Classical and Weak Solutions to Local First Order Mean Field Games through Elliptic Regularity

Sebastian Munoz

Department of Mathematics University of Chicago

Two-days online workshop on Mean Field Games, 2020

Sebastian Munoz Classical and Weak Solutions to Local First Order MFG

• • = • • = •

= 200

1 General Setting and Main Results

- Setting
- Main Results

2 Sketch of Proofs

- A Priori Estimates
- Classical Solutions
- Weak Solutions

< E

5 - DQ C

Contents

2 Sketch of Proofs

- A Priori Estimates
- Classical Solutions
- Weak Solutions

5 1 S Q Q

$$\begin{cases} -u_t + H(x, D_x u) = f(x, m(x, t)) & \text{in } \mathbb{T}^d \times (0, T), \\ m_t - \operatorname{div}(mD_p H(x, D_x u)) = 0 & \text{in } \mathbb{T}^d \times (0, T), \\ m(0, x) = m_0(x), \ u(x, T) = g(x, m(x, T)) & \text{in } \mathbb{T}^d, \end{cases}$$

- $m_0 > 0$ is a probability density, H is a strictly convex Hamiltonian of quadratic growth, f and g are strictly increasing in m, f grows polynomially as $m \to \infty$.
- This system has been studied in the case where $g(x,m) = u_T(x)$ is independent of m, in the variational theory of weak solutions of P. Cardaliaguet and P.J. Graber.
- When $\lim_{m\to 0} f(\cdot, m) = -\infty$, classical solutions are obtained.
- In the case where $\lim_{m\to 0} f(\cdot, m) > -\infty$, I obtain weak solutions analogous to those in the variational theory,

$$\begin{cases} -u_t + H(x, D_x u) = f(x, m(x, t)) & \text{in } \mathbb{T}^d \times (0, T), \\ m_t - \operatorname{div}(mD_p H(x, D_x u)) = 0 & \text{in } \mathbb{T}^d \times (0, T), \\ m(0, x) = m_0(x), \ u(x, T) = g(x, m(x, T)) & \text{in } \mathbb{T}^d, \end{cases}$$

- $m_0 > 0$ is a probability density, H is a strictly convex Hamiltonian of quadratic growth, f and g are strictly increasing in m, f grows polynomially as $m \to \infty$.
- This system has been studied in the case where $g(x,m) = u_T(x)$ is independent of m, in the variational theory of weak solutions of P. Cardaliaguet and P.J. Graber.
- When $\lim_{m\to 0} f(\cdot, m) = -\infty$, classical solutions are obtained.
- In the case where $\lim_{m\to 0} f(\cdot, m) > -\infty$, I obtain weak solutions analogous to those in the variational theory, is

$$\begin{cases} -u_t + H(x, D_x u) = f(x, m(x, t)) & \text{in } \mathbb{T}^d \times (0, T), \\ m_t - \operatorname{div}(mD_p H(x, D_x u)) = 0 & \text{in } \mathbb{T}^d \times (0, T), \\ m(0, x) = m_0(x), \ u(x, T) = g(x, m(x, T)) & \text{in } \mathbb{T}^d, \end{cases}$$

- $m_0 > 0$ is a probability density, H is a strictly convex Hamiltonian of quadratic growth, f and g are strictly increasing in m, f grows polynomially as $m \to \infty$.
- This system has been studied in the case where g(x, m) = u_T(x) is independent of m, in the variational theory of weak solutions of P. Cardaliaguet and P.J. Graber.
- When $\lim_{m\to 0} f(\cdot, m) = -\infty$, classical solutions are obtained.
- In the case where lim_{m→0} f(·, m) > -∞, I obtain weak solutions analogous to those in the variațional theory,

$$\begin{cases} -u_t + H(x, D_x u) = f(x, m(x, t)) & \text{in } \mathbb{T}^d \times (0, T), \\ m_t - \operatorname{div}(mD_p H(x, D_x u)) = 0 & \text{in } \mathbb{T}^d \times (0, T), \\ m(0, x) = m_0(x), \ u(x, T) = g(x, m(x, T)) & \text{in } \mathbb{T}^d, \end{cases}$$

