
Université Paris-Dauphine Di↵erential equations: exercises L3 Maths, 2018-2019

Part 1 (Picard-Lindelöf, autonomous equations, explicit resolution in dimension 1): 5 to 6 weeks.

The program for the exercise sessions is the following. Week 1: Exercises 1, 3, 4, 6. Week 2: 7, 8, 15, 16;
Week 3: 17, (13, 14). Week 4: 18, 19, 23 i)-iii), 25, Week 5: 31, 32a, 35, 36 ii)-iii), Week 6: 37 A or B, 39.

Students are encouraged to do more exercises, e.g., 3, 4, 9 10, 13, 20, 21, 22, 27, 32b), 33, 36 iii)-iv), 37 B

or A, 38. Note also that there are exercises in the course’s textbook. Most of those are relatively easy and

intended to allow students to check their understanding of the course.

Existence and uniqueness of solutions. We state here a particular version of the theorems seen in
the notes Chapter 1. Let d 2 N, F : I ⇥ Rd ! Rd, t0 2 I, X0 2 Rd, where I is a nonempty open
interval of R (using the notation of the notes, we are considering the particular case ⌦ = I ⇥ Rd).

A solution of the di↵erential equation

X 0(t) = F (t,X(t)) (1)

is given by a nonempty open interval J ✓ I and a di↵erentiable function X : J ! Rd satisfying (1)
for all t in J . A solution of the initial value problem (Cauchy problem)

⇢
X 0(t) = F (t,X(t))
X(t0) = X0

(2)

is a solution of (1) such that t0 2 J and X(t0) = X0. This solution is maximal if it cannot be
extended to a larger time interval. It is global if J = I, in this case the solution is trivially maximal.

The following is a corollary of Picard-Lindelöf Theorem and of the Characterization of maximal
solutions Theorem stated in the notes.

Theorem 1 If F is C1 or Lipschitz on I ⇥Rd, then (2) has exactly one maximal solution (J,X(·)).
Moreover, if sup J < sup I, then ||X(t)|| !t!sup J +1, and if inf J > inf I, then ||X(t)|| !t!inf J

+1.

As a particular case, Theorem 1 is also valid if F is defined on R⇥ Rd, in this case:

a) t0 2 R, J ⇢ R are trivially satisfied in the definition of a solution,

b) the theorem modifies in this way:

If F is C1 or Lipschitz on Rd+1, then (2) has exactly one maximal solution (J,X(·)). Moreover,
if sup J < +1, then ||X(t)|| !t!sup J +1, and if inf J > �1, then ||X(t)|| !t!inf J +1.

c) the solution is global if J = R.

As a particular case, Theorem 1 is also valid if the equation is of the form X 0(t) = F (X(t)) with
F : Rd ! Rd of class C1 or Lipschitz on Rd.

Importance of the assumptions of Theorem 1

Exercise 1 (Assumptions of Theorem 1) How many maximal solutions do the following problems
have? Why is this consistent with Theorem 1? Check the assumptions and identify I and J in order
to check if the Theorem applies.

a) x0(t) = � sin t and x(0) = 2; b) x0(t) = � sin t and x(0) = x(2⇡); c) x0(t) = � sin t and x00(0) = 0;
d) tx0(t) = 2x(t) and x(0) = 1; e) x00(t) = 0 and x(0) = 0.
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Exercise 2 (2015-I-1) (Integration problems are di↵erential equations; an initial value is a specific
condition) a) Solve (= find all maximal solutions of) the equation x0(t) = � sin t.

b) Find all maximal solutions of the initial value problem x0(t) = � sin t and x(0) = 1.

c) Find all maximal solutions of the problem x0(t) = � sin t and: c1) x(0) = x(2⇡); c2) x”(0) = 0;
c3) x(0)x(⇡) = 0. How many solutions do you find? Why is this consistent with Theorem 1?

Exercise 3 (2015-I-2, with solution) (an initial value problem with no solution) Define f : R⇥
R ! R by f(t, x) = 1 if x  0 and f(t, x) = �1 if x > 0. Show that the di↵erential equation
x0(t) = f(t, x(t)) has no solution such that x(0) = 0. Why is this consistent with Theorem 1?

Exercise 4 (2015-I-6, with solution) (an initial value problem with multiple solutions)

Consider the initial value problem x0(t) = 3[x(t)]
2
3 with x(0) = 0.

a) Show that the functions defined on R by x(t) = 0 and y(t) = t3, respectively, are two maximal
solutions of this problem. Why is this consistent with Theorem 1?

b) Let a and b be in R̄, with a  0  b. For all t 2 R, let ua,b(t) = (t � a)3 if t  a, ua,b(t) = 0 if
t 2 [a, b] \ R, and ua,b(t) = (t� b)3 if t � b.

b1) Sketch the graph of ua,b and show that ua,b is a maximal solution.

b2) (⇤) Show that all maximal solutions are of this type. Hints in this footnote.1

Using Theorem 1: some simple examples

Exercise 5 (variant of 2015-I-3, done in Chapter 3) (a maximal solution need not be global)
Call (IVP) the initial value problem u0(t) = u2(t) and u(0) = 1. Consider the function u :]�1, 1[! R
defined by u(t) = 1/(1� t). Sketch its graph. Check that it is solution of (IVP). Why is it maximal?
Why is is the unique maximal solution of (IVP)? Is it global?

Exercise 6 (a simple use of Theorem 1 in dimension 1) Consider the initial value problem x0(t) =
sin(tx(t)) and x(0) = 1.

1. Show that it has a unique maximal solution and denote it by (J, x(·)).

2. Show that for all t in J , |x(t)|  1 + |t|.

3. Assume sup J < +1. Show that x(·) is bounded on [0, sup J [. Conclude that |x(t)| does not
go +1 as t ! sup J and find a contradiction based on Theorem 1.

4. Conclude that sup J = +1 and show similarly that inf J = �1, so that the solution is global.

Exercise 7 (variant of 2015-II-23, non-explosion) (a simple use of Theorem 1 in dimension 2)
Let (x0, y0) 2 R2. Consider the initial value problem:

⇢
x0(t) = sin (x(t) + y(t)) , x(0) = x0

y0(t) = ex(t)�1, y(0) = y0.
(3)

1Consider a maximal solution (J, x(·)). Show that x(·) is continuous and increasing, so that there are elements a

and b in R̄ such that x(t) < 0 on J� =]�1, a[, x(t) = 0 on J0 = [a, b] \ R and x(t) > 0 on J+ =]b,+1[. Show that
if J+ 6= ;, there exists a constant K such that, for all t 2 J+, x(t) = (t�K)3, and show that K = b. Prove a similar
result on J� and conclude.
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1. Show that the initial value problem (3) has a unique maximal solution (J, (x̄, ȳ)).

2. Show that for all t 2 J , |x̄(t)� x0|  |t|.

3. Show that for all t 2 J , |ȳ(t)� y0|  C|t|e|t| for some constant C.

4. Show that if sup J < +1, then X(t) = (x̄(t), ȳ(t)) is bounded on [0, sup J [. Conclude that
sup J = +1.

5. Show similarly that inf J = �1, hence that the solution is global (J = R).

Tools to show that solutions of di↵erentials equations remain in a certain zone

When studying di↵erential equations, it is often useful to show that a solution stays in a certain
interval, when the solution evolves in R, or more generally in a given subset of Rd. The following
exercises provide tools for doing so.

Exercise 8 (2015-I-8) (first exit time from an open set, infinite sojourn in an open set) Let t0 2 R,
K 2 R. Let g : [t0,+1[! R be continuous and such that g(t0) < K.

a) Assume that there exists ⌧ > t0 such that g(⌧) � K. Show that there exists a time t1 > t0 such
that g(t) < K for all t in [t0, t1[ and g(t1) = K. Hint: t1 = min{t � t0|g(t) � K}.
b) Assume that for all t 2 [t0,+1[ : if g(s)  K for all s 2 [t0, t[, then g(t) < K. Show that
g(t) < K for all t 2 [t0,+1[. What if g is not continuous?

