The Planning Problem with common noise in finite state space

Charles Bertucci, JM Lasry, PL Lions

Ecole Polytechnique. Two days online workshop on MFG, Les Andelys

- 2 The master equation in finite state space
- Penalized Planning Problem
- 4 The planning problem
- **5** Other remarks

The master equation in finite state space Penalized Planning Problem The planning problem Other remarks

Introduction : The Mean Field Planning Problem

A formal definition :

- A time dependent $([0, t_f])$ Mean Field Game (MFG).
- In (0, *t_f*) the non atomic players interact through mean field terms in costs, dynamics...
- The game is such that for any initial distribution of players m_0 , the final distribution is m_f at time t_f .

Objective of the talk :

- Give a mathematical framework to study such games, even in the presence of common noise
- Focus on structural aspects of the problem more than on a particular instance

The master equation in finite state space Penalized Planning Problem The planning problem Other remarks

Games vs optimization

In an optimization problem :

- A constraint on the terminal state is well understood
- Solution via penalization for instance
- In the MFG setting :
 - no constraint (non atomic players cannot affect the distribution)
 - it's all about the incentives!

In the potential case (when MFG reduces to an optimization problem) :

- the social planner problem is an optimal transport one.
- the final distribution is constrained

The master equation in finite state space Penalized Planning Problem The planning problem Other remarks

Common noise and the master equation

- When there is common noise : the forward-backward structure fails, we are forced to work with the master equation (the pde satisfied by the value function when the density of other players is seen as a state variable)
- In the planning problem, a singularity is expected as $t
 ightarrow t_{f}$:

$$U(t,m) \rightarrow_{t \rightarrow t_f} ??$$

The master equation in finite state space Penalized Planning Problem The planning problem Other remarks

- Delivery / transport problems with **competitive** agents delivering (MFG setting), price is **infinitely elastic** due to stock constraints... (planning problem)
- Common noise is more than plausible
- "Real life" example : delivery of oil from the americas to Europe

The master equation in finite state space Penalized Planning Problem The planning problem Other remarks

Bibliographical comments

Literature on the planning problem :

- General results on the forward-backward system : Lions ; Porretta
- Numerical methods on the FB system : Achdou-Camilli-Capuzzo-Dolcetta
- Variational approach on the FB system : Graber-Meszaros-Silva-Tonon; Orrieri-Porretta-Savare
- Master equation in finite state space : BLL
- Master equation in continuous space (including optimal transport) : BLL (ongoing work)

The master equation in finite state space

Notations

- There are *d* states
- The time is reversed : t is the time remaining in the game (it ends at t = 0)

۲

$$U^{i}(t,x)$$

denotes the value in the state *i* when it remains *t* time in the game and that the repartition of the other players is $x \in \mathbb{R}^d$

- The operators $F, G : \mathbb{R}^{2d} \to \mathbb{R}^d$ describe respectively the evolution of the density and the value function
- Monotonicity in \mathbb{R}^d :

$$\forall x, y \in \mathbb{R}^d, \langle A(x) - A(y), x - y \rangle \geq 0$$

The form of the master equation in a MFG

• In this context, without common noise, the typical form of the master equation is

$$\partial_t U + (F(x, U) \cdot \nabla_x) U = G(x, U) \text{ in } (0, \infty) \times \mathbb{R}^d;$$

 $U(0,x) = U_0(x)$ in \mathbb{R}^d terminal cost.

• The analogue of the forward-backward system is

$$\begin{cases} \frac{d}{dt}V(t) = G(x(t), V(t));\\ \frac{d}{dt}x(t) = F(x(t), V(t));\\ x(t_0) = x_0; V(0) = U_0(x(0)). \end{cases}$$

The following holds

$$U(t_0,x_0)=V(t_0).$$

Common noise in discrete state space

- We have to choose a certain type of noise, other noises are possible (see also Bayraktar, Cecchin, Cohen and Delarue)
- We look at the case in which the master equation is of the form

 $\partial_t U + (F(x, U) \cdot \nabla_x) U + \lambda (U - (DT)^* U(Tx)) = G(x, U) \text{ in } \mathbb{R}^*_+ \times \mathbb{R}^d;$

- 4 同 ト 4 目 ト

where $T : \mathbb{R}^d \to \mathbb{R}^d$, $\lambda > 0$.

- At random times given by a Poisson process of intensity λ, all the players are affected by the map T (x → T(x)).
- Fairly general type of noise if we consider limits of this class (see BLL19 for a discussion on this)

Existing results for those master equations

- "Good" class of monotonicity : $(G, F) : \mathbb{R}^{2d} \to \mathbb{R}^{2d}$ monotone and U_0 is monotone and T is linear
- Uniqueness of solutions in the monotone regime
- A priori estimates on $||D_x U||_{\infty}$ (which yields existence) in the monotone regime $(+\epsilon)$ if F, G and U_0 are Lipschitz

Penalized Planning Problem

/□ ▶ 《 □

æ

A penalized initial condition

- We want to create incentives to the players which will induce a final density x₀.
- The following is well suited

$$U_0(x)=\frac{1}{\epsilon}(x-x_0)$$

- Already used in the literature
- Enjoys lipschitz and monotone properties
- We approximate the planning problem with a sequence of classical MFG
- In the potential case, it is associated with a quadratic penalization

The penalized master equation

• How does the solution U_ϵ of

$$\partial_t U_\epsilon + (F(x, U_\epsilon) \cdot \nabla_x) U_\epsilon + \lambda (U_\epsilon - (DT)^* U_\epsilon(Tx)) = G(x, U_\epsilon) \text{ in } \mathbb{R}^*_+ imes \mathbb{R}$$

 $U_\epsilon(0, x) = rac{1}{\epsilon} (x - x_0);$

behaves as $\epsilon \rightarrow 0$.