- $m_0 > 0$ is a probability density, H is a strictly convex Hamiltonian of quadratic growth, f and g are strictly increasing in m, f grows polynomially as $m \to \infty$.
- This system has been studied in the case where $g(x,m) = u_T(x)$ is independent of m, in the variational theory of weak solutions of P. Cardaliaguet and P.J. Graber.
- When $\lim_{m\to 0} f(\cdot, m) = -\infty$, classical solutions are obtained.
- In the case where $\lim_{m\to 0} f(\cdot, m) > -\infty$, I obtain weak solutions analogous to those in the variational theory, is

$$\begin{cases} -u_t + H(x, D_x u) = f(x, m(x, t)) & \text{in } \mathbb{T}^d \times (0, T), \\ m_t - \operatorname{div}(mD_p H(x, D_x u)) = 0 & \text{in } \mathbb{T}^d \times (0, T), \\ m(0, x) = m_0(x), \ u(x, T) = g(x, m(x, T)) & \text{in } \mathbb{T}^d, \end{cases}$$

- $m_0 > 0$ is a probability density, H is a strictly convex Hamiltonian of quadratic growth, f and g are strictly increasing in m, f grows polynomially as $m \to \infty$.
- This system has been studied in the case where $g(x,m) = u_T(x)$ is independent of m, in the variational theory of weak solutions of P. Cardaliaguet and P.J. Graber.
- When $\lim_{m\to 0} f(\cdot, m) = -\infty$, classical solutions are obtained.
- In the case where $\lim_{m\to 0} f(\cdot, m) > -\infty$, I obtain weak solutions analogous to those in the variational theory.

Main Tools

- Classical maximum principle techniques and the Bernstein method for gradient estimates.
- Regularity theory for quasilinear elliptic problems with non-linear oblique derivative boundary conditions.
- The reformulation of the first order MFG system as a quasilinear elliptic problem, due to P.L. Lions.

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 = ♪ ○ ○

Main Tools

- Classical maximum principle techniques and the Bernstein method for gradient estimates.
- Regularity theory for quasilinear elliptic problems with non-linear oblique derivative boundary conditions.
- The reformulation of the first order MFG system as a quasilinear elliptic problem, due to P.L. Lions.

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 = ♪ ○ ○

Main Tools

- Classical maximum principle techniques and the Bernstein method for gradient estimates.
- Regularity theory for quasilinear elliptic problems with non-linear oblique derivative boundary conditions.
- The reformulation of the first order MFG system as a quasilinear elliptic problem, due to P.L. Lions.

► < E ► < E ► E E < <</p>

First Order MFG System as an Elliptic Problem

 To make the presentation simpler, we will assume from now on that H = H(p), f = f(m), g = g(m) are independent of x,

$$\begin{cases} -u_t + H(D_x u) = f(m) & \text{in } \mathbb{T}^d \times (0, T), \\ m_t - \operatorname{div}(mDH) = 0 & \text{in } \mathbb{T}^d \times (0, T), \\ m(0, x) = m_0(x), \ u(x, T) = g(m(\cdot, T)) & \text{in } \mathbb{T}^d, \end{cases}$$

• The strategy of proof follows the ideas of P. L. Lions from his work on the planning problem: setting $m = f^{-1}(-u_t + H)$ we can eliminate m from the system and rewrite it as a first order quasilinear elliptic problem:

$$\begin{cases} Qu = -\operatorname{Tr}(A(Du)D^2u) = 0 & \text{in } \mathbb{T}^d \times (0, T), \\ Nu = B(x, t, u, Du) = 0 & \text{on } \mathbb{T}^d \times \{t = 0, T\}. \end{cases}$$

First Order MFG System as an Elliptic Problem

 To make the presentation simpler, we will assume from now on that H = H(p), f = f(m), g = g(m) are independent of x,

$$\begin{cases} -u_t + H(D_x u) = f(m) & \text{in } \mathbb{T}^d \times (0, T), \\ m_t - \operatorname{div}(mDH) = 0 & \text{in } \mathbb{T}^d \times (0, T), \\ m(0, x) = m_0(x), \ u(x, T) = g(m(\cdot, T)) & \text{in } \mathbb{T}^d, \end{cases}$$

• The strategy of proof follows the ideas of P. L. Lions from his work on the planning problem: setting $m = f^{-1}(-u_t + H)$ we can eliminate *m* from the system and rewrite it as a first order quasilinear elliptic problem:

$$\begin{cases} Qu = -\operatorname{Tr}(A(Du)D^2u) = 0 & \text{in } \mathbb{T}^d \times (0, T), \\ Nu = B(x, t, u, Du) = 0 & \text{on } \mathbb{T}^d \times \{t = 0, T\}. \end{cases}$$

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 = ♪ ○ ○

Ellipticity Condition

The matrix A, given by

$$A = \begin{pmatrix} DH \otimes DH + mf'(m)D^2H & -DH^T \\ -DH & 1 \end{pmatrix},$$

is strictly positive, except when mf'(m) = 0. In particular, when the players have a strong incentive to navigate areas of low density, which precludes *m* from vanishing, we expect regularity. This motivates the following definition:

Definition

The MFG system is said to be *strictly elliptic* if $\lim_{m\to 0^+} f(m) = -\infty$. Otherwise, it is said to be *degenerate elliptic*.

