Calcul Différentiel et Optimisation (L3)

Responsable : Emeric Bouin

Année universitaire 2019-2020 Date : 6 janvier 2020

Durée : 3 heures

EXAMEN FINAL

Toutes les réponses doivent être soigneusement justifiées pour être considérées. Il est rappelé que la rédaction comptera de manière importante dans l'évaluation des copies. Le barême est donné à titre indicatif et pourra être modifié. Aucun document n'est autorisé, aucune calculatrice.

Que la force soit avec vous!

Exercice 1. (Easy love ... - 10 points)

Répondre aux questions suivantes en justifiant tout intégralement mais de manière concise.

- 1. La boule unité ouverte de \mathbb{R}^n est-elle difféomorphe à \mathbb{R}^n ?
- 2. L'espace $\mathbb{R}[X]$ est-il complet pour $\|\cdot\|_1$, avec $\|\sum_{k\geq 0} a_k X^k\|_1 = \sum_{k\geq 0} |a_k|$?
- 3. Montrer qu'il existe une fonction continue et 2π -périodique telle que $\sin(x + f(x)) = 2f(x)$, pour tout x réel.
- 4. Montrer que l'équation $e^x + e^y + x y = 2$ définit, au voisinage de l'origine, une fonction implicite dont on calculera le développement limité d'ordre deux en 0.
- 5. Donner les différentielles première et seconde en l'identité de l'application définie sur $\mathcal{M}_n(\mathbb{R})$ par $f(M) = \sin(\text{Tr}(M^2))$.
- 6. Déterminer les extrema globaux sur le cercle unité de \mathbb{R}^2 de la fonction f définie par $f(x,y) = x^3 + y^3$. Illustrer le résultat en traçant (brièvement) des lignes de niveau de f.
- 7. Soit $\Omega = \mathbb{R}^{+*} \times \mathbb{R}^{+*}$. On définit $\phi : \Omega \mapsto \mathbb{R}^2$ par $\phi(x,y) = (xy, \frac{x}{y})$.
 - (a) Justifier que ϕ est un difféomorphisme de classe \mathcal{C}^2 de Ω dans lui-même.
 - (b) Calculer les dérivées partielles secondes de $f := g \circ \phi$, si g est de classe $\mathcal{C}^2(\Omega, \mathbb{R})$.
 - (c) Résoudre l'équation aux dérivées partielles sur Ω , d'inconnue f de classe $\mathcal{C}^2(\Omega,\mathbb{R})$:

$$x^2 \frac{\partial^2 f}{\partial x^2} - y^2 \frac{\partial^2 f}{\partial y^2} = 0.$$

Exercice 2. (幸运饼干... - 4 points)

Faire l'étude complète de la courbe paramétrée définie pour tout $t \in \mathbb{R}$ par

$$\begin{cases} x(t) = (1 + \cos(t))\sin(t), \\ y(t) = 1 + \cos(2t). \end{cases}$$

Bonus: pour vous, de quoi s'aqit-il?

Exercice 3. (Was ist das?... - 10 points)

- 1. Montrer que l'ensemble $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + 2y^2 + 3z^2 = 4\}$ est une sous-variété de \mathbb{R}^3 de dimension deux. Dessiner S.
- 2. (a) Déterminer les points de la surface S vérifiant la condition d'extrémalité de Lagrange pour la fonction $h(x, y, z) = x^2 + y^2 2x$.

- (b) En déduire la valeur minimale et maximale de la restriction de h(x, y, z) à S.
- 3. Soit R une constante réelle. Montrer que si R > -1, l'ensemble

$$C_R = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 - 2x = R\}$$

est une sous-variété de \mathbb{R}^3 de dimension deux. Dessiner C_R .

- 4. (a) Montrer qu'il existe $R_0 \in]-1, 8[$ tel que l'ensemble $S \cap C_R$ est une sous-variété de \mathbb{R}^3 pour tout $R \in]-1, 8[\setminus \{R_0\}]$ et donner alors sa dimension.
 - (b) Donner son espace tangent en tout point (dans les conditions de la question précédente).
 - (c) Dessiner $S \cap C_R$ dans ce cas.
 - (d) Que dire lorsque $R \notin]-1,8[?]$
- 5. Montrer que $S \cap C_{R_0}$ peut-être assimilé à une partie de $\{(u,v) \in \mathbb{R}^2 \mid u^2 = t(1-t), v^2 = t^2, t \in \mathbb{R}\}$ au voisinage de (2,0,0). $S \cap C_{R_0}$ est-elle une sous-variété? La dessiner dans ce cas.

Exercice 4. (Hadamard, la vie ... - 14 points)

Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ de classe \mathcal{C}^1 . On suppose que pour tout $x \in \mathbb{R}^n$, df_x est inversible et que $\lim_{\|x\| \to +\infty} \|f(x)\| = +\infty$. Le but de l'exercice est de montrer que f est un \mathcal{C}^1 -difféomorphisme.

- 1. Montrer que l'image réciproque par f de tout compact est un compact.
- 2. (a) Montrer que l'image de f est ouverte.
 - (b) Montrer que l'image de f est fermée.
 - (c) L'application f est-elle surjective?
- 3. Soit $y \in \mathbb{R}^n$.
 - (a) Soit $x \in \mathbb{R}^n$ tel que y = f(x). Montrer qu'il existe $\varepsilon_x > 0$ tel que la restriction de f à la boule ouverte $B(x, \varepsilon_x)$ soit un difféomorphisme sur son image V_x .
 - (b) Montrer que $f^{-1}(y)$ est un ensemble fini.
- 4. Soit $y \in \mathbb{R}^n$. On note m_y le cardinal de $f^{-1}(y)$ de sorte que $f^{-1}(y) = \{x_1, \dots, x_{m_y}\}$.
 - (a) Soit $\varepsilon > 0$. Montrer qu'il existe un voisinage ouvert V_y de y tel que $f^{-1}(V_y) \subset \bigcup_{1 \leq i \leq m_y} B(x_i, \varepsilon)$. On pourra raisonner par l'absurde.
 - (b) Montrer alors qu'il existe un voisinage ouvert W_y de y tel que $m_z = m_y$ pour tout $z \in W_y$.
 - (c) Montrer que l'application $z \in \mathbb{R}^n \mapsto m_z$ est constante.
- 5. On admet qu'alors f ne prend qu'une seule fois sa valeur en zéro. Montrer que f est un \mathcal{C}^1 —difféomorphisme.

Bonus. (Le retour de la vache ... - 2 points)

En surface, la vache Milka[®], la vache qui rit[®] et la vache kiri[®] sont-elles deux à deux homéomorphes? *Un argument d'une ligne raisonnablement convaincant suffira*.