Exercise 9 (2015-I-9) (first exit time from a closed set, infinite sojourn in a closed set) Let g :
[0,+1[! R be continuous and such that g(0)  1.

a) Assume that there exists ⌧ > 0 such that g(⌧) > 1. Show that there exists t2 � 0 such that
g(t)  1 for all t in [0, t2[, g(t2) = 1, and for all " > 0, there exists t 2]t2, t2 + "[ such that g(t) > 1.
Indication : t2 = max{t | g(s)  1 on [0, t]}. 2

b) Assume that for all t � 0, if g(t) = 1, then there exists " > 0 such that g(s) < 1 on ]t, t+ "[. Show
that g(t)  1 on [0,+1[.

c) Assume that g(0) < 1 and that for all t � 0: if g(t) = 1, then there exists " > 0 such that g(s) > 1
on ]t� ", t[. Show that g(t) < 1 on [0,+1[.

Exercise 10 (2015-I-10) (trap) Let x : [0,+1[! R be di↵erentiable and such that x(0) < 1.

a) Show that if for all t such that x(t) = 1, x0(t) < 0, then x(t) < 1 on [0,+1[.

b) (link with di↵erential equations) Assume that x(0) 2] � 1, 1[ and that for all t � 0, x0(t) =
sin(tx(t))� 2x(t). Show that x(t) 2]� 1, 1[ on [0,+1[.

Exercise 11 (2015-I-11) (generalization of Exercise 8) Let n 2 N⇤, V an open subset of Rn, and
t0 a real number. Let g : [t0,+1[! Rn be continuous and such that g(t0) 2 V . Assume that there
exists ⌧ > t0 such that g(⌧) /2 V . Show that there exists t1 > t0 such that g(t) 2 V for all t in [t0, t1[
and g(t1) 2 V̄ \V where V̄ is the closure of V .

Exercise 12 (2015-I-12) (generalization of Exercise 9) Exercise 11 generalizes Exercise 8. Prove
a similar generalization of Exercise 9.

2Note: it may be that on every interval ]t2, t2 + "[, g takes values strictly lower than 1, because g may oscillate,
e.g., g(t) = t if t 2 [0, 1] and g(t) = 1 + (t� 1) sin(1/(t� 1)) if t > 1.
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Solution of Exercise 3. If (J, x(·)) is a solution, then x0(0) = f(x(0)) = f(0) = 1. For ✏ small
enough, [0, "] ⇢ J and since x0(0) > 0: for all t 2 [0, "], x(t) > 0, hence x0(t) = f(x(t)) = �1. Thus,
x(") = x(0) +

R "

0 x0(t)dt = 0� " < 0. This contradicts the fact that x(t) > 0 for all t 2 [0, "].

Solution of Exercise 4

a) Di↵erentiating these functions shows that they are indeed solutions. They are global, hence
maximal. The existence of two maximal solutions to this initial value problem does not contradict
Picard-Lindelöf theorem, as the function f : R ! R defined by f(x) = 3x2/3 is not C1 nor Lipschitz.

b1) Again, di↵erentiating these functions shows that they are solutions (the only di�culty is to check
that these functions are di↵erentiable in a and in b, when a and b are in R). Moreover, these solutions
are global hence maximal.

b2) We want to prove that all maximal solutions are of this kind. Let (J, x(·)) be a maximal solution.
We will show that:

(i) R+ ⇢ J and either x(t) = 0 on R+, or there exists b 2 R+ such that x(t) = 0 on [0, b] and
x(t) = (t� b)3 on [b,+1[.

It may be shown similarly that: (ii) R� ⇢ J , and either x(t) = 0 on R�, or there exists a 2 R� such
that x(t) = 0 on [a, 0] and x(t) = (t� a)3 on ]�1, a], which completes the proof.

Proof of (i): Assume for now that the solution is defined for all t � 0, that is, sup J = +1. Since
x0(t) = 3x2/3(t) � 0 for all t 2 J , the function x(·) is increasing. Since x(0) = 0, this implies x(t) � 0
for all t � 0. Therefore, either x(t) = 0 on [0,+1[ (hence (i) is satisfied) or there exists b 2 [0,+1[
such that x(t) = 0 on [0, b] and x(t) > 0 on ]b,+1[ (to see that, let b = sup{t � 0, x(t) = 0} and
note that the sup is a max by continuity of x(·)).
In the latter case, let J+ =]b,+1[. For any t 2 J+, x(t) 6= 0, hence we may divide both sides of
x0(t) = 3x2/3(t) by 3x2/3(t) to obtain:

8t 2 J+,
x0(t)

3x2/3(t)
= 1

Integrating shows that there exists a constant K such that, for all t 2 J+, x1/3(t) = t + K hence
x(t) = (t + K)3. Since x(b) = 0 and x(·) is continuous, (b + K)3 = 0, hence K = �b. Therefore
x(t) = (t� b)3 on ]b,+1[, and (i) is satisfied.

It remains to prove that sup J = +1. Assume not. The same arguments as above show that
either x(t) = 0 on [0, sup J [ (case 1) or there exists b 2 J \ R+ such that x(t) = 0 on [0, b] and
x(t) = (t� b)3 on [b, sup J [ (case 2). Since sup J < +1, the solution may be extended by letting for
all t 2 [sup J,+1[, x(t) = 0 in case 1 and x(t) = (t� b)3 in case 2. This contradicts the maximality
of the initial solution. Therefore, sup J = +1. This concludes the proof.

How to find all possible solutions? First note that x(·) is continuous increasing, and that by
separation of variables, x(·) behaves as (t+K)3 on the intervals where x(·) does not take the value
0. Second, note that maximal solutions are defined on the whole real line as otherwise they could be
extended. Third, note that the case in which x(t) = 0 for all t � 0 should be distinguished from the
case in which x(·) takes positive values, and similarly in backward time, so that there are 4 kinds of
solutions. It remains to find a way to explain this in a concise way, and to prove it. This leads, for
instance, to the phrasing of the exercise and the above solution.
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Applications of Picard-Lindelöf theorem, explosion, qualitative analysis

Exercise 13 (2015-I-13) (qualitative resolution of the logistic equation) The logistic equation

x0(t) = rx(t)(1� x(t)/K) (4)

models the evolution of the density x(t) of a species depending on a limited resource, e.g., sheeps on
an island, with no predators, but needing to find grazing fields. When the density of the population
is low, the per-capita growth-rate is close to r > 0. When the density increases, the growth-
rate decreases. It becomes negative if the density is higher than the carrying capacity K of the
environment. This equation can be solved explicitly, e.g., by separation of variables, but the aim of
this exercise is to show that its qualitative behavior may be understood without any computation.

Let x0 2 R. Let (J, x̄(·)) denote the maximal solution of (4) such that x(0) = x0.

1. What happens if x0 = 0 or x0 = K?

2. Assume 0 < x0 < K.

(a) Show that 0 < x̄(t) < K for all t in J and that J = R. Show that x̄(·) is strictly increasing.

(b) Show that x̄(t) has a limit in [x0, K] as t ! +1 and in [0, x0] as t ! �1.

(c) Show that if x̄(t) ! x⇤ 2 R as t ! +1, then f(x⇤) = 0, where f(x) = rx(1� x/K).

(d) Show that x̄(t) !t!+1 K and x̄(t) !t!�1 0.

3. Assume x0 > K. Show that x̄(t) > K for all t in J , that x̄(·) is decreasing, that sup J = +1
and that x̄(t) !t!+1 K. Show that x̄(t) !t!inf J +1.

4. Assume x0 < 0 (a case with limited ecological interest...). Show that x̄(t) < 0 for all t in J ,
that x̄(·) is decreasing, that inf J = �1 and x̄(t) !t!�1 0. Show that x̄(t) !t!sup J �1.

5. Sketch the graph of representative solutions and the phase line.

Exercise 14 (2015-I-14) (Application of Picard-Lindelöf theorem; dimension 1 is special) Let (E)
denote the autonomous di↵erential equation x0(t) = f(x(t)) with f : R ! R assumed C1. Let
(J, x(·)) be a maximal solution of (E). This is a stationary solution if the function x(·) is constant.
1) Let t0 2 R and x0 = x(t0). Show that if f(x0) = 0 then x(·) is stationary and J = R. Show that
if f(x0) 6= 0 then x(·) is not stationary.
2) Show that if there exists t0 2 J such that x0(t0) = 0, then x(·) is stationary and J = R.
3) Show that all solutions of (E) are stationary or strictly monotone.

4) Show that all periodic solutions of (E) are stationary. Is this the case for nonautonomous di↵er-
ential equations (hint: recall Exercise 2)? And for autonomous di↵erential equations in dimension
2, that is, with f : R2 ! R2? Hint in this note.3

Exercise 15 (2015-I-15) (Picard-Lindelöf theorem and criterion of maximality).