ヘロト (同) ヘヨト ヘヨト しきょうのの

Ellipticity Condition

The matrix A, given by

$$A = \begin{pmatrix} DH \otimes DH + mf'(m)D^2H & -DH^T \\ -DH & 1 \end{pmatrix},$$

is strictly positive, except when mf'(m) = 0. In particular, when the players have a strong incentive to navigate areas of low density, which precludes *m* from vanishing, we expect regularity. This motivates the following definition:

Definition

The MFG system is said to be *strictly elliptic* if $\lim_{m\to 0^+} f(m) = -\infty$. Otherwise, it is said to be *degenerate elliptic*.

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 → の Q @

Ellipticity Condition

The matrix A, given by

$$A = \begin{pmatrix} DH \otimes DH + mf'(m)D^2H & -DH^T \\ -DH & 1 \end{pmatrix},$$

is strictly positive, except when mf'(m) = 0. In particular, when the players have a strong incentive to navigate areas of low density, which precludes *m* from vanishing, we expect regularity. This motivates the following definition:

Definition

The MFG system is said to be *strictly elliptic* if $\lim_{m\to 0^+} f(m) = -\infty$. Otherwise, it is said to be *degenerate elliptic*.

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ ヨ ● の Q @

Contents

2 Sketch of Proofs

- A Priori Estimates
- Classical Solutions
- Weak Solutions

Strictly Elliptic Problem

Our result for the strictly elliptic case is the following:

Theorem

If the MFG system is strictly elliptic, it has a unique classical solution (*u*, *m*).

To state the analogous result for the degenerate elliptic case, we must first define the notion of weak solutions.

- 4 母 ト 4 ヨ ト ヨ ヨ め ()

Strictly Elliptic Problem

Our result for the strictly elliptic case is the following:

Theorem

If the MFG system is strictly elliptic, it has a unique classical solution (u, m).

To state the analogous result for the degenerate elliptic case, we must first define the notion of weak solutions.

Strictly Elliptic Problem

Our result for the strictly elliptic case is the following:

Theorem

If the MFG system is strictly elliptic, it has a unique classical solution (u, m).

To state the analogous result for the degenerate elliptic case, we must first define the notion of weak solutions.

= 200

Definition

A pair $(u, m) \in BV(Q_T) \times L^{\infty}_+(Q_T)$ is called a *weak solution* if: (i) $D_x u \in L^2(Q_T), u \in L^{\infty}(Q_T), m \in C^0([0, T]; H^{-1}(\mathbb{T}^d)),$ $m(\cdot, T) \in L^{\infty}(\mathbb{T}^d).$

(ii) $-u_t + H(\cdot, D_x u) \le f(\cdot, m)$ and $m_t - \operatorname{div}(mD_pH(\cdot, D_x u)) = 0$ hold in the distributional sense. Moreover, $u(\cdot, T) = g(\cdot, m(\cdot, T))$ in the sense of traces, and $m = m_0$ in $H^{-1}(\mathbb{T}^d)$.

$$\int_{Q_T} m(x,t)(H(x,D_xu) - D_pH(x,D_xu) \cdot D_xu - f(x,m))dxdt$$

$$= \int_{\mathbb{T}^d} (m(x, T)g(x, m(x, T)) - m_0(x)u(x, 0)) dx$$

Definition

A pair $(u, m) \in BV(Q_T) \times L^{\infty}_+(Q_T)$ is called a *weak solution* if: (i) $D_x u \in L^2(Q_T), u \in L^{\infty}(Q_T), m \in C^0([0, T]; H^{-1}(\mathbb{T}^d)),$ $m(\cdot, T) \in L^{\infty}(\mathbb{T}^d).$

