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EQUATIONS AUX DERIVEES PARTIELLES: EQUATIONS ELLIPTIQUES

SUR SOBOLEV.

EXERCICE 1 (Non-completeness). We define €2 := B(0,1). Prove that the space

Vi={vel(Q),v=0sur 9Q}

is not complete for the scalar product of H, (Q), (u,v) = Jo Vu - Vudz. For this purpose, you may

consider the following sequences:
If n = 1, the following regularized absolute value

—x —1, :ng—%,
Un(z) := § Za2% — 1+ o, —1<z<d
r—1, xzi.
If n=2, X
Up(z) := |In (Tﬁ-nl)r — |ln (i—l—nl> :
Ifn>2,

. 1 1
un(x) T (‘:C|2 +n—1)6/2 o (1+n—1),8/2'

*

EXERCICE 2 (Poincaré-Wirtinger). Let Q € R? be an open, bounded domain
exists a constant C'(€2), depending on the domain, such that

Vu € HY(Q), /|u—u|2da: < C(Q)/\Vu|2dx,
Q Q

1 /
where @ = — [ u(z)dz.
1)

. Show that there



EXERCICE 3 (Rellich). Let © € R? be open and bounded. Prove that any uniformly bounded
sequence in H}(Q) is relatively compact in L2(€2).

Hint 1: This means that if {un} C Hy(Q) is a sequence such that ||un|lgr () < C for some constant
C independant of n, then there exists a subsequence {ug,mym)} (with ¢ : N — N strictly increasing)
and a limit u € L2(Q) such that

H“so(n) —uHLQ(Q) —+0 as n— oo.
Hint 2: Show that u € HY(R?) iff u € L2(RY) and
IM >0, Vh e RY, lu(- + h) —ulL2 < M|A].

Hint 3: We recall the Riesz-Fréchet-Kolmogorov theorem:
Let Q € R? be open. First consider w CC Q, i.e. w open with @ C Q. Consider G C L2(€).
Suppose

Ve >0, 30 >0, 6 <d(w,00), Vh eRY, |h] <6, VueG, |lu(-+h)—u()|fz <e (1)
Then G|, is relatively compact in L2(w). Second, assume in addition to that
Ve >0,3w CCQ, YuegG, ullL2@\w) < e

Then G is relatively compact in L2(€2).

Du LAX-MILGRAM EN VEUX-TU EN VOILA!
EXERCICE 4. Let u € H'(2) be a weak solution of the following Neumann problem:

-V - (A(x)Vu) + b(x) - Vu = in €,
{ (A(z)Vu) + b(x) f @)

—A(x)Vu-n=g on 0f).
where f € L2(Q), g € HY(Q). The coefficient A is elliptic and b € L>(Q) satisfies V- b = 0 in

and b-n =0 on 0). Prove that has a unique weak solution up to addition of a constant if and
only if the source terms satisfy the following compatibility condition:

f(x)dz = [ g(z)do(z). (3)
[ |
Q

o0N

*

EXERCICE 5 (Robin). Let o > 0 and f € L*(R7%),g € L2(R"!). We study the following
problem with so-called Robin boundary conditions:

(4)

{—Aum +u(x) = f(x), weRY,
—01u(0,y) + ou(0,y) = g(y), yeR* L

1. Give a definition of strong solution of and of weak solution of .
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2. Show existence and uniqueness of a weak solution of .
3. Prove that is g = 0 a.e., the weak solution of () is in H?(R").

4. Assuming that g = 0 a.e., we denote by u,, the strong solution associated to ¢ = n. Prove
that wu, converges in H'(£2) towards a weak solution of the Dirichlet problem

{‘Auu) tulz) = fz),  wERY, (5)

u(0,y) =0, y € R*1

REGULARITE ET RIGIDITE ELLIPTIQUE.

EXERCICE 6 (Cacciopoli - Interior regularity). Suppose € R? be open. Let zo € Q and
0 < p < p such that B(xg,p) C Q. Suppose u € H'(Q) satisfies

—Au+b-Vu+au=0in ,
where a,b; € R for 1 <+¢ < d. Show that there exists a constant C' such that

C
VquacS — / ul? dz.
[ wras ot [

B(zo,p) B(xo,p)

Take a = b; = 0. Deduce that
VEEN, [[ullfik s < C0mmuliepuom:  1ulir s < C0: o E)uliz 5w, 5)-
What do you conclude?