Consider a di↵erential equation x0(t) = f(t, x(t)) with f : R2 ! R of class C1. Let (Jx, x(·)) and
(Jy, y(·)) be two maximal solutions. Assume that there exists t0 2 Jx \ Jy such that x(t0) < y(t0).

a) (seen in the course) Show that for all t 2 Jx \ Jy, x(t) < y(t).

3Check that X(t) = (cos t, sin t), defined on R, is a solution of X 0(t) = F (X(t)) with F (x, y) = (�y, x).

5



b) Show that if x(t) ! +1 as t ! sup Jx then sup Jy  sup Jx and y(t) ! +1 as t ! sup Jy. Does
|x(t)| ! +1 as t ! sup Jx implies sup Jy  sup Jx? Does sup Jx < +1 implies sup Jy < +1?
Same questions as the two before if we assume in addiction that x(·) is increasing.
c) Without proof: what can we say if y(t) ! �1 as t ! sup Jy? if x(t) ! +1 as t ! inf Jx? if
y(t) ! �1 as t ! inf Jy?

d) Assume that the solutions x(·) and y(·) are global (that is, Jx = Jy = R). Let (J, z(·)) be a
maximal solution. Show that if there exists t1 2 R such that z(t1) 2]x(t1), y(t1)[ then z(·) is global.

Exercise 16 (variant of 2015-II-24) (a di↵erence between dimension 1 and dimension 2)

a) Let (E) denote the di↵erential equation: x0(t) = x(t)�(t, x(t)) with � : R2 ! R of class C1. Show
that this equation has the stationary solution (R, t ! 0). Let x0 2 R. Let (J, x̄(·)) denote the unique
maximal solution of (E) such that x(0) = x0. Show that if x0 > 0, then x̄(t) > 0 for all t 2 R.
b) Consider the di↵erential equation ⇢

x0(t) = �y(t)
y0(t) = x(t)

(5)

Let (x0, y0) 2 R2 and let (J, (x, y)) denote the unique maximal solution of (5) such that (x(0), y(0)) =
(x0, y0). Why is this solution unique?

1/. Show that (R, t ! (0, 0)) is solution of (5).

2/. Does this imply that if x0 > 0 and y0 > 0, then x(t) > 0 and y(t) > 0 for all t 2 J .

3/. Note that X(t) = (cos t, sin t) is solution of (5). In the plane R2, draw the associated trajectory,
that is, the set {X(t), t 2 R}. Does this change your answer to question 2/.? What happens
geometrically?

Exercise 17 (2015-II-25, with solution) (constant sign in dimension 2)

Let g = (g1, g2) : R⇥ R2 ! R2 be of class C1. Consider the initial value problem:

⇢
x0(t) = x(t)g1(t, x(t), y(t)) x(0) = x0 > 0,
y0(t) = y(t)g2(t, x(t), y(t)) y(0) = y0 > 0.

(6)

1/. Show that (6) has a unique maximal solution (J, (x, y)).

2/. Show that for all t 2 J , x(t) > 0 and y(t) > 0.

Solution of Exercise 17

1/. The initial value problem (6) may be written as X 0(t) = F (t,X(t)) and X(0) = (x0, y0) with
F : R3 ! R2 defined by F (t, x, y) = (xg1(t, x, y), yg2(t, x, y)). Since g is of class C1, so if F , hence
by Picard-Lindelöf theorem, (6) has a unique maximal solution.

2/. The fact that t ! (0, 0) is a stationary solution does not imply in itself that the sign of x(t) and
y(t) remains constant, because the solution might spiral (see Exercise 16). Thus, we need to use the
specific form of the equation. The argument is more subtle that most students think, and should be
studied with care.

Define f : J ⇥ R ! R by f(t, x) = xg1(t, x̄(t), ȳ(t)). Then (J, x̄(·)) and (J, t ! 0) are two global
hence maximal solutions of x0(t) = f(t, x(t)). Thus, if f is C1, they cannot cross by a corollary of
Picard-Lindelöf, hence x̄ has a constant sign. But since F is of class C1, (x̄(·), ȳ(·)) is C2 hence C1.
Therefore, f is C1. This concludes the proof.
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An introduction to trajectories.

LetX : J ! Rd be solution of a di↵erential equation, modeling a system whose state at time t isX(t).
The trajectory (also called orbit) associated to this solution is the set T = {X(t), t 2 J} of successive
states of the system as t describes J (both in forward and backward time).4 The trajectory may also
be defined as the projection of the graph of X(·) on Rd. Indeed, the projection of (t,X(t)) 2 R⇥Rd

on Rd is X(t). Thus the projection of the graph � = {(t,X(t)), t 2 J} is {X(t), t 2 J} = T .

Before trying to o understand trajectories associated to solutions of di↵erential equations and we
begin with the understanding of the notion of curves and trajectories.

Exercise 18 (trajectories in dimension 1) For each of the following functions, defined on R, sketch
its graph, then compute and draw its trajectory (indicating with arrows the direction in which it is
traveled) : a) x(t) = 0; b) x(t) = et ; c) x(t) = e�t; d) x(t) = �3e2t.

Exercise 19 (spiraling trajectories in dimension 2) For each of the following functions, from R to
R2, sketch its graph and its trajectory, indicating the direction in which it is traveled:
a) X(t) = (cos t, sin t); b) X(t) = (et cos t, et sin t); c) X(t) = (e�t cos t, e�t sin t)

Exercise 20 (other trajectories in dimension 2) For each of the following functions, from R to R2,
compute and draw its trajectory, indicating with arrows the direction in which it is traveled:
a) X(t) = (et, e�t); b) X(t) = (et; et); c) X(t) = (et; e2t); d) X(t) = (e2t; et).

Exercise 21 (trajectories and autonomous equations) Consider an autonomous equation X 0(t) =
g(X(t)), with g : Rd ! Rd of class C1. Let times t0 and t1 = t0 + � be in R and X0 2 Rd. Let
u : J ! Rd be the unique maximal solution of X 0(t) = g(X(t)) and X(t0) = X0. Let J =]a, b[, where
a and b are in R̄ and define v :]a+�, b+�[! R by v(t+�) = u(t).

a) Show that v is the unique maximal solution of X 0(t) = g(X(t)) and X(t1) = X0.

b) Show that u and v define the same trajectory.

c) Let (Jw, w) denote another solution of X 0(t) = g(X(t)). Show that the trajectories associated to
u and w are either disjoint or equal.

Autonomous equations in dimension 1

Exercise 22 (2015-II-1) (a simple stability test) Let x⇤ be an equilibrium of x0(t) = g(x(t)), where
g : R ! R, g 2 C1 or Lipschitz. Show that if there exists " > 0 such that g is positive on ]x⇤ � ", x⇤[
and negative on ]x⇤, x⇤ + "[, then x⇤ is attracting. Conclude that if g0(x⇤) < 0, then x⇤ is attracting.
Show that if g0(x⇤) > 0, then x⇤ is repelling.

Exercise 23 (2015-II-2) (autonomous equations in dimension 1) For each of the following equa-
tions: find the equilibria, draw the phase line, and say which equilibria are attracting, repelling,
and neither attracting nor repelling. What does the phase line tell us on the interval on which the
solutions are defined?

i) x0 = 2x+ 1 ; ii) x0 = �2x� 1 ; iii) x0 = x� x3 ; iv) x0 = 1 + x2 ;

v) x0 = x4 � x2 ; vi)x0 = sin x ; vii) x0 = sin2 x ; viii) x0 = max(0, x3).
4You may also see the trajectory as the set of positions occupied successively by a particle whose position at time

t is X(t).
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Exercise 24 (2015-II-3) (phase line of opposite equation) Compare the phase lines for x0 = f(x)
and x0 = �f(x). Show that if x :]a, b[! R is solution of x0 = f(x) then y :]� b,�a[! R defined by
y(t) = x(�t) is solution of x0 = �f(x).

Exercise 25 (2015-II-4) (fisheries) We study the evolution of the perch stock s(t) in a lake (a
perch is a fish).

1. In the absence of fishing activity, s(t) satisfies the logistic equation: s0(t) = s(t) (1� s(t)) .
Recall the phase line for this equation and its qualitative behavior.

2. Assume now that a quantity p of perches are fished per unit of time. This leads to:

s0(t) = s(t) (1� s(t))� p, (p > 0).