• For $\epsilon > 0$, the problem falls in the known MFG class.

A regularizing effect

• We want an argument of compactness to pass to the limit $\epsilon \rightarrow 0.$

Proposition (BLL)

Assume U_0 and (G, F) are monotone, T is linear, G, F lipschitz, $F(x, \cdot) \alpha$ monotone uniformly in x, U is a classical solution of the master equation, then there exists C > 0 independent of U_0 such that for $0 < t \le 1$

$$\|D_{\mathsf{x}}U(t)\|_{\infty}\leq rac{C}{t}.$$

- Remark : α monotone means $A \alpha Id$ is monotone
- Proof : Auxiliary function :

$$(t,x,\xi) \rightarrow \xi D_x U \xi - \beta(t) |D_x U \xi|^2 + \gamma(t) |\xi|^2$$

The planning problem

3

- 4 同 ト - 4 三

A starter : the initial condition

- What is the limit of $\epsilon^{-1}(Id x_0)$ as ϵ tends to 0?
- The answer is

۲

$$\frac{1}{\epsilon}(Id - x_0) \stackrel{G}{\underset{\epsilon \to 0}{\rightarrow}} A_{x_0}$$

• A_{x_0} is the maximal monotone operator defined by $D(A) = \{x_0\}$ and $A(x_0) = \mathbb{R}^d$.

$$A_n \stackrel{G}{\xrightarrow[n\to\infty]{}} A$$

if for all $(x_n, y_n)_{n\geq 0}$ which converges in \mathbb{R}^{2d} toward (x, y) such that $y_n \in A(x_n)$, then $y \in A(x)$.

Definition of a solution

We call $U:(0,\infty) \times \mathbb{R}^d \to \mathbb{R}^d$ a solution of the problem if U satisfies

$$\partial_t U + (F(x, U) \cdot \nabla_x) U + \lambda (U - (DT)^* U(Tx)) = G(x, U) \text{ in } (0, \infty) imes \mathbb{R}^d;$$

 $U(t) \stackrel{G}{\to}_{t o 0} A_{x_0}$

Theorem (BLL)

Under the assumptions of the proposition, there exists a unique solution U of the problem which is lipschitz in space for all t > 0.

Main ideas of the proof

- Existence : We use the Yosida approximation
 *V*_{δ,ε} = *U*_ε ∘ (*Id* + δ*U*_ε)⁻¹ of *U*_ε to analyse precisely the
 convergence of the penalized problem and to use properly the
 lipschitz estimate. Formally, ε → 0 and then δ → 0.
- Uniqueness : Monotonicity as usual...

Other remarks

æ

(日) (同) (三) (三)

Convergence of the induced trajectories

Assume $\lambda = 0$ to simplify a little

Proposition

Under the assumption of the theorem, the trajectories converge toward x_0 as $t \rightarrow 0.$

• Take a trajectory which is at x_1 at t_1 , it then evolves according to

$$\frac{d}{dt}x(t) = F(x(t), U(t, x(t))).$$

Remark that

$$\frac{d}{dt}U(t,x(t))=G(x(t),U(t,x(t))).$$

- Thus $(x(t), U(t, x(t)))_{0 < t \le t_1}$ is bounded from the finitude of $U(t_1, x_1)$.
- From the convergence in the sense of graphs, we deduce that

$$x(t) \xrightarrow[t\to 0]{} x_0.$$

The case of a moving target

- Take a permutation σ of $\{1; ...; d\}$, and T_{σ} the associated application on \mathbb{R}^{d} .
- Assume that at random times given by a Poisson process, the "target" x₀ is affected by T_{σ-1}, i.e. x₀ → T_{σ-1}x₀.
- Assume F and G satisfies

$$T_{\sigma^{-1}}G(T_{\sigma}x,T_{\sigma}p)=G(x,p)$$

- Using this invariance, we can model the change of the final "target" as a change in the current density
- We can associate to this problem the master equation

$$\partial_t U + (F(x, U) \cdot \nabla_x)U + \lambda (U - (T_\sigma)^* U(T_\sigma x)) = G(x, U) \text{ in } (0, T) \times \mathbb{R}^d;$$

$$U(t) \stackrel{G}{\underset{t\to 0}{\rightarrow}} A_{x_0}$$

< □ > < 同 >

given that at t = T, the target is x_0 .

The case with boundaries

- Model case : the half space $\{x_1 \ge 0\}$.
- Natural condition for well-posedness :

$$F^1(x,p) \le 0$$
 on $\{x_1 = 0\}$.

- The uniform α monotonicity of F is no longer possible.
- First case : Work by hand the same type of regularizing results and obtain the same type of solutions
- Second case : No regularizing effect. For instance
 F¹(x, p) = x₁F(x, p). Then, the value function explodes for all time t > 0 near x₁ = 0.

Thank you!

æ

- ∢ ≣ ▶

<ロト < 同ト < 三ト