(ii) $-u_t + H(\cdot, D_x u) \le f(\cdot, m)$ and $m_t - \operatorname{div}(mD_pH(\cdot, D_x u)) = 0$ hold in the distributional sense. Moreover, $u(\cdot, T) = g(\cdot, m(\cdot, T))$ in the sense of traces, and $m = m_0$ in $H^{-1}(\mathbb{T}^d)$.

$$\int_{Q_T} m(x,t)(H(x,D_xu) - D_pH(x,D_xu) \cdot D_xu - f(x,m))dxdt$$

$$= \int_{\mathbb{T}^d} (m(x, T)g(x, m(x, T)) - m_0(x)u(x, 0)) dx$$

Definition

A pair $(u, m) \in BV(Q_T) \times L^\infty_+(Q_T)$ is called a *weak solution* if:

- (i) $D_x u \in L^2(Q_T), u \in L^{\infty}(Q_T), m \in C^0([0, T]; H^{-1}(\mathbb{T}^d)), m(\cdot, T) \in L^{\infty}(\mathbb{T}^d).$
- (ii) $-u_t + H(\cdot, D_x u) \le f(\cdot, m)$ and $m_t \operatorname{div}(mD_pH(\cdot, D_x u)) = 0$ hold in the distributional sense. Moreover, $u(\cdot, T) = g(\cdot, m(\cdot, T))$ in the sense of traces, and $m = m_0$ in $H^{-1}(\mathbb{T}^d)$.

$$\int_{Q_T} m(x,t)(H(x,D_xu) - D_pH(x,D_xu) \cdot D_xu - f(x,m))dxdt$$

$$= \int_{\mathbb{T}^d} (m(x, T)g(x, m(x, T)) - m_0(x)u(x, 0)) dx$$

Definition

A pair $(u, m) \in BV(Q_T) \times L^\infty_+(Q_T)$ is called a *weak solution* if:

- (i) $D_x u \in L^2(Q_T), u \in L^{\infty}(Q_T), m \in C^0([0, T]; H^{-1}(\mathbb{T}^d)), m(\cdot, T) \in L^{\infty}(\mathbb{T}^d).$
- (ii) $-u_t + H(\cdot, D_x u) \le f(\cdot, m)$ and $m_t \operatorname{div}(mD_pH(\cdot, D_x u)) = 0$ hold in the distributional sense. Moreover, $u(\cdot, T) = g(\cdot, m(\cdot, T))$ in the sense of traces, and $m = m_0$ in $H^{-1}(\mathbb{T}^d)$.

$$\int \int_{Q_T} m(x,t)(H(x,D_xu) - D_pH(x,D_xu) \cdot D_xu - f(x,m))dxdt$$
$$= \int_{\mathbb{T}^d} (m(x,T)g(x,m(x,T)) - m_0(x)u(x,0))dx.$$

Degenerate Elliptic Problem

The following is our main result for the degenerate elliptic problem:

Theorem

Assume that the MFG system is degenerate elliptic. Then:

 If (u, m), (u', m') are two weak solutions, then m = m' a.e. in T^d × [0, T], and u = u' a.e. in {m > 0}. Moreover, m(·, T) = m'(·, T) and u(·, T) = u'(·, T) a.e. in T^d.

 There exists a weak solution (u, m). Furthermore (u, m) is obtained as the "viscous limit" of classical solutions (u^ε, m^ε) to strictly elliptic first order MFG systems.

Degenerate Elliptic Problem

The following is our main result for the degenerate elliptic problem:

Theorem

Assume that the MFG system is degenerate elliptic. Then:

- If (u, m), (u', m') are two weak solutions, then m = m' a.e. in T^d × [0, T], and u = u' a.e. in {m > 0}. Moreover, m(·, T) = m'(·, T) and u(·, T) = u'(·, T) a.e. in T^d.
- There exists a weak solution (u, m). Furthermore (u, m) is obtained as the "viscous limit" of classical solutions (u^e, m^e) to strictly elliptic first order MFG systems.

▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨヨ わへや

Degenerate Elliptic Problem

The following is our main result for the degenerate elliptic problem:

Theorem

Assume that the MFG system is degenerate elliptic. Then:

- If (u, m), (u', m') are two weak solutions, then m = m' a.e. in T^d × [0, T], and u = u' a.e. in {m > 0}. Moreover, m(·, T) = m'(·, T) and u(·, T) = u'(·, T) a.e. in T^d.
- There exists a weak solution (u, m). Furthermore (u, m) is obtained as the "viscous limit" of classical solutions (u^ϵ, m^ϵ) to strictly elliptic first order MFG systems.