Draw the phase line for 0 < p < 1/4, p = 1/4 and p > 1/4. Is this model meaningful for initial
conditions s(0) < 0 ? For initial conditions s(0) > 0, what happens if the quantity p (say a
fishing quota) is too large? Assume that you are in charge of fixing a fishing quota (that is, to
fix p) for the next season. Roughly, what quota would you choose?

3. The fact that a quantity p of perches may be fished per unit of time independently of the
current perch stock seems implausible. Thus, we consider another model in which the quantity
fished is proportional to the current stock. This leads to:

s0(t) = s(t) (1� s(t))� ps(t), (p > 0).

Compare the qualitative behavior of the solutions to those of the previous model.

4. Propose a model combining the previous models in that the quantity fished per unit of time is
roughly constant as long as the stock is large enough, but goes to zero as s(t) goes to zero.

Exercise 26 (2015-II-5) (mating requires meeting) Even in the absence of fishing activities, the
balena population may decline if it falls below a certain threshold, because of the lack of mating
opportunities (the population may be so small that males do not meet females often enough for the
birth rate to be higher than the death rate). Propose a simple population growth model having this
behavior, and behaving roughly as the logistic equation when the population is large.

Time rescaling

Exercise 27 (time-change) Let g : R ! R and h : R ! R be C1. Let x0 2 R. Consider the initial
value problems: (IV1) x0(t) = g(x(t)) and x(0) = x0 ; and (IV2) x0(t) = h(t)g(x(t)) and x(0) = x0.
Let (Ju, u) and (Jv, v) denote the unique maximal solutions of (IV1) and (IV2), respectively. Assume
for simplicity that u is global, that is, Ju = R.
a) Let ⌧(t) =

R t

0 h(s) ds. Show that v(t) = u(⌧(t)).

b) Show that if h(·) is positive and
R +1
0 h(t) dt =

R 0

�1 h(t) dt = +1, then u and v define the same
trajectory. What happens if, for instance, h(t) = 1/(1 + t2) ?

Exercise 28 (2015-II-6, ⇤) (equations with the same phase line) Let x0 2 R. Let g1 : R ! R and
g2 : R ! R be C1. Let (J1, x1(·)) and (J2, x2(·)) be, respectively, the solutions of x0(t) = g1(x(t))
and x0(t) = g2(x(t)) such that x(0) = x0. Show that if g1 and g2 have always the same sign, then
there exists an increasing function ⌧ : J2 ! J1 (called a rescaled time) such that x2(t) = x1(⌧(t)).
How does this relate to the fact that the sign of g determines the phase line of x0(t) = g(x(t))?

Hint: in the case g1(x0) 6= 0, di↵erentiate the relation x2(t) = x1(⌧(t)), prove that necessarily
g2(x2(t)) = g1(x1(⌧(t)))⌧ 0(t), and find a function ⌧(·) that works.
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Exercise 29 (2015-II-7) (explicit solution : extra lucid)
Solve the initial value problem x0(t) = ex(t) sin(tx(t)) + x9(t), x(7) = 0.

Separation of variables

Background. The method of separation of variables applies to di↵erential equations of the form
u0(t) = g(u(t))h(t), where u, g and h are real-valued. On an interval on which g(u(t)) does not not
take the value 0, we may divide both sides by g(u(t)) and integrate. After a change of variables, this
leads to: Z u(t)

u(t0)

1

g(v)
dv =

Z t

t0

h(s)ds.

The method may be made rigorous (see Chapter 3), but it is often used as a heuristic way to find
candidates for solutions. We write without worrying about what it means: dx/dt = g(x)h(t) hence
dx/g(x) = h(t)dt hence Ĝ(x) = H(t) +K, where Ĝ is a primitive of 1/g, H a primitive of h, and K
a constant fixed by the initial condition. This leads to the candidate solution x(t) = Ĝ�1(H(t)+K).
It su�ces to di↵erentiate this function to check that this is indeed a solution, and then to check that
it is maximal. If Theorem 1 applies, there is a unique (maximal) solution, so we are done.

Exercise 30 (2015-I-3, done in the course’s text) (a maximal solution need not be global) Show
that the initial value problem u0(t) = u2(t) and u(0) = 1 has a unique maximal solution: the function
u :]�1, 1[! R defined by u(t) = 1/(1� t). Prove this:

a) using Theorem 1 and the fact that we gave you the solution.

b) using the method of separation of variables.

Sketch the graph of the solution. Is this solution global?

Exercise 31 (variant of 2015-I-4) (finding all solutions, invariance by translation in time of so-
lutions of autonomous equations) Let t0 and u0 be real numbers. Solve the initial value problem
u0(t) = u2(t) and u(0) = u0, discussing the cases u0 > 0, u0 = 0, and u0 < 0, and paying attention
to the definition interval of the solution. Then solve the initial value problem u0(t) = u2(t) and
u(t0) = u0: a) directly; b) using the invariance by translation in time of solutions of autonomous
equations. Sketch the graph of some representative solutions, explaining the link between the graph
of the solutions of u0(t) = u2(t) and u(t0) = u0 and of u0(t) = u2(t) and u(0) = u0.

Exercise 32 (2015-I-5) [For ↵ > 1, solutions of x0 = |x|↵ “explode”.] Let ↵ > 1. Let t0 2 R,
x0 2 R. Consider the initial value problem x0(t) = |x(t)|↵ and x(t0) = x0. After rearranging, the
method of separation of variables leads to the candidate solution:

x(t) =
x0

[1� sgn(x0)�(t� t0)|x0|�]1/�
(7)

where � = ↵� 1 and sgn(x0) equals 1 if x0 > 1, 0 if x0 = 0, and �1 if x0 < 0.

a) Prove that - for a good choice of J - this is a maximal solution, and the unique one. Check that:

a1) if x0 = 0, then J = R and x(t) = 0 for all t.

a2) if x0 > 0, then J =]�1, T [ for some T 2 R, x(t) > 0 for all t 2 J , x(t) ! 0 as t ! �1 and
x(t) ! +1 as t ! T .

a3) if x0 < 0, then J =]T,+1[ for some T 2 R, x(t) < 0 for all t 2 J , x(t) ! �1 as t ! T and
x(t) ! 0 as t ! +1.

Sketch the graph of some representative solutions.

b) Derive (7) using the method of separation of variables.
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Exercise 33 (2015-I-7) (equations in implicit form)

a) consider the di↵erential equation x0(t) = 2x(t)/t. Find all maximal solutions defined, respectively,
on a subset of ]0,+1[, and on a subset of ]�1, 0[. How many maximal solutions satisfy x(1) = 2?

b) Find all maximal solutions of the di↵erential equation in implicit form tx0(t) = 2x(t). How many
maximal solutions satisfy x(1) = 2? x(0) = 1? Why is this consistent with Theorem 1?

Exercise 34 (2015-II-8) (separation of variables) Solve the following problems :

i) x0(t) = tx(t) ii) x0(t) = x2(t), x(0) = 1 iii) x0(t) =
1 + x2(t)

1 + t2

Linear equations in dimension 1

Exercise 35 (2015-II-9) (seasonal growth) The growth of an economy may fluctuate seasonally.
To study the e↵ect of such fluctuations, solve explicitly and compare the behavior of: a) x0(t) = rx(t);
b) x0(t) = rx(t) + sin t; and c) x0(t) = r(1 + sin t)x(t). Which of these equations are linear? with
separated variables?

Hint: for b), there is a solution of the form x(t) = � cos t+ µ sin t.

Exercise 36 (2015-II-10) (linear equations) Find all solutions of the problems : i) x0(t) = etx(t),
x(0) = 1; ii) x0(t) = ax(t)+b, x(0) = 0 ; iii) x0(t) = x(t)+sin(t), x(0) = 1 ; iv) (1+t2)x0(t)+tx(t) = 1.

Exercise 37 (2015-II-11) (Applications of first order linear equations)

A) (game theory) In a war of attrition, two individuals, player 1 and player 2, fight for a resource
without arms: they choose nonnegative waiting times t1 and t2, respectively, after which they leave
if the other one did not leave before. The one who chose the highest waiting time gets the resource,
which has a value V (if both chose the same waiting time, they both get V/2). Waiting is costly, so
both, the winner and the loser, pay a waiting cost cT where T = min{t1, t2}. Therefore, the payo↵
g1(t1; t2) for player 1 is V � ct2 if t1 > t2, V/2� ct1 if t1 = t2, and �ct1 if t1 < t2. If player 2 chooses
his waiting time randomly according to a probability distribution with a continuous density p(t),
then the expected payo↵ of player 1 if she chooses t1 is:

g1(t1, p(·)) =
Z +1

0

g1(t1, t2)p(t2)dt2 =

Z t1

0

(V � ct2)p(t2)dt2 � ct1

Z +1

t1

p(t2)dt2

Show that there exists a probability density p(·) such that the expected payo↵ of player 1 is inde-
pendent of t1 (hint: consider @g1(t1, p(·))/@t1). Show that if both players choose their waiting time
according to this probability density, then this results in a symmetric Nash equilibrium, that is, a
situation in which both players have the same (expected) strategy, and, given the behavior of the
other, cannot improve their payo↵s.

