Chapitre 4 : Suites et séries de fonctions

1 Convergence simple et uniforme de suite de fonctions

Exercice 1. Donner un exemple de suite de fonctions qui converge simplement sur \mathbb{R} mais pas uniformément.

Exercice 2. Etudier la convergence simple et uniforme sur [0,1] de la suite de fonctions (f_n) dans chacun des cas suivants.

(i)
$$f_n(x) = \frac{x^n}{\sqrt{n+1}}$$
, (ii) $f_n(x) = n^2 x^{2n} (1-x)$.

Exercice 3. Soit (f_n) la suite de fonctions définies sur [0,1] par,

$$\forall x \in [0,1], \quad f_n(x) = x^n \ln\left(\sin\left(\frac{\pi x}{2}\right)\right).$$

Déterminer

$$\lim_{n \to +\infty} \int_0^1 f_n(x) \, dx.$$

Exercice 4. Soit $f_n \colon \mathbb{R} \to \mathbb{R}$ définie par

$$f_n(x) = \sqrt{x^2 + \frac{1}{n}}$$

Montrer que chaque f_n est de classe \mathcal{C}^1 et que la suite (f_n) converge uniformément sur \mathbb{R} vers une fonction f qui n'est pas de classe \mathcal{C}^1 .

Exercice 5. 1. Montrer que la suite de fonctions $f_n(x) = x(1 + n^{\alpha}e^{-nx})$ définies sur \mathbb{R}_+ pour $\alpha \in \mathbb{R}$ et $n \in \mathbb{N}^*$ converge simplement vers une fonction f à déterminer.

- 2. Déterminer les valeurs de α pour les quelles il y a convergence uniforme.
- 3. Calculer

$$\lim_{n \to +\infty} \int_0^1 x(1 + \sqrt{n}e^{-nx}) dx$$

Exercice 6. Soit $f_n(x) = \frac{e^{nx} + 2}{e^{nx} + 1}$, pour $x \in \mathbb{R}$.

- 1. Montrer que la suite (f_n) converge simplement sur \mathbb{R} . Expliciter sa limite simple.
- 2. La convergence est-elle uniforme sur \mathbb{R} ?
- 3. La convergence est-elle uniforme sur $[1, +\infty]$?

Exercice 7. Soit $f_n(x) = (1+x^n)^{\frac{1}{n}}$, pour $x \in \mathbb{R}^+$.

- 1. Montrer que (f_n) converge simplement sur \mathbb{R}^+ vers une fonction f à déterminer.
- 2. En déduire que (f_n) converge uniformément sur [0,1] vers f.
- 3. Montrer que (f_n) converge uniformément vers f aussi sur $[1, +\infty[$ et conclure.

Exercice 8. Soit $f_n(x) = (1 + \frac{x}{n})^n$, pour $x \in \mathbb{R}^+$.

1. Montrer que (f_n) converge simplement sur \mathbb{R}^+ vers la fonction f définie sur \mathbb{R}^+ par $f(x) = e^x$.

- 2. Montrer que la convergence est uniforme sur [0, A], quel que soit A > 0.
- 3. A-t-on convergence uniforme sur \mathbb{R}^+ ?

Exercice 9. Soit (f_n) la suite de fonctions définies sur \mathbb{R}^+ par

$$f_n(x) = \begin{cases} \left(1 - \frac{x}{n}\right)^n, \text{ si } x \in [0, n], \\ 0 \text{ si } x > n. \end{cases}$$

- 1. Montrer que (f_n) converge simplement sur \mathbb{R}^+ vers la fonction e^{-x} .
- 2. (a) Soit, pour tout $x \ge 0$, $h(x) = xe^{-x}$. Montrer que, pour tout $x \ge 0$,

$$|h(x)| \le e^{-1}.$$

(b) Pour n > 1, on pose

$$g_n(x) = \begin{cases} e^{-x} - \left(1 - \frac{x}{n}\right)^n, & \text{si } x \in [0, n], \\ e^{-x} & \text{si } x > n. \end{cases}$$