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 = ♪ ○ ○

General Setting and Main Results Sketch of Proofs A Priori Estimates Classical Solutions Weak Solutions

Contents

1 General Setting and Main Results

- Setting
- Main Results

2 Sketch of Proofs

- A Priori Estimates
- Classical Solutions
- Weak Solutions

General Setting and Main Results Sketch of Proofs A Priori Estimates Classical Solutions Weak Solutions

A Priori Estimates

- We assume that the MFG system is strictly elliptic, and that (u, m) is a classical solution.
- The goal is to obtain a priori bounds for $||u||_{L^{\infty}}$ and $||Du||_{L^{\infty}}$.

イロト (母) (ヨト (ヨト)ヨヨ うのつ

General Setting and Main Results Sketch of Proofs A Priori Estimates Classical Solutions Weak Solutions

A Priori Estimates

- We assume that the MFG system is strictly elliptic, and that (u, m) is a classical solution.
- The goal is to obtain a priori bounds for $||u||_{L^{\infty}}$ and $||Du||_{L^{\infty}}$.

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ 目 = ♪ ○ ○

• Since u satisfies the elliptic equation Qu = 0, it satisfies the maximum principle. The boundary condition for the elliptic problem is given explicitly by

$$B(x, 0, u, Du) = -u_t + H(D_x u) - f(m_0(x)),$$

$$B(x, T, u, Du) = u - g(f^{-1}(-u_t + H(D_x u))).$$

• Thanks to the strict monotonicity of *f*, *g*, this is an oblique boundary condition. In fact, the linearization of this condition has the form

$$\alpha(x,t)\cdot Dw + \beta(x,t)w = \gamma(x,t),$$

where $\alpha \cdot \nu > 0$, $\beta(\cdot, 0) \equiv 0$ and $\beta(\cdot, T) \equiv 1$. In this sense, *B* is of "Neumann type" in the lower half of the boundary and of "Robin type" in the upper half.

• Since u satisfies the elliptic equation Qu = 0, it satisfies the maximum principle. The boundary condition for the elliptic problem is given explicitly by

$$B(x, 0, u, Du) = -u_t + H(D_x u) - f(m_0(x)),$$

$$B(x, T, u, Du) = u - g(f^{-1}(-u_t + H(D_x u))).$$

• Thanks to the strict monotonicity of *f*, *g*, this is an oblique boundary condition. In fact, the linearization of this condition has the form

$$\alpha(\mathbf{x}, \mathbf{t}) \cdot \mathbf{D}\mathbf{w} + \beta(\mathbf{x}, \mathbf{t})\mathbf{w} = \gamma(\mathbf{x}, \mathbf{t}),$$

where $\alpha \cdot \nu > 0$, $\beta(\cdot, 0) \equiv 0$ and $\beta(\cdot, T) \equiv 1$. In this sense, *B* is of "Neumann type" in the lower half of the boundary and of "Robin type" in the upper half.

- Since Robin boundary conditions provide L[∞] estimates, there would be nothing to prove if u achieved its maximum value at t = T.
- The proof thus consists of adequately choosing a function $\psi(t)$ such that $v = u + \psi(t)$ still satisfies the maximum principle, but forcefully achieves its maximum value at t = T. This yields an estimate of the form

 $g(\min m_0) - C(T-t) \leq u(x,t) \leq g(\max m_0) + C(T-t).$

 As a Corollary, since u(x, T) = g(m(x, T)), we also obtain two-sided bounds for the terminal density:

$$\min m_0 \leq m(x, T) \leq \max m_0.$$

イロト (母) (ヨト (ヨト)ヨヨ うのつ

- Since Robin boundary conditions provide L[∞] estimates, there would be nothing to prove if u achieved its maximum value at t = T.
- The proof thus consists of adequately choosing a function $\psi(t)$ such that $v = u + \psi(t)$ still satisfies the maximum principle, but forcefully achieves its maximum value at t = T. This yields an estimate of the form

$$g(\min m_0) - C(T-t) \leq u(x,t) \leq g(\max m_0) + C(T-t).$$

 As a Corollary, since u(x, T) = g(m(x, T)), we also obtain two-sided bounds for the terminal density:

