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From the Abstract

In this talk I am going to present an n-dimensional deterministic mean
field game, where the agents have to minimize a cost which also depends on
more than one targets to be “visited”.

Motivations can be found in models of traffic/pedestrian flows and con-
gestion.
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From the Abstract

In this talk I am going to present an n-dimensional deterministic mean
field game, where the agents have to mimimize a cost which also depends on
more than one targets to be “visited”.

Motivations can be found in models of traffic/pedestrian flows and con-

gestion. _
The targets are points of the state-space



More than one target.




More than one target.
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A first problem with Dynamic Programming

* The Dynamic Programming Principle “by words”:
* “Pieces of optimal trajectories are optimal”!



X Optimal trajectory for x

Optimal for y(t) too.
y(t)




Problem with DPP

* The Dynamic Programming Principle does not hold.
* “Pieces of optimal trajectories are not optimal”!



X Optimal trajectory for x

Optimal for y(t) too.




X Optimal trajectory for x

Optimal for y(t) too.




X Optimal trajectory for x

But not for y(7)!




Optimal trajectory for x

But not for y(7)!




Problem with DPP

* The Dynamic Programming Principle does not hold.
* “Pieces of optimal trajectories are not optimal”!
 And, if we do not have DPP then we do not have HJB



To recover DPP we need a sort of memory

We need a sort of memory!
We have to keep in mind whether the target is already visited or not.

For every target, we need a positive scalar w, evolving in time, which is zero if and
only if we have already visited the target.

Bagagiolo-Benetton, Applied Mathematics and Optimization, 2012 (continuous
memory (hysteresis));

Here we adopt a “switching” memory, as in

Bagagiolo-Pesenti 2017, Annals of ISDG, 2017
Bagagiolo-Faggian-Maggistro-Pesenti, Networks and Spatial Economics, 2019 online
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From the Abstract

In this talk I am going to present an n-dimensional deterministic mean
field game, where the agents have to mimimize a cost which also depends on
more than one targets to be “visited”.

Motivations can be found in models of traffic/pedestrian flows and con-

gestion. _
The targets are points of the state-space

Depending on the targets already visited, the population 1s then split into
several populations, with a transfer between them.
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From the Abstract

In this talk I am going to present an n-dimensional deterministic mean
field game, where the agents have to minimize a cost which also depends on
more than one targets to be “visited”.

Motivations can be found in models of traffic/pedestrian flows and con-

gestion. The targets are points of the state-space

Depending on the targets already visited, the population 1s then split into
several populations, with a transter between them.
“to visit” can be relaxed

in “to pass as close as possible”. The agents can also give up some targets,
paving a suitable instantaneous cost.



From the Abstract

In this talk I am going to present an n-dimensional deterministic mean
field game, where the agents have to minimize a cost which also depends on
more than one targets to be “visited”.

Motivations can be found in models of traffic/pedestrian flows and con-

gestion. The targets are points of the state-space

Depending on the targets already visited, the population 1s then split into
several populations, with a transter between them.
“to visit” can be relaxed

in “to pass as close as possible”. The agents can also give up some targets,
paving a suitable instantaneous cost.

The problem is recast in the framework of optimal stopping/optimal
switching problems, with the add of a continuum of agents.
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Whenever the agent switches from one level to the other it pays a swithcing cost given by the distance
from the target it is giving up.

We can also see such a process as an optimal stopping control problem in anyone of the levels, where the
stopping cost is given by the distance from the target plus the value function (the best the agent can do) on

the new level.



Another little problem with DPP

* In infinite horizon optimal control problems

J(X,a) = j e o(y(t), a(t) )t
0
* an explicitly time dependent running cost
J(x.@)= [e"u(y(), a(t),t)t
0

* is a problem for DPP and HJB, because usually you cannot glue time
inside the non linear running cost.