Montrer que, pour tout $x \in [0, n]$, $g'_n(x) = e^{-x}h_n(x)$, avec

$$h_n(x) = -1 + e^x \left(1 - \frac{x}{n}\right)^{n-1}.$$

(c) Calculer $h'_n(x)$, pour $x \in [0, n]$. En déduire qu'il existe $\alpha_n \in [1, n]$ tel que

$$g'_n(\alpha_n) = 0;$$
 $\forall x \in [0, \alpha_n[, g'_n(x) > 0;$ $\forall x \in]\alpha_n, n], g'_n(x) < 0.$

- d) Montrer que $g_n(\alpha_n) = \frac{1}{n}\alpha_n e^{-\alpha_n}$ et donner le tableau de variation de g_n sur \mathbb{R}^+ .
- e) En déduire que (f_n) converge uniformément vers e^{-x} sur \mathbb{R}^+ .
- 3. Calculer

$$\lim_{n \to +\infty} \int_0^{+\infty} f_n(x) dx.$$

Exercice 10. On considère la suite de fonctions (f_n) définies sur [0,1] par,

$$\forall x \in [0,1], \quad f_n(x) = \frac{n(x^3 + x)e^{-x}}{nx + 1}.$$

- 1. Montrer que (f_n) converge simplement sur [0,1] vers une fonction f que l'on déterminera.
- 2. Montrer que, pour tout entier $n \geq 1$, et pour tout $x \in [0,1]$,

$$|f_n(x) - f(x)| \le \frac{2}{nx+1}.$$

3. Montrer que (f_n) converge uniformément vers f sur $[\varepsilon, 1]$, pour tout $\varepsilon \in]0, 1[$. Converge-t-elle uniformément sur [0, 1]?

Exercice 11. On note $I = [0, \frac{1}{2}]$. Le but de l'exercice est de construire une application continue $f: I \to \mathbb{R}$, telle que

$$\forall x \in I, \quad f(x) = 1 + \frac{1}{2} \int_0^x (f(t) + f(t^2)) dt.$$

On considère les applications $f_n:I\to\mathbb{R}$ définies par récurrence :

$$\begin{cases} f_0(x) = 1, & \forall x \in I, \\ f_{n+1}(x) = 1 + \frac{1}{2} \int_0^x (f_n(t) + f_n(t^2)) dt. \end{cases}$$

- 1. Calculer f_1 et f_2 . Montrer que, pour tout entier $n,\,f_n$ est un polynôme.
- 2. On note, pour $n \ge 1$,

$$D_n = \sup_{x \in I} |f_n(x) - f_{n-1}(x)|.$$

Calculer D_1 et D_2 . Montrer que

$$\forall n \in \mathbb{N}^*, \ \forall x \in I, \quad |f_{n+1}(x) - f_n(x)| \le \frac{1}{2}D_n,$$

et en déduire que, pour tout $n \in \mathbb{N}^*$,

$$D_n \le \frac{1}{2^n}.$$

- 3. On pose $u_k(x) = f_k(x) f_{k-1}(x)$.
 - (a) Soit x fixé dans I. Montrer que la série numérique $\sum_k u_k(x)$ est absolument convergente.
 - (b) On note, pour tout $x \in I$, $S(x) = \sum_{k>1} u_k(x)$. En remarquant que

$$S_n(x) = \sum_{k=1}^n u_k(x) = f_n(x) - 1,$$

montrer que la suite (f_n) converge simplement sur I vers une fonction que l'on notera f. Donner l'expression de f(x) en fonction de S(x).

4. Montrer que, pour tout $x \in I$, et pour tout p > n,

$$|f_p(x) - f_n(x)| = \left| \sum_{k=n+1}^p u_k(x) \right| \le \frac{1}{2^n}.$$

En déduire que (f_n) converge uniformément sur I vers f, et que f répond à la question posée.