B) Sugar dissolves into water at a speed proportional to the di↵erence between the current sugar
concentration of the solution and the concentration at saturation (that is, the maximal sugar con-
centration, after which sugar ceases to dissolve into water). Consider a volume of water containing
50 kg of dissolved sugar when the solution is saturated. We introduce these 50kg in this volume of
pure water at time t = 0. Three hours later, half of the sugar has been dissolved and half remains
undissolved. How long will it take before only 10 % of the initial quantity remains undissolved?
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Change of variable

Exercise 38 (2015-II-12) (change of variable) Solve the initial value problem x0(t) = x(t) +
1, x(1) = 4, and then the initial value problem

x0(t) =
1

2

✓
x(t) +

1

x(t)

◆
, x(1) = �2.

Exercise 39 (2015-II-13) (Bernoulli equations)

They take the following form

x0(t) = a(t)x(t) + b(t)xn(t), avec n 6= 1 .

A) Make the change of variable u(t) = x1�n(t). Show that u satisfies a linear di↵erential equation.

B) Use this method to solve the logistic equation x0(t) = rx(t)(K � x(t)), where r and K are
positive constants. Which other method could you use to solve this equation?

C) Which method would you use to solve the following initial value problem ? The question is not
to compute the solutions, only to suggest a method.

x0(t) = x(t)� etx3(t), x(0) = 1

Exercise 40 (2015-II-14) (Riccati equations) They take the following form:

x0(t) = a(t)x(t) + b(t)x2(t) + c(t), avec n 6= 1 .

A) Assume that you know a particular solution u. Shows then that v(t) = x(t) � u(t) satisfies a
Bernoulli equation.

B) Solve the initial value problem:

x0(t) = x(t)� x2(t)� p, x(0) = 1 (0  p  1/4)

Exercise 41 (2015-II-15) (maximal solutions) Consider the di↵erential equation

y0(t) + y(t)� ty2(t) = 0. (8)

1/. Let t0 2 R. Find the maximal(s) solution(s) of this equation such that y(t0) = 0.

2/. Let y be a solution of (8) that does not take the value 0. Find an explicit expression for y(t).
Hint: remember exercise 39.

3/. Let

F : R ! R
t 7! F (t) = (1 + t)e�t.

(i) Study the variations of F .

(ii) Let K 2 R. Find, depending on the value of K, the number of solutions of the equation

F (t) = K.

4/. Find all maximal solutions of (8).

11



Université Paris-Dauphine Di↵erential equations: exercises L3 Maths, 2015-2016

Part 2: systems of linear di↵erential equations. Weeks 7, 8, 9

Week 7: exercises 42, 43, 44. Week 8: exercises 47 and 52/53. Week 9: 54 /55 (56).

Of course, time allowing, feel free to cover more exercises.

A short revision to refresh students memory on change of coordinates and diagonalization of a matrix.

Change of coordinates. Let f be a linear map from Rd to Rd. Let B and B̃ be basis of Rd, and
A and Ã be the matrices of f in the basis B and B̃, respectively. Then

A = P�1ÃP

where P is an invertible matrix such that:

- the columns of P give the coordinates of the vectors of B in the basis B̃

- the columns of P�1 give the coordinates of the vectors of B̃ in the basis B.

Thus, if d = 2, B = (e1, e2) is the canonical basis, and B̃ = (⌘1, ⌘2) with ⌘1 =

✓
1
0

◆
, ⌘2 =

✓
1
1

◆
,

then P�1 =

✓
1 1
0 1

◆
and P =

✓
1 �1
0 1

◆
.

The second column of P expresses the fact that e2 = �1.⌘1 + 1.⌘2.

A way to remember which matrix is P and which is P�1 is to start from the relation

AX = P�1ÃPX

where X is a column vector. This relation means that if I am given a vector ~v with coordinates X in
the basis B and want to compute the coordinates of f(~v) in the same basis, I can do it in two ways.
First, I can multiply X by the matrix of f in the basis B, that is, by A. Alternatively, I can find the
coordinates Y of ~v in the basis B̃, compute the e↵ect of f in B̃ (that is, multiply by Ã), and then
go back to B.

Thus, the e↵ect of the matrix P must be to transform the coordinates X of ~v in the basis B into

its coordinates Y = PX in the basis B̃. In particular, P

✓
1
0

◆
, which is the first column of P ,

must give the coordinates of the first vector of B in the basis B̃. More generally, P gives the co-
ordinates of the vectors of B in the basis B̃, and P�1 the coordinates of the vectors of B̃ in the basis B.

Diagonalization. To diagonalize the matrix A 2 Md(R), we first find the eigenvalues �1,.., �k

by solving det(A � �I) = 0. We then find the eigenvectors by solving (A � �iI)X = 0 for each
i 2 {1, .., k}. If A has d distinct eigenvalues, or more generally, if for each eigenvalue �i, the dimension
of Ker(A��iI) is equal to the multiplicity of �i as a root of the characteristic polynomial of A, then
A is diagonalizable. An eigenvector basis B̃ is then obtained by grouping basis of Ker(A� �iI) for
i 2 {1, .., k}. Denoting by P�1 the matrix whose columns give the coordinates of the vectors of the
eigenvector basis in the canonical basis, we then have A = P�1DP with D diagonal.

Recall that when the matrix A is triangular, then it is very easy to find its eigenvalues. Why is that
so? Can you prove it?
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Exercise 42 (2015-III-1) (explicit solutions and phase portrait of a saddle) Give the solutions and
the phase portrait for: a) x0 = �x, y0 = y ; b) x0 = x+ 3y, y0 = x� y.

For b), give the matrix A, its eigenvalues and eigenvectors, show that A is diagonalizable in R,
give the solutions of X 0 = AX associated to the eigenvectors, and the general solution of X 0 = AX
through the coordinates of the solutions in an eigenvector basis. Note that if we only want to draw the
shape of the phase portrait, we just need to compute the eigenvalues and the associated eigenvectors.

Exercise 43 (a matrix diagonalizable in C ) Give the solutions and the phase portrait of X 0 = AX

for A =

✓
a b
�b a

◆
with b > 0. Distinguish the cases a > 0, a = 0 and a < 0.

Exercise 44 (2015-III-2, phase portraits of a source in di↵erent basis) LetD =

✓
1 0
0 2

◆
.

Give the phase portrait of X 0 = P�1DPX for :

a)P�1 = I; b)P�1 =

✓
0 1
1 0

◆
; c)P�1 =

✓
0 �1
1 0

◆
; d)P�1 =

✓
2 1
1 2

◆
; e)P�1 =

✓
1 2
2 1

◆
.

Exercise 45 (2015-III-3) Find the solutions and sketch the phase portraits of X 0 = AX for:

a) A =

✓
0 0
0 �1

◆
; b) A =

✓
0 �1
0 0

◆
.

Exercise 46 (2015-III-4) (trace-determinant plane and phase portrait) Let A 2 M2(R). What
can be said of the shape of the phase portraits of X 0 = AX when: 1) detA < 0 ; 2) Tr(A) > 0 ; 3)
det(A) > 0 and Tr(A) < 0 ; 4) detA = 0 and Tr(A) < 0.

Exercise 47 (2015-III-5) (exponential of a matrix, paying attention to the condition that D and
N commute) Let t be a real number. Compute eA and etA for the following matrices:

i) A1 =

✓
2 0
0 �3

◆
; ii) A2 =

✓
1 2
0 1

◆
; iii) A3 =

✓
1 1
0 2

◆
;

In each case, give the solution of X 0 = AiX such that X(0) =

✓
0
1

◆
.

Exercise 48 (2015-III-7) (comparison of three methods) Let x0 and y0 be real numbers. Solve the
following system of di↵erential equations (H) and find the solution with initial condition (x0, y0) at
t = 0.

