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Strong solution of an MFG with common noise

Let M be a random probability measure and, Q a set of control
processes with values in A. We consider the following.

Controlled dynamic in the environment M :

dX q,M
t = bt

(
X q,M
· , qt ,M

)
dt + σt

(
X q,M
· , qt ,M

)
dWt

+σ0
t

(
X q,M
· , qt ,M

)
dW 0

t .

Optimization in the environment M :

max
q∈Q

E
[
ξ
(
X q,M

)
+

∫ T

0
fr
(
X q,M
· , qr ,M

)
dr

]
,
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Strong solution of an MFG with common noise

Strong solution
A strong solution of this MFG is a solution of the following fix
point problem : find M such that

M = L(X ?,M |W 0), a.s.

where X ?,M is an optimal diffusion in the environment M and
L(X ?,M |W 0) is its conditional law with respect to σ(W 0).
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Weak relaxed solutions

Weak relaxed solutions
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Relaxed controls

Relaxed controls
We allow relaxed controls (or mixed strategies), so that control
processes will take values Prob(A) rather that A.

Why relaxed controls ?
Because they will help us to get compactness and convexity, hence
to apply the Kakutani’s fixed point theorem.

The cost functional then becomes

Cost functional in the environment M :

E
[
ξ(X ) +

∫ T

0

∫
A
fr (X·, a,M) qr (da)dr

]
.
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Weak relaxed formulation of the MFG

We work "in law", meaning that the controlled SDE is replaced
with a controlled martingale problem and that we will work with
the possible joint laws of the quintuplet (X ,W ,W 0,Q,M).

Canonical space

Ω := X ×W ×W0 ×Q× Prob(X ),

where X ,W,W0,Q,Prob(X ) are the canonical spaces for :
• X the state space of the typical player ;
• W its individual noise ;
• W 0 the common noise ;
• Q the control process of the typical player ;
• M the distribution of the other players.
All these spaces are equipped with natural filtrations.
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Admissible controls

Let π0 ∈ Prob(W0 × Prob(X )) be a possible law for (W 0,M).

We say that P ∈ Prob(Ω) is π0-admissible if

• P ◦ (W 0,M)−1 = π0

• W is a P-Brownian motion independent from (M,W 0)

• for all t, FQ
t is independent from FW ,M

T conditionally to FW ,M
t

• for all φ ∈ C2
b(Rd ×Rp ×Rp0),

φ(X̄t)−
∫ t

0

∫
A

(
b̄r (X , a,M) · Dφ(X̄r ) +

1
2
σ̄σ̄ᵀ

r (X , a,M) : D2φ(X̄r )

)
Qr (da)dr

is a P-martingale.

Where X̄ := (X ,W ,W 0) and b̄, σ̄ are its drift and volatility.
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Optimal controls and weak relaxed solution

Optimal controls

We say that P ∈ Prob(Ω) is π0-optimal if it maximizes

EP
[
ξ(X ) +

∫ T

0

∫
A
fr (X·, a,M)Qr (da)dr

]
,

within the set of π0-admissible controls.

Solution of the MFG
P ∈ Prob(Ω) is a weak relaxed solution of the MFG if :

• P is π0-optimal for some π0 ;
• M = P(X |M,W 0), P a.s.
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Existence of a weak relaxed solution

B-Touzi 20’
There exists a weak relaxed solution if :
• f , ξ, b, σ, σ0 are bounded continuous ;
• b, σ, σ0 are locally Lipschitz in x , uniformly in (t, a,m).

To be compared to :

Carmona-Delarue-Lacker 16’

Same result but when σ, σ0 do not depend on the control
parameter a .
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Second order backward SDEs (2BSDEs)

Second order backward SDEs
(2BSDEs)
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Second order stochastic control and 2BSDEs

2BSDEs are called of order 2 because they are related to volatility
control problems, hence HJB PDEs with Hamiltonian of order 2.