Exercice 12. Soit $(f_n):[a,b]\to\mathbb{R}$ une suite de fonctions pour laquelle il existe K>0 tel que pour tout $n\in\mathbb{N},\ f_n$ est "K-lipschitzienne", c'est-à-dire :

$$\forall x, y \in [a, b], \quad |f_n(x) - f_n(y)| \le K|x - y|.$$

On suppose de plus que (f_n) converge simplement vers une certaine fonction $f:[a,b]\to\mathbb{R}$. Montrer cette convergence est uniforme.

Exercice 13. (Deuxième théorème de Dini) Soit $(f_n):[a,b]\to\mathbb{R}$ une suite de fonctions croissantes, qui converge simplement vers une fonction f. On suppose de plus que f est continue. Montrer que (f_n) converge uniformément vers f.

2 Modes de convergence de séries de fonctions

Exercice 14. Soit, pour n entier, et pour $x \in]-1,1[$, $u_n(x)=nx^n$. Montrer que la série de fonctions $\sum u_n$ converge simplement sur]-1,1[et uniformément sur tout intervalle de la forme $[-1+\varepsilon,1-\varepsilon]$ vers une fonction u à déterminer.

Exercice 15. Montrer que

$$f(x) = \sum_{n=1}^{+\infty} \frac{1}{n^2} \arctan(nx)$$

est continue sur \mathbb{R} et de classe \mathcal{C}^1 sur \mathbb{R}^* . Est-elle dérivable en 0?

Exercice 16. Soit $\forall (n,x) \in \mathbb{N}^* \times \mathbb{R}, u_n(x) = \frac{(-1)^n}{n^2 + x^2}$.

- 1. Montrer la convergence normale de la série de fonctions de terme général u_n sur \mathbb{R} .
- 2. Soit u sa fonction somme. En déduire la continuité de la fonction u sur \mathbb{R} .
- 3. Montrer que la fonction u est dérivable sur \mathbb{R} et que sa dérivée est donnée par

$$\forall x \in \mathbb{R}, \ u'(x) = -2x \sum_{n=1}^{+\infty} \frac{(-1)^n}{(n^2 + x^2)^2}.$$

Exercice 17. Étudier la convergence simple, uniforme et normale de la série des fonctions définies sur \mathbb{R} par $f_n(x) = \frac{(-1)^n}{n+x^2}$.

Exercice 18. Soit $\forall (n,x) \in \mathbb{N}^* \times \mathbb{R}$, $u_n(x) = \frac{\sin(nx)}{n^3}$

- 1. Montrer la convergence normale de la série de fonctions de terme général u_n sur \mathbb{R} .
- 2. Soit u sa limite. Calculer la limite de u(x) lorsque x tend vers 0.
- 3. Prouver que

$$\int_0^{\pi} u(x) \, dx = 2 \sum_{n=1}^{+\infty} \frac{1}{(2n-1)^4}.$$

On donne $\sum_{k=1}^{+\infty} \frac{1}{k^4} = \frac{\pi^4}{90}$. En déduire $\int_0^{\pi} u(x) dx$.

4. Montrer que la fonction u est dérivable sur \mathbb{R} et que sa dérivée est donnée par

$$\forall x \in \mathbb{R}, \ u'(x) = \sum_{n=1}^{+\infty} \frac{\cos(nx)}{n^2}.$$

Exercice 19. Pour $x \in \mathbb{R}^+$ et $n \in \mathbb{N}$, $n \geq 2$ on pose

$$S(x) = \sum_{n=2}^{\infty} \frac{xe^{-nx}}{\ln n}$$

sous réserve de convergence.

