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More than one target.
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A first problem with Dynamic Programming

• The Dynamic Programming Principle “by words”: 

• “Pieces of optimal trajectories are optimal”!
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Problem with DPP

• The Dynamic Programming Principle does not hold.

• “Pieces of optimal trajectories are not optimal”!
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Problem with DPP

• The Dynamic Programming Principle does not hold.

• “Pieces of optimal trajectories are not optimal”!

• And, if we do not have DPP then we do not have HJB



To recover DPP we need a sort of memory

• We need a sort of memory!

• We have to keep in mind whether the target is already visited or not.

• For every target, we need a positive scalar w, evolving in time, which is zero if and 
only if we have already visited the target.

• Bagagiolo-Benetton, Applied Mathematics and Optimization, 2012 (continuous 
memory (hysteresis));

• Here we adopt a “switching” memory, as in 
Bagagiolo-Pesenti 2017, Annals of ISDG, 2017
Bagagiolo-Faggian-Maggistro-Pesenti, Networks and Spatial Economics, 2019 online
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Whenever the agent switches from one level to the other it pays a swithcing cost given by  the distance
from the target it is giving up.
We can also see such a process as an optimal stopping control problem in anyone of the levels, where the 
stopping cost is given by the distance from the target plus the value function (the best the agent can do) on 
the new level.



Another little problem with DPP
• In infinite horizon optimal control problems

• an explicitly time dependent running cost 

• is a problem for DPP and HJB, because usually you cannot glue time 
inside the non linear running cost. 

• In that case, you need an explicitly time dependent cost
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Another little problem with DPP

• Deterministic optimal stopping control problems are very often
written in an infinite horizon feature
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Time dependent optimal stopping

   
 


 

t

tts yedtsssyetxJ ),(),(),(),,,( )()( 

),,,(inf),(
;




txJtxV
t



 









xty

tsssyfsy

)(

    ,)(),()(' 



q=(q1,q2,…,qN) dependence
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On the dependence on q=(q1,q2,…,qN)
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On the continuity equation with a sink in Rd
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On the continuity equation with a sink in Rd
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Candidate for the evolution
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Weak formulation of the continuity equation
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Weak formulation of the continuity equation
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Uniqueness

 

 

 
 

  0)(),(                     

)(),(),,(),()0,(

nformulatio weak    theof   );,0in  solution    unique    theis

)),((in                   0

),(\in     )#,(
)(

0

0 ),(\

0

0

0

(














 

  


dttdtx

dttdtxbtxDtxdmx

TC

ttB

ttBmt
t

t

T

S

T

ttB

xt

d

d

t

d

d







R
R

R

R

B



Work in progress still to do

• Is the measure  really absolutely continuous, d=g(t)dt ? 

• It depends on  , A (which can also vary in time: when coupling optimal
control and continuity equation (MFG), the sink is the set where the value
function is equal to the stopping cost).

• Beside sinks we also have sources. 

• If the dependence of the costs on the mass is just via the total masses
present at the time t, independently on the local state-position, then
maybe the sources can be seen just as the sinks with opposite signs. 
Otherwise it also must flow…

• Coupling HJBVI-Continuity (MFG), fixed point, mean field equilibrium.
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Work in progress still to do

• Is the measure  really absolutely continuous, d=g(t)dt ? 

• It depends on  , A (which can also vary in time: when coupling optimal
control and continuity equation (MFG), the sink is the set where the value
function is equal to the stopping cost).

• Beside sinks we also have sources. 

• If the dependence of the costs on the mass is just via the total masses
present at the time t, independently on the local state-position, then
maybe the sources can be seen just as the sinks with opposite signs. 
Otherwise it also must flow…

• Coupling HJBVI-Continuity (MFG), mean field equilibrium.

• We have already some numerical simulations, to be improved.   
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