$$\min m_0 \leq m(x, T) \leq \max m_0.$$

イロト (母) (ヨト (ヨト)ヨヨ うのつ

- Since Robin boundary conditions provide L[∞] estimates, there would be nothing to prove if u achieved its maximum value at t = T.
- The proof thus consists of adequately choosing a function $\psi(t)$ such that $v = u + \psi(t)$ still satisfies the maximum principle, but forcefully achieves its maximum value at t = T. This yields an estimate of the form

$$g(\min m_0) - C(T-t) \leq u(x,t) \leq g(\max m_0) + C(T-t).$$

 As a Corollary, since u(x, T) = g(m(x, T)), we also obtain two-sided bounds for the terminal density:

$$\min m_0 \leq m(x, T) \leq \max m_0.$$

ヘロト (同) ヘヨト ヘヨト ショコ ろくつ

A Priori Estimates Classical Solutions Weak Solutions

A Priori Gradient Estimate

- The L^{∞} bound for the space-time gradient is obtained in two steps.
- First, differentiating the equation Qu = 0 one sees that the time derivative u_t satisfies the maximum principle.
- Thus, since -u_t + H = f(m), and m(0), m(T) are a priori bounded above and below, it follows that
 ||u_t||_{L∞} ≤ ||H(D_xu)||_{L∞} + C, and in particular reduces the problem to estimating only the space gradient.

イロト (母) (ヨト (ヨト)ヨヨ うのつ

A Priori Gradient Estimate

- The L^{∞} bound for the space-time gradient is obtained in two steps.
- First, differentiating the equation Qu = 0 one sees that the time derivative u_t satisfies the maximum principle.
- Thus, since -u_t + H = f(m), and m(0), m(T) are a priori bounded above and below, it follows that
 ||u_t||_{L∞} ≤ ||H(D_xu)||_{L∞} + C, and in particular reduces the problem to estimating only the space gradient.

A Priori Gradient Estimate

- The L^{∞} bound for the space-time gradient is obtained in two steps.
- First, differentiating the equation Qu = 0 one sees that the time derivative u_t satisfies the maximum principle.
- Thus, since -u_t + H = f(m), and m(0), m(T) are a priori bounded above and below, it follows that
 ||u_t||_{L∞} ≤ ||H(D_xu)||_{L∞} + C, and in particular reduces the problem to estimating only the space gradient.

A Priori Gradient Estimate

- The second step is to bound the space gradient using Bernstein's method.
- The bound $||u_t||_{L^{\infty}} \le ||H(D_x u)||_{L^{\infty}} + C$ obtained in the first step comes into play here as well, because, at points (x_0, t_0) where $H(D_x u)$ is near its maximum value, it provides an a priori lower bound $f(m(x_0, t_0)) = -u_t + H \approx -u_t + ||H(D_x u)||_{L^{\infty}} \ge -C$
- This amounts to a strictly positive lower bound $m(x_0, t_0) \ge f^{-1}(-M) > 0$, and thus a lower bound for the ellipticity of the problem, which is essential in the Bernstein estimate.

A Priori Gradient Estimate

- The second step is to bound the space gradient using Bernstein's method.
- The bound $||u_t||_{L^{\infty}} \leq ||H(D_x u)||_{L^{\infty}} + C$ obtained in the first step comes into play here as well, because, at points (x_0, t_0) where $H(D_x u)$ is near its maximum value, it provides an a priori lower bound $f(m(x_0, t_0)) = -u_t + H \approx -u_t + ||H(D_x u)||_{L^{\infty}} > -C$.
- This amounts to a strictly positive lower bound $m(x_0, t_0) \ge f^{-1}(-M) > 0$, and thus a lower bound for the ellipticity of the problem, which is essential in the Bernstein estimate.

A Priori Gradient Estimate

- The second step is to bound the space gradient using Bernstein's method.
- The bound $||u_t||_{L^{\infty}} \le ||H(D_x u)||_{L^{\infty}} + C$ obtained in the first step comes into play here as well, because, at points (x_0, t_0) where $H(D_x u)$ is near its maximum value, it provides an a priori lower bound $f(m(x_0, t_0)) = -u_t + H \approx -u_t + ||H(D_x u)||_{L^{\infty}} > -C$.
- This amounts to a strictly positive lower bound $m(x_0, t_0) \ge f^{-1}(-M) > 0$, and thus a lower bound for the ellipticity of the problem, which is essential in the Bernstein estimate.

