2 se généralisent à un opérateur elliptique du second ordre en dimension quelconque. Dans tout ce qui suit, Ω est un ouvert connexe non vide de \mathbb{R}^d et L est l'opérateur linéaire du second ordre défini par :

$$\forall u \in \mathcal{C}^2(\Omega), \quad \forall x \in \Omega, \quad L[u](x) = -\sum_{i,j=1}^d a_{i,j}(x)\partial_{i,j}^2 u(x) + \sum_{i=1}^d b_i(x)\partial_i u(x) + c(x)u(x),$$

où $A = (a_{i,j}), b = (b_i), c \in L^{\infty}(\Omega)$ et A est symétrique et uniformément définie positive (condition d'ellipticité).

Théorème (Principe du maximum faible). Supposons Ω borné et $u \in C^2(\Omega) \cap C(\overline{\Omega})$ telle que $L[u] \leq 0$ dans Ω .

1. Si $c \equiv 0$, alors u atteint son maximum dans $\overline{\Omega}$ sur $\partial\Omega$:

$$\sup_{\overline{\Omega}} u = \sup_{\partial \Omega} u.$$

2. Si $c \geq 0$, alors u atteint son maximum sur $\partial \Omega$ s'il est positif :

$$\sup_{\overline{\Omega}} u \le \sup_{\partial \Omega} u^+.$$

Pour de nombreuses applications, le principe du maximum faible suffit. On va néanmoins renforcer ce résultat en montrant qu'en fait une sous-solution de l'opérateur elliptique ne peut atteindre de maximum à l'intérieur de Ω sans être constante. Il faut pour cela le

Théorème (Lemme de Hopf). On suppose que Ω est borné et régulier. Soit $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}(\overline{\Omega})$ telle que $L[u] \leq 0$ dans Ω . Supposons enfin qu'il existe $x_0 \in \partial \Omega$ tel que pour tout $x \in \Omega$,

$$u(x_0) > u(x)$$
.

1. Si $c \equiv 0$, alors la dérivée normale sortante est strictement positive :

$$\nabla u(x_0) \cdot \eta(x_0) > 0.$$

2. Si $c \ge 0$, alors la dérivée normale sortante est strictement positive si $u(x_0) \ge 0$.

On donne maintenant un énoncé plus fort du principe du maximum:

Théorème (Principe du maximum fort (de Hopf)). Soit $u \in C^2(\Omega)$ telle que $L[u] \leq 0$ dans Ω (non nécessairement borné).

- 1. Si $c \equiv 0$, u n'admet pas de maximum dans Ω à moins d'être constante.
- 2. Si $c \geq 0$, u n'admet pas de maximum **positif** dans Ω à moins d'être constante.

Les preuves et des extensions de ces théorèmes sont consultables dans les bibles très recommandées [1] et [2].

Continuons avec un petit corollaire et un contre-exemple.

EXERCICE 3. Dans le cadre de l'Exercice 1, montrer que si u admet un maximum local sur I alors c'est un minimum global.

EXERCICE 4. Soit $I =]0, \pi[$. Donner un exemple de fonctions $b, c \in L^{\infty}(I)$ et $u \in C^{2}(I)$ non constante telles que :

$$\forall x \in I, \quad -u''(x) + b(x)u'(x) + c(x)u(x) \le 0,$$

et telles que u admette un maximum sur I.

Exercice très important.

EXERCICE 5 (Unicité via le principe du maximum). On se place dans le cadre des énoncés précédents du Principe du Maximum avec Ω borné et c > 0.

- 1. Montrer que si $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}(\overline{\Omega})$ satisfait $L[u] \leq 0$ dans Ω et $u \leq 0$ sur $\partial \Omega$, alors
 - soit u(x) = 0 pour tout $x \in \Omega$;
 - soit u(x) < 0 pour tout $x \in \Omega$.
- 2. En déduire l'unicité d'une solution $\mathcal{C}^2(\Omega) \cap \mathcal{C}(\overline{\Omega})$ pour un problème de Dirichlet de type :

$$\begin{cases} L[u] = f, & \text{dans } \Omega, \\ u = g, & \text{sur } \partial\Omega. \end{cases}$$
 (1)

Une application.

EXERCICE 6. On se place dans le cadre des énoncés précédents du Principe du Maximum avec Ω borné et $c \geq 0$. Soient $\eta > 0$, $f \in L^{\infty}(\Omega)$ et $g \in L^{\infty}(\partial\Omega)$. Montrer que si $u \in C^{2}(\Omega) \cap C(\overline{\Omega})$ satisfait $L[u] + \eta u = f$ dans Ω et u = g sur $\partial\Omega$, alors

$$||u||_{\infty} \le \max\left(||g||_{\infty}, \frac{||f||_{\infty}}{\eta}\right).$$

Complément : Que faire si on n'a pas $c \ge 0$?

EXERCICE 7. On se place dans le cadre des énoncés précédents du Principe du Maximum avec Ω borné sans avoir $c \geq 0$. Soit $u \in \mathcal{C}^2(\Omega)$ telle que $L[u] \leq 0$ dans Ω . Supposons que l'on dispose d'une fonction $v \in \mathcal{C}^2(\overline{\Omega})$ telle que v > 0 et $L[v] \geq 0$ dans $\overline{\Omega}$.

- 1. Montrer que soit $\frac{u}{v}$ est constante dans Ω , soit $\frac{u}{v}$ n'admet pas de maximum positif dans Ω .
- 2. Remarque : si $\frac{u}{v}$ est une constante positive, u est solution d'une équation elliptique.
- 3. Montrer l'unicité d'une solution $\mathcal{C}^2(\Omega) \cap \mathcal{C}(\overline{\Omega})$ pour le problème (1).

EXERCICE 8. Pour d=2 et le rectangle $\Omega=]0,\pi[^2.$

- 1. Trouver un vecteur propre $v \in C^2(\Omega) \cap C(\overline{\Omega})$ de $-\Delta$ tel que v > 0 dans Ω et v = 0 sur $\partial\Omega$. On note $\lambda \in \mathbb{R}$ la valeur propre associée.
- 2. On introduit

$$X = \{ u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}(\overline{\Omega}) \mid u = 0 \text{ sur } \partial\Omega \}.$$

Pour quelles valeurs de $\gamma \in \mathbb{R}$ a-t-on la propriété suivante :

$$u \in X$$
, $-\Delta u + \gamma u \le 0$ dans $\Omega \implies u \le 0$ dans Ω ?

References

- Evans, Lawrence C. (2010) [1998], Partial differential equations, Graduate Studies in Mathematics 19 (2nd ed.), Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-4974-3, MR 2597943.
- [2] D. Gilbarg, N.S. Trudinger. Elliptic partial differential equations of second order. Springer-Verlag, Paris (1977).