Control problems of order 2
Assume that we want to maximize over q the functional

E

[
ξ +

∫ T

0
fr (X , qr )dr

]
,

where X has dynamic

dXt = σtλt(X , qt)dt + σt(X , qt)dWt .

Value function of the problem

Yt(x) := sup
q

E
P

q

[
ξ +

∫ T

t
fr (X , qr )dr |X∧t = x∧t

]
.
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Stochastic control of order 1 and BSDEs

BSDE and Hamiltonian without volatility control
Without volatility control, the value function of the control
problem satisfies the BSDE

Yt = ξ +

∫ T

t
Fr (X ,Zr )dr −

∫ T

s
ZrdXr , s ∈ [t,T ], P− p.s.

where P is the driftless law of X , and F is the Hamiltonian :

Ft(x , z) := sup
a∈A

ft(x , a) + z · σtλt(x , a).
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Stochastic control of order 2 and 2BSDEs

Formulation of the 2BSDE (Soner-Touzi-Zhang 11’)

When σ is controlled, there exists processes Z ,U such that
•

Yt = ξ +

∫ T

t

F̂r (X ,Zr )dr −
∫ T

t

ZrdXr − (UT − Ut), t ∈ [0,T ], Pq − p.s.,∀q;

• U is a Pq-supermartingale for all q ;
• inf

q
E
P

q
[UT ] = U0 = 0.

F̂ is a type of Hamiltonian with aggregated volatility.

Interpretation of U
U measures the lack of optimality of a control q.

(q is optimal) ⇐⇒ (EP
q
[UT ] = 0)⇐⇒ (U is a Pq-martingale).
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Representation of the MFG though a McKean-Vlasov
2BSDE

Linking an MFG with controlled volatility to a
McKean-Vlasov BSDE of order 2 :

A first step towards a generalization of
Carmona-Delarue’s theory to the order 2.
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2BSDE McKean-Vlasov associated to the MFG

We consider the NO common noise setup.

For all, m ∈ Prob(X ) let P(m) be the set of all X -marginals of
m-admissible probabilities.

Here, P is m-admissible if :

for all φ ∈ C2
b(Rd),

φ(Xt)−
∫ t

0

∫
A

(
br (X , a,m) · Dφ(Xr ) +

1
2
σσᵀ

r (X , a,m) : D2φ(Xr )

)
Qr (da)dr

(1)
is a P-martingale.
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McKean-Vlasov 2BSDE

Definition
We say that P∗X ∈ Prob(X ) and the processes Y ,Z ,U solve the
McKean-Vlasov 2BSDE

Y· = ξ +

∫ T

·
F̂r (X ,Zr ,P

∗
X )dr −

∫ T

·
ZrdXr − (UT − U·), P(P∗

X )− q.s. (2)

if :
• (2) holds P-a.s. for all P ∈ P(P∗X ) ;

• U0 = 0 and U is a P-supermartingale for all P ∈ P(P∗X ) ;

• P∗X ∈ P(P∗X ) and EP
∗
X [UT ] = 0 (i.e U is a P∗X -martingale).
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Representation theorem

Hypothesis

• Those for which the (no common noise) MFG has a solution ;
• the drift bt(x ,m, a) is of type
σt(x ,m, a)λt(x ,m, b), (a, b) ∈ A× B .

B-Touzi 20’
• The McKean-Vlasov 2BSDE

Y· = ξ +

∫ T

·
F̂r (X ,Zr ,P

∗
X )dr −

∫ T

·
ZrdXr − (UT − U·), P(P∗

X )− q.s. (3)

associated to the MFG admits a solution (P∗X ,Y ,Z ,U) ;
• P∗X is the X -marginal of a solution of the MFG ;
• Y is the value function of the corresponding control problem.

Here F̂ is the "aggregated" Hamiltonian of the MFG.
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Questions

Thanks for your attention !
Questions ?
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