(H)

⇢
x0(t) = x(t) + y(t)
y0(t) = 2y(t)

Same question for the system (NH):

(NH)

⇢
x0(t) = x(t) + y(t) + et

y0(t) = 2y(t)� 3e�t

Solve (NH) in three ways: i) using the fact that the system is triangular; ii) finding a basis
(X1(·), X2(·)) of the set of solutions of (H) then searching solutions of (NH) of the form �(t)X1(t) +
µ(t)X2(t); iii) computing etA, and applying Duhamel’s formula.
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Exercise 49 (2015-III-6) (exponential of a 3-3 matrix) Compute etA when A =

0

@
2 1 3
0 2 �1
0 0 2

1

A

(hint: A� 2I is nilpotent). Then solve the initial value problem: x0 = 2x+ y + 3z, y0 = 2y � z, z0 =
2z, x(0) = 1, y(0) = 2, z(0) = 1.

Exercise 50 (2015-III-8) (system of the form MX 0(t) = AX(t) + B(t) with M invertible) Solve
the system: ⇢

2x0
1(t) + x0

2(t)� 3x1(t)� x2(t) = t
x0
1(t) + x0

2(t)� 4x1(t)� x2(t) = et,

Exercise 51 (2015-III-9) (nth order equation with polynomial right-hand-side). Consider the nth

order equation anx
(n)(t) + ...+ a1x

0(t) + a0x(t) = Q(t) where Q is a polynomial and a0 ,...an are real
numbers such that an 6= 0. Show that if a0 6= 0, there is a unique polynomial solution and it is of
degree deg(Q). What if a0 = 0 and a1 6= 0? Application: find solutions of x00(t) + x0(t) + x(t) = t
and x

000
(t) + x

00
(t) + x0(t) = t, then solve these equations.

Exercise 52 (2015-III-10) (resonance) Watch movies on resonance on the web, e.g., at

http://lewebpedagogique.com/physique/quelques-videos-de-resonnances/ .

Let ! > 0 and ⌫ � 0. Solve as a function of ⌫ the di↵erential equation

x00(t) + !2x(t) = cos(⌫t).

What does this equation represent (note: students know little physics)? What happens when ⌫ ! !?

Exercise 53 (2015-V-1) (phase portraits and stability) Sketch the phase portrait of the system
X 0(t) = AX and say if the origin is stable, asymptotically stable, or unstable for:

1) A =

✓
1 0
0 2

◆
; 2) A =

✓
�1 0
0 �2

◆
; 3) A =

✓
1 0
0 �2

◆
; 4) A =

✓
0 0
0 �1

◆
; 5) A =

✓
0 �1
0 0

◆

Exercise 54 (damped oscillator) Find the solutions of x00(t)+↵x0(t)+!2x(t) = 0 with ↵ > 0. Note:
this models a damped oscillator, that is, an oscillator with friction.

Exercise 55 (2015-V-2) (trace-determinant plane and stability) Let A 2 M2(R). What can be
said of the stability of the origin in the following cases? 1) detA < 0 ; 2) Tr(A) > 0 ; 3) det(A) > 0
and Tr(A) < 0 ; 4) detA = 0 et Tr(A) < 0.
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Part 3: comparison, linearization, geometric approach, continuity of the flow, Lyapunov functions.

Week 10: exercises 58, 59, 62, 63 or 64. Week 11: 65, 66, 69. Weeks 12: competition between two

herbivorous species. Weeks 13: 75, 76, (77).

Comparison principles

Exercise 56 (2015-II-16) (understanding the assumptions of the comparison principle) Let f , u,
v, w be functions from R to R defined by f(x) = 1�x, u(t) = �e�t, v(t) = 1, w(t) = 2�2e�t. Show
that for all real numbers t, u0(t) < f(u(t)), v0(t) = f(v(t)), w0(t) > f(w(t)). Is it true that for all
real numbers t, u0(t) < v0(t) < w0(t)?

Exercise 57 (2015-II-18) (variants of the comparison principle) Let f 2 C1(R2,R), u, v 2 C1(R),
and t0 2 R. Assume that u is a sub-solution and v a super-solution of x0(t) = f(t, x(t)). Why do we
have: if u(t0)  v(t0) then u(t)  v(t) for all t � t0 ? Show that :

1) if u(t0) < v(t0) then u(t) < v(t) for all t � t0.

2) if u(t0) = v(t0) then u(t)  v(t) for all t � t0 and u(t) � v(t) for all t  t0.

3) if u(t0) > v(t0) then u(t) > v(t) for all t  t0. What can be said for t � t0 ?

Exercise 58 (2015-II-17) (basic su�cient conditions for nonexplosion) Let f : R⇥Rn ! Rn be a
continuously di↵erentiable function. Show that any maximal solution of x0(t) = f(t, x(t)) is global:

i) if f is bounded over I ⇥ Rn ;

ii) if there exists constants A et B such that: 8(t, x) 2 R⇥ Rn, ||f(t, x)||  A||x||+B.

Exercise 59 (2015-II-19) (don’t be scared) Show that all maximal solutions of the following dif-
ferential equation are global: x0(t) = etx(t) + e�t sin(t2x(t))� arctan(1 + t2 + x2(t)).

Exercise 60 (explosion in dimension 1: theory) Let f : R2 ! R be C1. Let (J, x(·)) be a maximal
solution of x0(t) = f(t, x(t)) such that x(t) ! +1 as t ! sup J . Prove that:

i) if there exist K and x̄ in R such that for all (t, x) in R2 : x � x̄ ) f(t, x)  Kx, then sup J = +1.

ii) if there exist (strictly) positive real numbers K, x̄ and " such that, for all (t, x) in R2, x � x̄ )
f(t, x) � Kx1+", then sup J < +1.

Exercise 61 (explosion in dimension 1: examples) In the following cases, does the solution of the
initial value problem x0(t) = f(t, x), x(0) = x0 explode in forward time?

1) f(t, x) = t+ x, x0 arbitrary ; 2) f(t, x) = tx, x0 = 5 ; 3) f(t, x) = x2, x0 > 0 ;
4) f(t, x) = x2, x0 = 0 ; 5) f(t, x) = x2 + t, x0 = 0 ; 6) f(t, x) = x2 � t, x0 < 0 ;
7) f(t, x) = x2 � t, x0 > 0 such that x2

0 � t > 1/(2x0) ; 8) f(t, x) = x4/3/
p
1 + x2, x0 > 0 ;

9) f(t, x) = x3/
p
1 + x2, x0 > 0 ; 10) f(t, x) = x4/3/

p
1 + sin2(x), x0 > 0 ;

11) f(t, x) = x4/3/
p

1 + sin2(x), x0  0 ; 12) f(t, x) = ln x, x0 = 2.

Exercise 62 (2015-II-20) (explosion by comparison) Consider the logistic equation x0(t) = rx(t)(K�
x(t)). Show that if a maximal solution (J =]a, b[, x(·)) satisfies x(0) > K, then a > �1. Hint: show
that y(t) = x(�t) ! +1 as t ! �a and that for t large enough, y0(t) � y↵(t) for some ↵ > 1. What
can be said of the interval of definition of the solutions of the equations of Exercise 23?
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Exercise 63 (2015-II-21) (logistic growth with varying carrying capacity) Let (J, x̄(·)) be a maxi-
mal solution of

x0(t) = x(t)(K + sin t� x(t)) (9)

such that x(0) > 0. Using the fact that | sin t|  1 and comparison principles, show that sup J = +1,
and that as t ! +1, lim inf x̄(t) � K � 1 and lim sup x̄(t)  K + 1.

Exercise 64 (2015-II-22) (adapted from 2013 mid-semester exam)

1) Let K > 0. Sketch the phase line of the di↵erential equation x0(t) = x2(t)(K � x(t)).

2) Consider the di↵erential equation x0(t) = x2(t)(1�x(t)� e�t). Let (J, x(·)) be a maximal solution
defined in t = 0 and such that x(0) > 0.

a) Show that x(t) > 0 for all t 2 J .

b) Show that for all t 2 J \ [0,+1[, x0(t)  x2(t)(1 � x(t)). Conclude that sup J = +1 and that
lim supt!+1 x(t)  1.

c) Let " > 0. Show that there exists t0 2 R such that for all t � t0, x0(t) � x2(t)(1� "� x(t)).

d) Show that x(t) ! 1 when t ! +1.

