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OPTION B POUR L’AGREGATION

TD/TP 10 :
Equations aux dérivées partielles: Equation de la chaleur

UN PEU DE THEORIE POUR COMMENCER...

EXERCICE 1 (Equation d’Airy). What is for you the difference between the heat equation and

the following Airy equation
3tu — 8xmu =0.

EXERCICE 2. We consider the following

2 .
%_7; _ % = f(z) in (0,1) x (0,7,

u(z,0) = up(z), on (0,1),

with f € L?(Q). Study the convergence of the solution when ¢ — co.

EXERCICE 3 (Turing patterns). In this exercice, we will study what may explain some patterns
on animals, particularly on fish.

Figure 1: EXAMPLES OF ANIMALS WITH SPOTS AND STRIPES. LEFT: Discus
(HTTP://ANIMAL-WORLD.COM/ENCYCLO/FRESH/CICHLID /DISCUS.PHP). MIDDLE: SERGEANT
MAJOR (HTTP://WWW.LAGONS-PLAGES.COM /POISSONS-DE-LAGONS.PHP) RIGHT:  OCELOT
(HTTP://NOTRENATURE.COWBLOG.FR/426-OCELOT-3055620.HTML).

1. After what we discussed during the lectures, why is diffusion a stabilizing process?

2. We consider the following ODE system:

du __
% = au+bv,

dv __
J = cu+dv,



where a, b, c,d are real constant coefficients. What are the standard assumptions to ensure
that (0,0) is a stable attractive equilibrium point?

We now consider the reaction diffusion linear system on € a bounded subset of R¢,

% — oyAu = au + bv,

1
o M)
ot — OvAv = cu + dv,

with either Dirichlet or Neumann boundary conditions and where the diffusivities are positive real
constants. This should help for stability. Surprisingly, we have the following:

Theorem 1. Consider the system where we fix the domain €2, the matriz A and o, > 0.
We assume that the stability condition of the ODE system is fulfilled with a > 0,d < 0. Then, for
oy small enough, the steady state (u,v) = (0,0) is linearly unstable. Moreover, only a finite number
of eigenmodes are unstable.

1. Project the reaction-diffusion system on a suitable basis of eigenmodes.
2. For each eigenmode, look for a solution with exponential growth in time.

3. Prove that the linear system so-obtained can have an instability when o, is sufficiently small.

The usual interpretation of this result is as follows. Because a > 0 and d < 0, the quantity u is
called an activator and v an inhibitor. We have

Turing instability: short range activator, long range inhibitor,
to be compared with
Traveling waves: long range activator, short range inhibitor.

EXERCICE 4. Prove that the backward heat equation Cauchy problem is ill-posed. For this
purpose, provide a solution that explodes for ainsi given time ¢y. The initial condition can be chosen.

EXERCICE 5 (Blow-up for heat equations). Let ¢ be a positive smooth function on [0, 7],
such that ¢(0) = ¢(n) = 0. Let e > 0. We assume that there exists a solution u(t,x) €
C>™ ([0, 7] x [0, T(¢)]) of the following nonlinear parabolic problem

G -G =luFu,  (t2) €07 x [0,T(9)]
u(t,0) = u(t,m) =0, t€[0,T(o)], (2)
u(0,x) = ¢(x), x € [0, 7].
1. Prove that u(t,x) > 0 for all (¢,z) € [0, 7] x [0, T(9)][.
2. Find a nonnegative smooth function 1 on [0, 7] and A € R**, satisfying
¥(@) + Xp(a) =0, e [0,

$(0) = () =0, /0 " (@)dz = 1.



3. We assume that

Ve e RY i x)Y(x)dx ] A
ert, ([ o) >
Prove that f(t) := /7r u(t, z)1p(x)dr satisfies

0

Ve 0, T@L  F(0) = 1) (0 N,
and conclude that T'(¢) < +oo.

EXERCICE 6 (Gradient blow-up). Let ¢ be a positive smooth function on 2 C R", such that
d(x) = 0 on 9. We assume that there exists a solution u(t,z) € C* (2 x [0,T(¢)[) of the following
nonlinear parabolic problem

G — Au=|Vul*,  (2,1) € Q% [0,T(9)],
u(t7$) =0, (:Uat) € 00 x [OaT(¢)[a (3)
u(0,z) = ¢(x), x €.

1. Prove that the solution remains positive and bounded for all positive times.

2. Prove the following gradient estimate:

VT <T(¢), sup ||Vul|so = sup |Vul,
[0,7] Pr

where Pr denotes the parabolic boundary.

Let 1 < g < 4+o00. We want to show that there exists C' := C(e, ¢, 2), such that if |lug| req) > C,
then T'(¢) < +oo.

1. We define ¢q¢ := @ Why is it sufficient to prove the assertion for ¢y < g < +007?
2. Let thus define k =¢q— 1 (2 %) Compute %H% (fQ ukHdﬂv).

3. Prove that

k+1
k+2+4¢
/ |Vau|?teubdz > C) / uP ey, / \Vu|?uftdz < Cy </ ]Vu|2+sukda:> .
Q Q Q Q

4. Deduce that

gtlte

d</uqdm>203</uqu> ! — Oy
dt \Ja Q

and conclude.



SIMULATIONS NUMERIQUES
EXERCICE 7 (Basic heat equation). Prepare a script that solves the classical heat equation:

%_%:0 n (0,1)X(07T)7
u(z,0) = up(z), on (0,1),

u(0,t) =u(l,t) =0 ont>0.

The script will contain the explicit Euler, implicit Euler, and Crank-Nicolson. Please give the
stability conditions (when expected) and the precisions of the schemes.

EXERCICE 8 (Polarization equation). Let M > 0 be the mass of markers. The one-dimensional
polarisation equation writes:

du_ P y(t,000,u, () € RT x RY,

Ozu(t,0) =0, t>0,

u(0,x) = Cprexp (—xz) ,

where C)y is a renormalization constant such that fooo u®(x)dr = M. Solve numerically the equation
with a Neumann boundary condition in x = 0. Play with the value of the mass M, what do you
observe?

EXERCICE 9 (Evolution of temperature in the ground). Propose a model that describes the
evolution of temperature in the ground given that the temperature of the atmosphere changes during
the year. Make a numerical simulation.

EXERCICE 10 (Fisher-KPP equation). Prepare a script that solves the following Fisher-KPP
equation:

9u 9w — (1 —w) in (0,1) x (0,7),
u(z,0) = 14«0

What qualitative behavior do you observe? Quantify the speed of propagation.

EXERCICE 11 (Turing patterns). Prepare a script that solves system (in one space dimen-
sion, or two, if you are awesome!).

EXERCICE 12 (Blow-up). Prepare a script that solves system .



