Feuille 9 : Sous-variétés

Exercice 1. Questions proches du cours

- 1. Montrer que l'hypothèse d'homéomorphisme est nécessaire dans la définition paramétrique d'une sous-variété de \mathbb{R}^n .
- 2. Prouver l'équivalence entre les définitions de "sous-variété" données en cours (ensemble lisse, vision implicite, vision paramétrique).
- 3. Soit M une sous-variété de \mathbb{R}^n . On se donne $a \in M$ et v_1, v_2 deux vecteurs tangents à M en a, et deux chemins γ_1 et γ_2 associés, donnés par la définition de vecteur tangent. Pour $\alpha \in \mathbb{R}$, donner un chemin γ de M ayant pour vecteur tangent $\alpha v_1 + v_2$.
- 4. Les différentielles des fonctions suivantes sont-elles injectives, surjectives?
 - (a) $f: \mathbb{R}^2 \to \mathbb{R}^3, (x, y) \mapsto (x, y, 0)$
 - (b) $f: \mathbb{R}^3 \to \mathbb{R}^2$, $(x, y, z) \mapsto (y, z)$
 - (c) $f: \mathbb{R}^3 \to \mathbb{R}, (x, y, z) \mapsto xy + 2yz + 3xz$
- 5. Soient E, F deux \mathbb{R} -espaces vectoriels de dimension finie, U un ouvert de E et $f: U \mapsto F$ une application de classe \mathcal{C}^1 . Montrer que $\{(x, f(x)) \in U \times F, x \in U\}$ est une sous-variété de $E \times F$.

Exercice 2. Les sous-ensembles suivants de \mathbb{R}^2 ou \mathbb{R}^3 sont-ils des sous-variétés? Attention, on demande une preuve riquireuse!

- 1. $\mathcal{V} = \{(x, y) \in \mathbb{R}^2, y^2 = x^2\},\$
- 2. $\mathcal{V} = \{(x,y) \in \mathbb{R}^2, y^3 = x^2\},\$
- 3. $V = \{(x, y, z) \in \mathbb{R}^3, x^2 + y^2 = z^2\},\$
- 4. $\mathcal{V} = \left\{ \left(\frac{3t}{1+t^3}, \frac{3t^2}{1+t^3} \right), t > -1 \right\},$
- 5. $\mathcal{V} = \{(\cos(t), \cos(t)), t \in \mathbb{R}\}.$
- 6. $\mathcal{V} = \{(x, y, z) \in \mathbb{R}^3; \ z = x 2(x^2 + y^2)\}.$
- 7. $\mathcal{V} = \{(t, t^2); t \in \mathbb{R}\}.$
- 8. $\mathcal{V} = \{(x, y) \in \mathbb{R}^2; \ xy = 0\}.$

Même question en regardant les ensembles $V \setminus \{0\}$ dans $\mathbb{R}^2 \setminus \{0\}$ ou $\mathbb{R}^3 \setminus \{0\}$.

Conseil amical \heartsuit : on se forcera à dessiner autant que possible ces (non-)sous-variétés.

Exercice 3. Montrer que les ensembles suivants sont des sous-variétés de $\mathcal{M}_n(\mathbb{R})$, dont on calculera la dimension et dont on donnera l'espace tangent.

- le groupe linéaire $GL_n(\mathbb{R})$.
- les matrices symétriques $\mathcal{S}_n(\mathbb{R})$.
- les matrices antisymétriques $\mathcal{A}_n(\mathbb{R})$.

Exercice 4. Montrer que

$$\mathcal{V} = \{(x, y, z, t) \in \mathbb{R}^4, x^2 + y^2 = z^2 + t^2 = 1\},$$

est une sous variété de \mathbb{R}^4 , homéomorphe à $\mathbb{S}^1 \times \mathbb{S}^1$.

Exercice 5. Ici, R est un nombre réel positif.

1. Pour quelles valeurs de R, l'ensemble

$$\mathcal{V} = \{(x, y, z) \in \mathbb{R}^3, x^2 + y^2 + z^2 = R^2, x^2 + y^2 - 2x = 0\}$$

est-il une sous-variété non vide? Donner alors sa dimension et son espace tangent en chacun de ses points. Donner la position de \mathcal{V} par rapport à son espace tangent.

- 2. Pour quelles valeurs de R l'ensemble V est-il connexe?
- 3. Dessiner, dans plan \mathbb{R}^2 , l'allure de la sous-variété \mathcal{V} (pour les valeurs pertinentes de R).
- 4. On se place dans le cas où \mathcal{V} n'est pas une sous-variété de \mathbb{R}^3 .
 - (a) Donner R.
 - (b) Effectuer l'étude locale de \mathcal{V} au voisinage du point (2,0,0). Montrer que c'est un point double de \mathcal{V} , et donner un changement de coordonnées (*i.e.* un difféomorphisme) explicite qui transforme localement \mathcal{V} en l'union de deux droites $\{(u,v)\in\mathbb{R}^2,u^2=v^2\}$. Préciser ensuite l'équation des deux tangentes à \mathcal{V} en (2,0,0).

Exercice 6. Soit \mathcal{V} le sous-ensemble de \mathbb{R}^4 défini par les équations

$$\begin{cases} x^3 + y^3 + z^3 + t^3 = 0 \\ x^2 - y^2 + z^2 + t = 0 \\ x - y + z - 2 = 0. \end{cases}$$

Montrer qu'il existe un voisinage U du point (x, y, z, t) = (1, -1, 0, 0) tel que $U \cap \mathcal{V}$ soit une sous-variété de dimension 1 de \mathbb{R}^4 .