* In that case, you need an explicitly time dependent cost

J(x,a,t)= ]e-ﬂs-t)e(y(s), a(s),s)ds +G(y(T))



Another little problem with DPP

* Deterministic optimal stopping control problems are very often
written in an infinite horizon feature

J(xa,7) = [ U(y(),a(®))dt+e *y(y(r))

{y'(t) = f(y(t),x(t))
y(0) =X

m() > 3(x (), 7)= [ *A(y(D), a0 mO)dt + &y (y(e) m(c)

V(X)=Inf J(X,a,1),

a.t>0

= _[e‘”?(y(t), a(t),t)dt +e "y (y(7), 7)



Time dependent optimal stopping

J(x,a.t,7) = je‘“s‘”f(y(s),a(s),s)dt +e Oy (y(r),7)

{Y'(S) = f(y(s),a(s)), s>t
y(t) =X

V(x,t)=Inf J(X,a,t,1)

o T>1



g=(91,02,...,gv) dependence

;)"(S) = f(y(s),a(s),q), s>t

) =X

I, ta . q) = [e < 0u(y(s),a(s).s,q)dt+e I (Cly(2), 0.9 +V, (y(). 7))

J (%t a,7)= je‘“s‘”é(y(s), a(s),s,q)dt +e*Vy (y(z),7)

vy(x.7) = inf(C(x,0,0") +V,(x.7)) 4= (L1 1) = Vy =0

I :{q'\q —>(q admissible} C(xa.0)= 2 HX‘XJHZ

| d;#d;



On the dependence on g=(q4q-,...,qn)

m, portion of population labelled by q
f(x,a,m"), ¢(X,a,m")

m® suitable weighted sum of mass densities of populations '

with similar goals: ¢ =0= g, =0; Hi‘qi =, =0



a Bellman equation in a Variational Inequality of Obstacle Type form for every g € 7. In
other words, defining for z,p € R4, t € [0,T] and q € T the Hamiltonian function by

Hq(mﬁtnp) — Egg{_.ﬁ:iz o, '&'} o E('T'.vﬁ:q'r t)}‘l [:Q}

we have the following result:

5

Proposition 3. Under the hypotheses of Proposition 2, for every q € 1 the value function
Vy is the unique viscosity solution of

{mﬂx{%(mﬁt) — g(2,1), Vo, (,8) + AVy(2,1) + HI(2,1, D.Vy(2,1))} =0, (2,1) e R x [0, T

I{I(IﬁT) — ﬁJQ{m?T)! reRY
(10)
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Proposition 3. Under the hypotheses of Proposition 2, for every q € I the value function
Vi, is the unique viscosity solution of

{max{vq(:a,t] — gz, t), =V, (x,t) + AVy(x,t) + Hi(x,t, D, V,(x, 1))} =0, (x,t) € R % [0,T]

VQ(IE'T):%'{IQ(:E?T)! €T < Rd )
(10)
Proof. See Theorem A.1 in §A.1. ]
Proposition 4. the family of functions {V, : q € I} is the unique solution
of the problem
{for every q € I, V,, is the unique viscosity solution of (10)}. (11)

Proof. Let {U, : ¢ € T}, where U, € BUC(R? x [0,T) for every g € Z, be a solution of (11)
with stopping cost

;{:é”r(m,t) = i{n%(@(a:,q?q’) + Uy (z, 1)), Uq =0, g= (1,1,,1)
q' e q

that 1s for every ¢ € Z, U, 1s the unique viscosity solution of

max{U,(x,t) — ﬂ:{g’r(ﬂ_f, t), U, (@, t) + AU (z,t) + H(z, t, D, Uy(z,t))} =0, (x,t) e R x [0,T]
UyJxT) = TP‘E (z,T), r € R

L4
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On the continuity equation with a sink in R°
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On the continuity equation with a sink in R®

1, (X, 1) + div(b(x, t) z2(x, t) 1"sink term"=0

D :(x,t) > O(x,t) the flow given by the field b

;y'(t) =b(y(t),t)