A first look at stability and linearization

Exercise 65 (linearization in dimension 1)

What is the stability of the origin for the equation x0 = �x, with � 2 R? Let x⇤ be an equilibrium
of the equation x0 = f(x), with f : R ! R of class C1. Show that x⇤ is asymptotically stable if
f 0(x⇤) < 0 and unstable if f 0(x⇤) > 0: a) directly; b) using the linearization theorem.

Exercise 66 (2015-V-3) Discuss the stability of the equilibria (or the equilibrium) of the system.
⇢

x0(t) = y(t)
y0(t) = (x3(t)� 1)e�x2(t)

Geometric approach

Exercise 67 (vector fields, graphs and phase line) (no justification needed) Sketch the velocity field,
the graphs of some solutions and the phase line of the di↵erential equation x0 = x(K � x), K > 0.

Exercise 68 (understanding Euler’s method)

Let (E) denote the di↵erential equation x0(t) = x(t) + t.

a) Show that there is a solution whose trajectory is a straight line then solve (E).

b) Sketch the vector field at points with integer coordinates (n,m) with 0  n  2 and �1  m  1.

c) Consider the initial value problem x0(t) = x(t)+ t and x(0) = 0. Let y�(·) denote the approximate
solution obtained by applying Euler’s method with a step size of �. Compute y�(t) for t 2 [0, 2] in
the following cases: � = 2 ; � = 1 ; � = 1/2. How does the gap between the true solution and the
approximate solution evolve as � diminishes?

d) Show that for the initial value problem x0(t) = x(t) + t and x(0) = �1, Euler’s method gives the
exact solution, for any step size. Why is it so?

Exercise 69 (reading vector fields) Do Exercise 4 of the page with vector fields (Figure 1.29 has
nothing to do with exercice 4; it just helps students for Exercise 5).
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Problem: Competition between two herbivorous species.

Consider the initial value problem
⇢

x0(t) = (2� x(t)� y(t))x(t), x(0) = x0 � 0,
y0(t) = (1� x(t)� y(t))y(t), y(0) = y0 � 0.

(10)

This system of di↵erential equations models competition between two herbivorous species, with respective

population densities x(t) and y(t). When these densities are low, there is a profusion of grass, and the

growth-rates are respectively of 2 for the first species and of 1 for the second one. When the population

densities increase, grass becomes scarcer, and the growth rates of both species are reduced by the amount

x(t)+y(t). They are thus of 2�x(t)�y(t) and 1�x(t)�y(t), respectively. Note that the growth-rate of the

first species is always higher than the growth-rate of the second species. Thus, we expect that the first species

will win the competition, and that the second will go extinct. This is what we will show, in two di↵erent ways.

Part I (generalities and comparison principle).

1/. Show that (10) has a unique maximal solution (J, (x(·), y(·))).
2/. Using the first equation, show that if x0 = 0 then for all t 2 J , x(t) = 0, and that if x0 > 0, then
for all t 2 J , x(t) > 0. Show similarly that y(t) � 0 for all t 2 J , with a strict inequality if y0 > 0.

3/. Show that, for all t 2 J \ R+, x(t)  x0e
2t and y(t)  y0e

t. Conclude that R+ ⇢ J .

4/. Show that for all t 2 R+, x0(t)  (2�x(t))x(t). Show that lim supt!+1 x(t)  2. Show similarly
that lim supt!+1 y(t)  1.

5/. In the following three cases, show that (x(t), y(t)) converges as t ! +1 and find its limit.

(i) x0 = y0 = 0 ; (ii) x0 > 0, y0 = 0 ; (iii) x0 = 0, y0 > 0.

In what follows, we assume x0 > 0 and y0 > 0, so that x(t) > 0 and y(t) > 0 for all t in J .

Part II (stable and unstable equilibria)

1/. Compute the three equilibria.

2/. For each equilibrium (x⇤, y⇤), find the linearized system, say whether the equilibrium is hyper-
bolic, and give the nature (source, sink, saddle,...) and the stability (stable, asymptotically stable,
unstable) of the origin for the linearized system. What can we deduce on the stability of (x⇤, y⇤) for
the initial, nonlinear system?

Part III (nullclines and directions of movement).

This section shows that (x(t), y(t)) ! (2, 0) as t ! +1. Let us divide (R⇤
+)

2 in three regions,
corresponding to di↵erent signs of x0 and y0, so that the fact that (x(t), y(t)) belongs to one of this
zone determines the general direction of movement. Let

V (x, y) = x+ y; v(t) = V (x(t), y(t)); A = {(x, y) 2 (R⇤
+)

2|V (x, y)  1};

B = {(x, y) 2 (R⇤
+)

2|1 < V (x, y) < 2}; and C = {(x, y) 2 (R⇤
+)

2|V (x, y) � 2}.

0/. Draw these regions and the general direction of movement in the interior of these zones and on
their boundaries.

1/. Case 1: if there exists tb 2 R+ such that (x(tb), y(tb)) 2 B.

a) We want to show that (x(t), y(t)) 2 B for all t � tb.
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a1) Why is is enough to show that for all t � tb, 1 < v(t) < 2.

a2) Assume by contradiction that there is a time s > tb such that v(s) < 1. Show this implies
that there exists T > tb such that v(t) > 1 for all t 2 [tb, T [ and v(T ) � 1. Show that v(T ) = 1
and v0(T ) > 0. Deduce that this implies that there exists t̄ 2]tb, T [ such that v(t̄) < 1. Find a
contradiction and conclude that v(t) > 1 for all t � tb.

a3) Show similarly that v(t) < 2 for all t � tb.

b) Show that on [tb,+1[, x(·) is increasing, and y(·) is decreasing. Conclude that there exists
(x⇤, y⇤) 2 R2 such that x⇤ � x(tb), y⇤  y(tb) and (x(t), y(t)) ! (x⇤, y⇤) as t ! +1.

c) Show that (x⇤, y⇤) is an equilibrium and that (x(t), y(t)) ! (2, 0) as t ! +1.

2/. Case 2 : if there exists ta 2 R+ such that (x(ta), y(ta)) 2 A.

a) We want to show that there exists T > ta such that v(T ) > 1. Assume by contradiction that
v(t)  1 for all t � ta. Show that on [ta,+1[, x(·) and y(·) are increasing. Deduce from this that
there exists (x⇤, y⇤) 2 R2 such that x⇤ � x(ta), y⇤ � y(ta), and (x(t), y(t)) ! (x⇤, y⇤) as t ! +1.
Find a contradiction and conclude.

b) Show that exists tb � ta such that (x(tb), y(tb)) 2 B, hence (x(t), y(t)) ! (2, 0) as t ! +1.

3/. Case 3 : if there exists tc 2 R+ such that (x(tc), y(tc)) 2 C. Show that if v(t) � 2 for all
t � tc, then (x(t), y(t)) ! (2, 0) as t ! +1, and that otherwise, there exists tb � tc such that
(x(tb), y(tb)) 2 B. Conclude that (x(t), y(t)) ! (2, 0) as t ! +1.

4/. Show that if x0 > 0 and y0 > 0, then (x(t), y(t)) ! (2, 0) as t ! +1.

Part IV (Lyapunov method) In this part, we give another proof of the fact that (x(t), y(t)) !
(2, 0) as t ! +1. Thus, we are not allowed to use Part III.

1/. Let w(t) = ln(x(t)/y(t)). Show that for all t 2 J , w0(t) = 1. Deduce from this that x(t)/y(t) !
+1 as t ! +1. Using Part 1, conclude that y(t) ! 0 as t ! +1.

2/. Let " > 0. Show that there exists T" 2 R+ such that for all t � T", x0(t) � x(t)(2 � " � x(t)).
Conclude that lim inf x(t) � 2� " and then, using Part 1, that x(t) ! 2 as t ! +1.

Periodic solutions and continuity of the flow [for students preparing competitive exams]

Exercise 70 (2015-V-7) (openness of the basin of attraction of asymptotically stable equilibria)

Consider an autonomous di↵erential equation X 0(t) = F (X(t)) with F : Rd ! Rd of class C1. Let
X⇤ be an asymptotically stable equilibrium and let B(X⇤) denote its basin of attraction; that is,
B(X⇤) is the set of initial positions X0 such that the solution with initial condition X(0) = X0 is
defined for all times t � 0 and converges towards X⇤ as t ! +1. Show that B(X⇤) is open.

Exercise 71 (periodic solutions)

Let T > 0. Let F : Rd+1 ! Rd be C1 and T -periodic: F (t + T,X) = F (t,X), 8(t,X) 2 Rd+1. Let
X(·) be a global solution of X 0(t) = F (t,X(t)), which we denote by (⇤).