Exercice 7. On considère l'ensemble $\mathcal{N} = \{ M \in \mathcal{M}_2(\mathbb{R}), M \neq 0, M^2 = 0 \}.$

- 1. Montrer que $\mathcal{N} = \{ M \in \mathcal{M}_2(\mathbb{R}), M \neq 0, (\det(M), \operatorname{tr}(M)) = (0, 0) \}.$
- 2. En déduire que \mathcal{N} est une sous-variété différentiable dont on donnera la dimension.
- 3. Quel est l'espace tangent en un point de \mathcal{N} ?

Exercice 8. Montrer que l'ensemble D_u des polynômes unitaires de degré 2 ayant une racine double est une sous-variété de $\mathbb{R}_2[X]$ dont on déterminera la dimension et l'espace tangent en tout point.

Exercice 9. On considère l'application $f: \mathbb{R}^3 \to \mathbb{R}$ définie par

$$f(x, y, z) = x^2 - xy^3 - y^2z + z^3,$$

puis l'ensemble S d'équation f(x, y, z) = 0.

- 1. Est-ce une surface lisse de \mathbb{R}^3 ? Et $S \setminus \{0\}$?
- 2. Déterminer l'équation du plan tangent à S au point (1,1,1).
- 3. Quelle est la position de S par rapport à son plan tangent au point (1,1,1)?
- 4. (a) Montrer qu'au voisinage du point (1,1,1), la surface S est décrite par une équation de la forme $z = \Phi(x,y)$ où Φ est une fonction de classe \mathcal{C}^{∞} définie au voisinage de (1,1).
 - (b) Ecrire le développement limité de Φ à l'ordre 2 au point (1,1).
 - (c) Donner la matrice Hessienne de Φ au point (1,1).

Exercice 10. On suppose R > r > 0.

1. Représenter la partie de \mathbb{R}^3 définie par l'équation

$$\left(\sqrt{x^2 + y^2} - R\right)^2 + z^2 = r^2.$$

2. Montrer que c'est une sous-variété de \mathbb{R}^3 .

Exercice 11. Dans $\mathbb{R}^n \times \mathbb{R}^p$, on considère la quadrique d'équation $||x||_{2,\mathbb{R}^n}^2 - ||y||_{2,\mathbb{R}^p}^2 = 1$.

- 1. Montrer que c'est une variété difféomorphe à $\mathbb{S}^{n-1} \times \mathbb{R}^p$.
- 2. Représenter les différents cas quand n + p = 3.

Exercice 12. Soit $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. On considere l'application $\varphi : \mathbb{R} \to \mathbb{R}^4$,

$$\forall t \in \mathbb{R}, \qquad \varphi(t) = (\cos(t), \sin(t), \cos(\alpha t), \sin(\alpha t)).$$

- 1. Montrer que φ est une immersion (i.e. sa différentielle est injective) injective.
- 2. Montrer que $\varphi(\mathbb{R})$ est dense dans \mathbb{T}^2 .
- 3. En déduire que l'image de φ n'est pas une sous-variété de \mathbb{R}^4 .

Exercice 13. Soit M_1 une sous-variété de \mathbb{R}^n de dimension p_1 et M_2 une sous-variété de \mathbb{R}^m de dimension p_2 . Montrer que

$$M_1 \times M_2 = \{ a = (a_1, a_2) \in \mathbb{R}^{n+m}; \ a_1 \in M_1, \ a_2 \in M_2 \}$$

est une sous-variété de \mathbb{R}^{n+m} dont on précisera la dimension.

Exercice 14. Soient M et N deux sous-variétés lisses de \mathbb{R}^n , de dimensions respectives m et n.

- 1. On suppose que pour tout $x \in M \cap N$, $T_xM + T_xN = \mathbb{R}^d$.
 - (a) Montrer que $M \cap N$ est une sous-variété de \mathbb{R}^d et préciser sa dimension.
 - (b) Donner son espace tangent en $x \in M \cap N$.
 - (c) On dit alors que M et N sont transverses. Justifier cela avec un dessin.
- 2. La réciproque est-elle vraie?
- 3. Est-il vrai plus généralement que si dim $(T_xM + T_xN)$ ne dépend pas de $x \in M \cap N$, alors nécessairement $M \cap N$ est une sous-variété de \mathbb{R}^d ?

Exercice 15. Soient Q une forme quadratique définie positive sur \mathbb{R}^3 et S l'ellipsoïde d'équation Q = 1. Soit a un point tel que Q(a) > 1.

- 1. Justifier que a est à l'extérieur de S.
- 2. Le contour apparent de S vu de a est l'ensemble C des points x de S où l'espace affine tangent $x+T_xS$ contient a.
 - (a) Faire un dessin.
 - (b) Montrer que C est une ellipse (intersection de S et d'un plan affine de \mathbb{R}^3).

Exercice 16. Soit M une sous-variété de \mathbb{R}^n de dimension d < n. Le but de l'exercice est de montrer que M est de mesure de Lebesgue nulle dans \mathbb{R}^n .

- 1. Soit $U \subset \mathbb{R}^n$ un ouvert et $f: U \to \mathbb{R}^n$ de classe \mathcal{C}^1 . Montrer que l'image d'un ensemble de mesure nulle est de mesure nulle.
- 2. En déduire que M est de mesure de Lebesgue nulle dans \mathbb{R}^n .