*

EXERCICE 7 (Maximum Principle - Divergence Form). Also, let ¢(z) € L>®(Q2) and ¢(z) > —\
with

A= inf /\vu(m)y2dx v e HYQ), [ofliaoy = 1
Q

Suppose u € H'(£2) verifies in the weak sense

—Au+ c(x)u >0
on €2, which means in an explicit way we have:

Vo eCP(Q),¢ >0, /Vu-V¢dx+/cu¢d:c20. (6)
Q Q
Show that inf,cq u(z) = inf,con u(z).
Hint: Use the density of C§°(Q) in HY(2). Take —(u — inan u(z))” as test function.
e

*



EXERCICE 8 (Strong Maximum Principle). Let © € R? be a connected open domain. Suppose
u € C*Q)NC(Q) and a;j, by, ¢ are smooth enough, a is uniformly elliptic and ¢(z) > 0 in Q.

1. (Preliminary) Prove that if (cy;) and (B;;) are two positive definite matrices then we have
2 ijBij = 0.

2. Show that if u is a subsolution of the elliptic operator:

- zd: al-(x)ﬂ + 3 b(a:)% +e(z)u<0 inQ
Py K al‘laxj P ! 0x; - ’

such that
u(wy) = maxu(z) > 0,
e

then u is constant in €.

3. Write (and prove @) a similar statement for a supersolution.
*
EXERCICE 9 (Harnack’s inequality for harmonic functions). Suppose that u solves
—Au =0, Va € D(0,R).
for some R > 0. We recall that u is thus analytic.

1. Prove the following Poisson representation formula:

1 /27 R2_ |42 i
vzeDO.R),  ulz)= 27r/0 Mu(Re o

2. Prove that for 6 € [0,27], z € B(0, R), |z| = r, we have

R—r R*—|z> R+r
< - <
R+r ~ |Re® —z]2 — R—r

3. Deduce from the above the following so-called Harnack inequality when u is nonnegative:

s B(O,R), |2 = r, (g;:) w(0) < ulz) < @f:) u(0).

This can be generalized (with pain) to a nonnegative solution u of
—V - (AVu)+b-Vu+cu=0 1inQ,
on any connected w CC . The Harnack inequality writes

supu(z) < C(w) inf u(x).

TEW TEW



SIMULATIONS NUMERIQUES D’EQUATIONS ELLIPTIQUES.
EXERCICE 10 (Batman begins). We consider the following Laplace equation

{—u” +c(z)u = f, x € (0,1),
u(0) =, wu(l)=24.

1. Solve numerically our problem.
2. When we prescribe f(z) = (14 22 — 2?) e” and c¢(z) = z, what is the solution u?

3. Compare numerically both solutions and plot the error curves in a ’loglog’ scale.
*

EXERCICE 11 (Batman returns). Redo the previous exercise with the following Laplace equa-

tion
—u” (1’) = f(l’), LS (03 1) )
u(0) =0, /(1) =0,

where the Neumann boundary condition should be discretized as follows:

h2
UNL1 = UN, and then UN4+1 — UN = ?f(l)

How would you generalize this two schemes to the full system

{—u” + c(x)u =0, z€(0,1),

w(0) = a, W(1)=5
*
EXERCICE 12 (Batman & Robin). We now consider Robin (®) boundary conditions:
{—u” fu=f(x), x€(0,1),
' (0) + au(0) =0, u/(1)+ au(l) =0,
How do you discretize the boundaries? What is the order of the scheme?

*

EXERCICE 13 (Spectral problem). Solve numerically the following spectral problem

{—Qee +9(0)Q=2Q, 6 (0,1),
Qo(0) = Qy(1) =0

with a shooting method. Choose your favorite function g.

*



EXERCICE 14 (Batman Forever). We consider the following Laplace equation with a drift term

—u" + c(z)u = f, x € (0,1),
u(0) =0, wu(l)=1.

1. Solve numerically our problem with a very naive scheme.
2. We want to get an order 2 scheme. What should we do?
*

EXERCICE 15 (Laplace equation 2D*). We consider the following Laplace equation

—Ugy — Uyy + (2, y)u =0, z e (0,1)%,
u(0,y) =1, wu(l,y) =0,
Uy(z,0) = 0, uy(x,1) = 0.

1. Design the numerical matrix of the elliptic operator.

2. Go.