- 1. Démontrer que S converge simplement sur \mathbb{R}_+ .
- 2. Démontrer que la convergence n'est pas normale sur \mathbb{R}_+ .
- 3. Pour $x \in \mathbb{R}_+$, on pose $R_n(x) = \sum_{k \geq n} \frac{xe^{-kx}}{\ln k}$. Démontrer que, pour tout $x \geq 0$,

$$0 \le R_n(x) \le \frac{1}{\ln(n)} \frac{xe^{-x}}{1 - e^{-x}},$$

et en déduire que la série converge uniformément sur \mathbb{R}_+ .

- 4. Montrer que S est de classe C^1 sur \mathbb{R}^{+*} .
- 5. Montrer que S n'est pas dérivable à droite en 0.
- 6. Montrer que $x^k S(x)$ tend vers 0 en $+\infty$ pour tout $k \in \mathbb{N}$.

Exercice 20. On appelle fonction ζ de Riemann la fonction de la variable $s \in \mathbb{R}$ définie par la formule

$$\zeta(s) = \sum_{n \ge 1} \frac{1}{n^s}.$$

1. Donner le domaine de définition de ζ et démontrer qu'elle est strictement décroissante sur celui-ci.

- 2. Prouver que ζ est de classe \mathcal{C}^{∞} sur son domaine de définition et écrire l'expression de sa k-ième dérivée.
- 3. Montrer que

$$\forall s > 1, \qquad \frac{1}{s-1} \le \zeta(s) \le \frac{1}{s-1} + 1.$$

En déduire que $\zeta(s) \sim_{1^+} \frac{1}{s-1}$.

- 4. Déterminer $\lim_{s\to+\infty} \zeta(s)$.
- 5. Démontrer que ζ est convexe.
- 6. Démontrer que $ln(\zeta)$ est convexe.

Exercice 21. Soit

$$\forall x \in \mathbb{R}, \ S(x) = \sum_{n=0}^{\infty} \frac{x}{1 + n^2 x^2}.$$

- 1. Montrer que S est définie sur \mathbb{R} et impaire.
- 2. Montrer que S est continue sur \mathbb{R}^* .
- 3. Montrer que

$$\forall x > 0, \qquad \frac{\pi}{2} \le S(x) \le \frac{\pi}{2} + x.$$

En déduire que S admet des limites à droite et à gauche en 0, mais n'y est pas continue.

4. Montrer que S est de classe C^1 sur \mathbb{R}^* .

Exercice 22. Soit -1 < a < 1. On considère la suite de fonctions $(u_n)_{n \in \mathbb{N}}$ donnée par

$$\forall t \in \left[0, \frac{\pi}{2}\right], \qquad u_n(t) = (\cos t)^n a^n.$$

- 1. Montrer que la série de fonctions $\sum u_n$ converge uniformément sur $\left[0, \frac{\pi}{2}\right]$.
- 2. On pose $W_n := \int_0^{\frac{\pi}{2}} \cos(t)^n dt$, l'intégrale de Wallis. Rappeler sa valeur en fonction de n.
- 3. Montrer que

$$\sum_{n=0}^{+\infty} W_n a^n = \int_0^{\frac{\pi}{2}} \frac{dt}{1 - a\cos(t)}.$$

- 4. (a) Montrer que $\sum_{n=0}^{+\infty} (-1)^n W_n = 1$.
 - (b) Quelle est la limite de $\sum_{n=0}^{+\infty} W_n a^n$ lorsque a tend vers 1^- ? Donner un equivalent de $\sum_{n=0}^{+\infty} W_n a^n$ lorsque a tend vers 1^- .

Exercice 23. Soit $(f_n): [a,b] \to \mathbb{R}$ et $(g_n): [a,b] \to \mathbb{R}$ deux suites de fonctions. On suppose que la série de terme général f_n est uniformément convergente. On suppose d'autre part que la suite (g_n) est uniformément bornée, c'est-à-dire :

$$\exists M > 0, \ \forall n \in \mathbb{N}, \ \forall x \in [a, b], \ |g_n(x)| \le M,$$

et telle que pour tout x, la suite $(g_n(x))$ est croissante.

Montrer que la série de terme général f_ng_n est uniformément convergente.