"0 —x (D) = (1)

A RY the sink

m, Initial distribution
m, "flows" with ®, but when an agent touches A
It falls in the sink and it is no longer present



Candidate for the evolution

VX, t, Is the first arrival time in A
vt>0, B(t)={xg A0<t, <t}

At any time t, "no one is around" the region ®(B(t),t)
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Candidate for the evolution

VX, t
Vi>

At any time t, '

pu(t) =-

IS the first arrival time In A
0, B(t)={xg A0<t <t

X

'no one is around” the region ®(B(t),t)

@, t)#m, in R*\®(B(t),1)

0 in ®(B(t),1)

.



Weak formulation of the continuity equation

For every test function ¢,

[ o(x0)dm,+ [ [(p.(x,t)+(D,(x,t),b(x,t)) Has(t)cl
0 RU\D(B(t),t)

_ng(q)(x’t))dutdt — 0
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Weak formulation of the continuity equation

For every test function ¢,

J.. ¢(x,o>dm0+] [ (@, (x.)+ (D, (x,1), b(x, 1)) Has(t)clt p = g(t)u(0)

0 RN\@(B(t),t)

h (@(x)dt =0 1(0)" is the "disintegration" of x(0) on the fibers S'
- X, —
£ g that compose B(t);

g(-) is the density of the measure v on the indices = of the v=rx#u(0), 7:B(t) >[0,t], x>t
fibers S* such that

E ¢ B(t) = 1(0)(E) = I,u(O)’(ST ~ENdv =jg(r)y(0)f(3f ~Eldz

g is the "transformation parameter" between

spatial - density (kg/m®) mass and time-density (Kg/sec) mass
and dependson @

Camilli-De Maio-Tosin, Networks and Heterogeneous Media, 2017
Bagagiolo-Faggian-Maggistro-Pesenti, Networks and Spatial Economics, 2019 online



Unigueness

(@(,t)#m, in R\ d(B(t),t)
0 in ©(B(t),t)

is the unique solution in C°(0,T;B(R")) of theweak formulation

[ o(x0)dm,+ [ [(g,(xt)+(D,p(x.t),b(x, 1)) Hu(t)dt
0 RN\®(B(t),t)

~ [ p(@(x, ) (t)dt =0

p(t) =+




Work in progress still to do

Is the measure v really absolutely continuous, dv=g(t)dt ?

It depends on @, A (which can also vary in time: when coupling optimal
control and continuity equation (MFG), the sink is the set where the value
function is equal to the stopping cost).

Beside sinks we also have sources.

If the dependence of the costs on the mass is just via the total masses
present at the time t, independently on the local state-position, then
maybe the sources can be seen just as the sinks with opposite signs.
Otherwise it also must flow...

Coupling HIBVI-Continuity (MFG), fixed point, mean field equilibrium.
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Work in progress still to do

* |sthe measure v really absolutely continuous, dv=g(t)dt ?

* |t depends on @, A (which can also vary in time: when coupling optimal
control and continuity equation (MFG), the sink is the set where the value
function is equal to the stopping cost).

* Beside sinks we also have sources.

* |f the dependence of the costs on the mass is just via the total masses
present at the time t, independently on the local state-position, then
maybe the sources can be seen just as the sinks with opposite signs.
Otherwise it also must flow...

* Coupling HIBVI-Continuity (MFG), mean field equilibrium.
* We have already some numerical simulations, to be improved.



State (0 0 0) State (0 0 1)

-1
State (1 0 1) State (1 1 1)

mure 1: Test 1. Approximated value functions in the various discrete states of the system



Optimal Visiting of 3 Targets
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igure 2: Test 1. Optimal trajectories for various starting points: (top/left) xy = (0,0)
top/right) x¢ = (0, —0.2), (bottom) zo = (0.9,0.9).



Time =0
State (1) State (2)

State (3) State (4)
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