1. Let k 2 Z. Define Y : R ! R by Y (t) = X(kT + t). Show that Y (·) is solution of (⇤).

2. Show that if X(T ) = X(0), then X(·) is T -periodic. Prove the same result without assuming
X(·) global.

3. Show that if a solution of an autonomous equation takes the same value twice, then it is global
and periodic.
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Exercise 72 (periodic solutions in dimension 1)

Let T > 0. Denote by (⇤) the di↵erential equation x0(t) = f(t, x(t)) with f : R⇥ R ! R of class C1

and T -periodic.

1) Let x : J ! R be a solution such that x(T ) = x(0). Show that x is T -periodic and global.

2) Let a and b be real numbers, with a < b. Assume that solutions with initial conditions x(0) = a
and x(0) = b are defined at time T (that is, T is included in their interval of definition).

2a) Show that for any x0 2 [a, b], the solution with initial condition x(0) = x0 is defined at time
T . Let �T (x0) denote the value of this solution at time T and let g(x0) = �T (x0)� x0.

2b) Graphically, what is the interpretation of g(x0)? Why is the fonction g : [a, b] ! R continuous?

2c) Show that if g(a)g(b) < 0, then there exists a periodic solution.

3) Assume that there exists two global solutions such that one goes to +1 and the other one to �1
as t ! +1. Show that there exists a periodic solution.

4) Assume that the function f is strictly increasing with respect to its second variable x. Assume
for simplicity that all solutions are global so that the function g may be defined on the whole of R.
4a) Let T 0 2 R⇤. Without using that f is T -periodic, show that there is at most one periodic

solution of period T 0 (hint: x(T )� x(0) =
R T

0 x0(t) dt).

4b) Show that g is strictly increasing.

4c) Let x0 2 R, let x(·) denote the solution such that x(0) = x0. For all k in N, let uk = x(kT )
and vk = uk+1 � uk.

4d) Show that x((k + 1)T ) = �T (x(kT )) (hint: y(t) = x(kT + t) is solution of (⇤)).
4e) Assume x(T ) > x(0). Show that v1 > 0 and then that (uk) and (vk) are increasing. Conclude

that uk ! +1 as k ! +1, that x(t) ! +1 as t ! +1, and that x(·) is not periodic.
4f) Similarly, show that if x(T ) < x(0), then x(t) ! �1 as t ! +1.

4g) Show that there is at most one periodic solution, that if it exists, it is T -periodic, and that as
t ! +1, all solutions above the periodic solution go to +1 and all solutions below it go to �1.

4h) (di�cult) Show that even if f is not periodic, there exists at most one periodic solution. Hint
in this note.5

Exercise 73 (periodic solutions in dim 1: an example) Consider the equation x0 = x+ cos t. Using
questions 3) and 4) of Exercise 72, show that there exists exactly one periodic solution and that all
other solutions go to infinity as t ! +1. Solve explicitly the equation and check these results.

Exercise 74 (trap and periodic solutions in dim 1) Let f : R⇥ R ! R be C1. Let a and b be real
numbers, with a < b. Assume that f is T -periodic and that:

8t 2 R+, f(t, a) > 0, and f(t, b) < 0.

Consider the initial value problem ⇢
y0(t) = f(t, y(t))
y(0) = y0

(Cy0)

5Assume that there are two periodic solutions x(·) and y(·) with periods T
x

and T

y

, respectively, and that x(0) <
y(0). Using that f is strictly increasing in its second variable, show that for any positive integer p, y(pT

x

) � y(T
x

) >
y(0) and then that there exists ↵ > 0, independent of p, such that for any t in R, if |t � pT

x

| < ↵, then y(t) > y(0).
Finally, use that there exists positive integers p and q such that |qT

y

� pT

x

| < ↵ and conclude.
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1. Study the existence of solutions to the problem (Cy0). Show that for any y0 2 [a, b], any
(maximal) solution y of (Cy0) takes its values in [a, b] for positive times. Conclude that it is
defined on the whole of R+.

2. Using question 2) of Exercise 72, show that there exists a periodic solution.

Linearization, Hamiltonian systems, Lyapunov functions

Exercise 75 (2015-V-4) (linearization, constant of movement) Consider the following system:

⇢
x0(t) = 2"x(t) + y(t)
y0(t) = �5x(t)� x3(t).

(E)

1. Show that this system has a unique equilibrium:

2. Give the nature of the linearized system in this equilibrium. For which values of " can we
deduce an information on the stability of the equilibrium of the system (E) ?

3. We now consider the case " = 0. Let

H(x, y) =
1

2
y2 +

5

2
x2 +

1

4
x4.

a. Show that H is constant along trajectories of (E).

b. Show that all trajectories are bounded. Conclude that all solutions of (E) are global.

c. Is the equilibrium stable? Asymptotically stable?

d. Show that all solutions are periodic.

Exercise 76 (2015-V-5) (Hamiltonian systems) Consider a system of di↵erential equations Ẋ(t) =
F (X(t)) with F : R2 ! R2. This is a Hamiltonian system if there exists a di↵erentiable function
H : R2 ! R such that F1 = @H/@y and F2 = �@H/@x ; that is, if the system may be written as:

(
ẋ(t) = @H

@y
(x(t), y(t))

ẏ(t) = �@H
@x

(x(t), y(t)).

1. Show that H is then a constant of movement.

2. Let H(x, y) = �xy, for x, y in R. Give the Hamiltonian system associated to H and his phase
portrait.

3. Show that the following system is Hamiltonian and find a Hamiltonian function:
⇢

ẋ = �x
ẏ = y � 3x2.

Give the nature of the equilibria and sketch the trajectories.

Exercise 77 (2015-V-6) (a system with four equilibria, Lyapunov functions) Consider the follow-
ing system: ⇢

x0(t) = �x(t)2 � y(t)2 + 1
y0(t) = �2x(t)y(t).

(S)
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1. Find the equilibria of this system.

2. For each of these equilibria, give the linearized system, and discuss its nature and stability.

3. Deduce whenever possible information on the stability of the corresponding equilibrium of (S).

4. Let

V (x, y) = y2x+
x3

3
� x.

a. Show that (x0, y0) is an equilibrium point of (S) if and only if it is a critical point of V .

b. Show that V decreases along trajectories. When do we have d
dt
V (x(t), y(t)) = 0?

5. We study the behavior of the system close to the equilibrium (1, 0). We want to show that
there exists a neighborhood V of this point such that, for every initial position (x0, y0) in V ,
8t > 0,

k(x(t), y(t))� (1, 0)k  e�tk(x0, y0)� (1, 0)k, (11)

where (x(t), y(t)) is the unique solution of (S) with initial position (x0, y0) (and k · k is the
Euclidean norm on R2).

a. Show that
@V

@x
(x, y) = 2(x� 1) + k(x, y)� (1, 0)k"1((x, y)� (1, 0)),

and
@V

@y
(x, y) = 2y + k(x, y)� (1, 0)k"2((x, y)� (1, 0)),

where "i((x, y)� (1, 0)), i = 1, 2 goes to 0 when (x, y) goes to (1, 0).

b. Let V be a neighborhood of (1, 0) such that ||"((x, y)� (1, 0))|| < 1, where " is the vector
with components ("1, "2). Let (x0, y0) 2 V . Show that for t su�ciently small:

d

dt
k(x(t), y(t))� (1, 0)k2  �2k(x(t), y(t))� (1, 0)k2.

(recall Cauchy-Schwartz inequality: |(X,X 0)|  kXkkX 0k).
Conclude that (11) holds. Explain why this inequality actually holds for all times t > 0.

Exercise 78 (prey-predator) Consider a simple version of the standard Lotka-Volterra prey-predator
model: ⇢

ẋ = x(y � b)
ẏ = y(a� x),

where a and b are positive constants.

1. Show that if x0 and y0 are strictly positive, then for all times t, x(t) > 0 and y(t) > 0.

2. Find the equilibria.

3. Study the linearized system in each of these equilibria and deduce their stability.

4. Is this a Hamiltonian system? Let G(x, y) = x + y � a ln x � b ln y. Show that G(x, y) is a
constant of movement (for solutions such that x0 > 0, y0 > 0).

5. Show that trajectories are periodic and that, denoting by T their period:

1

T

Z T

0

x(t)dt = a, et
1

T

Z T

0

y(t)dt = b.
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