General Setting and Main Results Sketch of Proofs A Priori Estimates Classical Solutions Weak Solutions

Contents

General Setting and Main Results

- Setting
- Main Results

2 Sketch of Proofs

- A Priori Estimates
- Classical Solutions
- Weak Solutions

Existence of Classical Solutions

- The classical a priori estimates for elliptic, quasilinear, oblique derivative problems yield a Hölder bound for *Du*.
- Smooth solutions are then obtained through the non-linear method of continuity. Namely, we consider, for $0 \le \theta \le 1$ the following homotopy of MFG systems:

$$\begin{cases} -u_t + H^{\theta} = f(m(x,t)) & \text{in } \mathbb{T}^d \times [0,T], \\ m_t - \operatorname{div}(mD_p H^{\theta}) = 0 & \text{in } \mathbb{T}^d \times [0,T], \\ m(0,x) = m_0^{\theta}(x), & x \in \mathbb{T}^d, \\ u(x,T) = g(m(x,T)) & x \in \mathbb{T}^d. \end{cases}$$
(MFG_{\theta})

where $H^{\theta}(p) = \theta H(p) + (1 - \theta)(\frac{1}{2}|p|^2 + f(1)),$ $m_0^{\theta}(x) = \theta m_0(x) + (1 - \theta).$ When $\theta = 0$, this has the trivial solution $(u, m) \equiv (g(1), 1).$

Existence of Classical Solutions

- The classical a priori estimates for elliptic, quasilinear, oblique derivative problems yield a Hölder bound for *Du*.
- Smooth solutions are then obtained through the non-linear method of continuity. Namely, we consider, for $0 \le \theta \le 1$ the following homotopy of MFG systems:

$$\begin{cases} -u_t + H^{\theta} = f(m(x,t)) & \text{in } \mathbb{T}^d \times [0,T], \\ m_t - \operatorname{div}(mD_p H^{\theta}) = 0 & \text{in } \mathbb{T}^d \times [0,T], \\ m(0,x) = m_0^{\theta}(x), & x \in \mathbb{T}^d, \\ u(x,T) = g(m(x,T)) & x \in \mathbb{T}^d. \end{cases}$$
(MFG_{\theta})

where $H^{\theta}(p) = \theta H(p) + (1 - \theta)(\frac{1}{2}|p|^2 + f(1))$, $m_0^{\theta}(x) = \theta m_0(x) + (1 - \theta)$. When $\theta = 0$, this has the trivial solution $(u, m) \equiv (g(1), 1)$.

Existence of Classical Solutions

• We fix $0 \le \alpha < 1$. We consider the set

 $S = \{\theta \in [0,1] : (\mathsf{MFG}_{\theta}) \text{ has a unique } C^{3,\alpha} \times C^{2,\alpha} \text{ solution} \}.$

We know that $0 \in S$, and S can be seen to be open by the Implicit Function Theorem and the classical theory of linear elliptic oblique problems. We also know that $0 \in S$.

• The a priori estimates obtained so far, together with a classical stability theorem for quasilinear oblique problems, can be shown to imply that S is closed as well. Thus S = [0, 1], which completes the proof.

Existence of Classical Solutions

• We fix $0 \le \alpha < 1$. We consider the set

 $S = \{ \theta \in [0,1] : (\mathsf{MFG}_{\theta}) \text{ has a unique } C^{3,\alpha} \times C^{2,\alpha} \text{ solution} \}.$

We know that $0 \in S$, and S can be seen to be open by the Implicit Function Theorem and the classical theory of linear elliptic oblique problems. We also know that $0 \in S$.

• The a priori estimates obtained so far, together with a classical stability theorem for quasilinear oblique problems, can be shown to imply that S is closed as well. Thus S = [0, 1], which completes the proof.

< ロ > < 同 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

General Setting and Main Results Sketch of Proofs A Priori Estimates Classical Solutions Weak Solutions

Contents

General Setting and Main Results

- Setting
- Main Results

2 Sketch of Proofs

- A Priori Estimates
- Classical Solutions
- Weak Solutions

Existence and Uniqueness of Weak Solutions

<

 Strategy: obtain the weak solution (u, m) as lim_{e→0+}(u^e, m^e), where (u^e, m^e) is the classical solution to the strictly elliptic MFG system:

$$\begin{cases} -u_t^{\epsilon} + H(D_x u^{\epsilon}) = f + \epsilon \log m^{\epsilon} & \text{in } \mathbb{T}^d \times [0, T], \\ m_t^{\epsilon} - \operatorname{div}(m^{\epsilon} D_p H) = 0 & \text{in } \mathbb{T}^d \times [0, T], \\ m^{\epsilon}(0, x) = m_0(x), \ u^{\epsilon}(x, T) = g(m^{\epsilon}(x, T)) & x \in \mathbb{T}^d, \end{cases}$$

 The key point is that some of the a priori estimates obtained previously are independent of ε. We lose the a priori lower bound on m^ε. However, the bounds on ||u||_{L∞} are still available, and it is possible to modify the Bernstein argument to obtain an upper bound on ||m||_{L∞} and ||u⁻_t||_{L∞}.

Existence and Uniqueness of Weak Solutions

<

 Strategy: obtain the weak solution (u, m) as lim_{e→0+}(u^e, m^e), where (u^e, m^e) is the classical solution to the strictly elliptic MFG system:

$$\begin{cases} -u_t^{\epsilon} + H(D_x u^{\epsilon}) = f + \epsilon \log m^{\epsilon} & \text{in } \mathbb{T}^d \times [0, T], \\ m_t^{\epsilon} - \operatorname{div}(m^{\epsilon} D_p H) = 0 & \text{in } \mathbb{T}^d \times [0, T], \\ m^{\epsilon}(0, x) = m_0(x), \ u^{\epsilon}(x, T) = g(m^{\epsilon}(x, T)) & x \in \mathbb{T}^d, \end{cases}$$

The key point is that some of the a priori estimates obtained previously are independent of *ε*. We lose the a priori lower bound on *m^ε*. However, the bounds on ||*u*||_{L[∞]} are still available, and it is possible to modify the Bernstein argument to obtain an upper bound on ||*m*||_{L[∞]} and ||*u⁻_t*||_{L[∞]}.

ヘロト (同) ヘヨト ヘヨト ショコ ろくつ

Existence and Uniqueness of Weak solutions

- One can then combine the a priori L[∞] estimates obtained here with some standard integral estimates that come from the Lasry-Lions monotonicity method.
- This yields enough compactness to guarantee that, up to a subsequence, (u^e, m^e) converges to the weak solution (u, m).
- The uniqueness proof follows similar lines, through a careful application of the standard Lasry-Lions argument.

< ロ > < 同 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Existence and Uniqueness of Weak solutions

- One can then combine the a priori L[∞] estimates obtained here with some standard integral estimates that come from the Lasry-Lions monotonicity method.
- This yields enough compactness to guarantee that, up to a subsequence, (u^ε, m^ε) converges to the weak solution (u, m).
- The uniqueness proof follows similar lines, through a careful application of the standard Lasry-Lions argument.

ヘロト (同) ヘヨト ヘヨト ショコ ろくつ

Existence and Uniqueness of Weak solutions

- One can then combine the a priori L[∞] estimates obtained here with some standard integral estimates that come from the Lasry-Lions monotonicity method.
- This yields enough compactness to guarantee that, up to a subsequence, (u^ε, m^ε) converges to the weak solution (u, m).
- The uniqueness proof follows similar lines, through a careful application of the standard Lasry-Lions argument.

References I

Munoz. S: Classical and weak solutions to local first order Mean Field Games. (2020) arXiv preprint arXiv:2006.07367.

- Nations, P.-L.: Cours au Collège de France. www.college-de-france.fr
- 💊 Cardaliaguet, P., Graber, P.J.: Mean field games systems of first order, ESAIM: Contr. Opt. and Calc. Var., 21 (2015), No. 3, 690-722.
- 📎 Cardaliaguet, P., Graber, P.J., Porretta, A., Tonon, D.: Second order mean field games with degenerate diffusion and local coupling. Nonlinear Differ. Equ. Appl. 22, 1287–1317 (2015).

Appendix

References II

- 📎 Cardaliaguet, P.: Weak solutions for first order mean field games with local coupling, Analysis and geometry in control theory and its applications, 111-158, Springer INdAM Ser., 11, Springer, Cham, (2015).
- 💊 Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2(1), 229-260 (2007)
- 📎 Lieberman, G.M. The nonlinear oblique derivative problem for quasilinear elliptic equations. Non-linear analysis, Theory, Methods & Applications (1984).

📎 Lieberman, G.M. Solvability of quasilinear elliptic equations with nonlinear boundary conditions. Trans. Amer. Math. Soc., 273 (1982), pp. 753-765.

▲母▶▲ヨ▶▲ヨ▶ ヨヨ のくゆ