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General Setting
We study well-posedness of the local first-order MFG system:
−ut + H(x ,Dx u) = f (x ,m(x , t)) in Td × (0,T ),
mt − div(mDpH(x ,Dx u)) = 0 in Td × (0,T ),

m(0, x) = m0(x), u(x ,T ) = g(x ,m(x ,T )) in Td ,

m0 > 0 is a probability density, H is a strictly convex
Hamiltonian of quadratic growth, f and g are strictly
increasing in m, f grows polynomially as m→∞.
This system has been studied in the case where
g(x ,m) = uT (x) is independent of m, in the variational
theory of weak solutions of P. Cardaliaguet and P.J. Graber.
When limm→0 f (·,m) = −∞, classical solutions are obtained.
In the case where limm→0 f (·,m) > −∞, I obtain weak
solutions analogous to those in the variational theory.
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Main Tools

Classical maximum principle techniques and the Bernstein
method for gradient estimates.

Regularity theory for quasilinear elliptic problems with
non-linear oblique derivative boundary conditions.

The reformulation of the first order MFG system as a
quasilinear elliptic problem, due to P.L. Lions.
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First Order MFG System as an Elliptic Problem

To make the presentation simpler, we will assume from now
on that H = H(p), f = f (m), g = g(m) are independent of x ,
−ut + H(Dx u) = f (m) in Td × (0,T ),
mt − div(mDH) = 0 in Td × (0,T ),

m(0, x) = m0(x), u(x ,T ) = g(m(·,T )) in Td ,

The strategy of proof follows the ideas of P. L. Lions from his
work on the planning problem: setting m = f −1(−ut + H) we
can eliminate m from the system and rewrite it as a first order
quasilinear elliptic problem:Qu = −Tr(A(Du)D2u) = 0 in Td × (0,T ),

Nu = B(x , t, u,Du) = 0 on Td × {t = 0,T}.
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Ellipticity Condition

The matrix A, given by

A =
(

DH ⊗ DH + mf ′(m)D2H −DHT

−DH 1

)
,

is strictly positive, except when mf ′(m) = 0. In particular, when
the players have a strong incentive to navigate areas of low density,
which precludes m from vanishing, we expect regularity. This
motivates the following definition:

Definition
The MFG system is said to be strictly elliptic if
limm→0+ f (m) = −∞. Otherwise, it is said to be degenerate
elliptic.
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Strictly Elliptic Problem

Our result for the strictly elliptic case is the following:

Theorem
If the MFG system is strictly elliptic, it has a unique classical
solution (u,m).

To state the analogous result for the degenerate elliptic case, we
must first define the notion of weak solutions.
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Degenerate Elliptic Problem

Definition
A pair (u,m) ∈ BV (QT )× L∞+ (QT ) is called a weak solution if:

(i) Dx u ∈ L2(QT ), u ∈ L∞(QT ), m ∈ C0([0,T ]; H−1(Td )),
m(·,T ) ∈ L∞(Td ).

(ii) −ut + H(·,Dx u) ≤ f (·,m) and mt − div(mDpH(·,Dx u)) = 0
hold in the distributional sense. Moreover,
u(·,T ) = g(·,m(·,T )) in the sense of traces, and m = m0 in
H−1(Td ).

(iii) The following identity holds:∫ ∫
QT

m(x , t)(H(x ,Dx u)− DpH(x ,Dx u) · Dx u − f (x ,m))dxdt

=
∫
Td

(m(x ,T )g(x ,m(x ,T ))−m0(x)u(x , 0))dx .
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Degenerate Elliptic Problem

The following is our main result for the degenerate elliptic problem:

Theorem
Assume that the MFG system is degenerate elliptic. Then:

If (u,m), (u′,m′) are two weak solutions, then m = m′ a.e. in
Td × [0,T ], and u = u′ a.e. in {m > 0}. Moreover,
m(·,T ) = m′(·,T ) and u(·,T ) = u′(·,T ) a.e. in Td .

There exists a weak solution (u,m). Furthermore (u,m) is
obtained as the “viscous limit” of classical solutions (uε,mε)
to strictly elliptic first order MFG systems.
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A Priori Estimates

We assume that the MFG system is strictly elliptic, and that
(u,m) is a classical solution.

The goal is to obtain a priori bounds for ||u||L∞ and ||Du||L∞ .
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A Priori Estimates for u and m(T )

Since u satisfies the elliptic equation Qu = 0, it satisfies the
maximum principle. The boundary condition for the elliptic
problem is given explicitly by

B(x , 0, u,Du) = −ut + H(Dx u)− f (m0(x)),

B(x ,T , u,Du) = u − g(f −1(−ut + H(Dx u))).

Thanks to the strict monotonicity of f , g , this is an oblique
boundary condition. In fact, the linearization of this condition
has the form

α(x , t) · Dw + β(x , t)w = γ(x , t),

where α · ν > 0, β(·, 0) ≡ 0 and β(·,T ) ≡ 1. In this sense, B
is of “Neumann type” in the lower half of the boundary and of
“Robin type” in the upper half.
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A Priori Estimates for u and m(T )

Since Robin boundary conditions provide L∞ estimates, there
would be nothing to prove if u achieved its maximum value at
t = T .

The proof thus consists of adequately choosing a function
ψ(t) such that v = u + ψ(t) still satisfies the maximum
principle, but forcefully achieves its maximum value at t = T .
This yields an estimate of the form

g(min m0)− C(T − t) ≤ u(x , t) ≤ g(max m0) + C(T − t).

As a Corollary, since u(x ,T ) = g(m(x ,T )), we also obtain
two-sided bounds for the terminal density:

min m0 ≤ m(x ,T ) ≤ max m0.
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A Priori Gradient Estimate

The L∞ bound for the space-time gradient is obtained in two
steps.

First, differentiating the equation Qu = 0 one sees that the
time derivative ut satisfies the maximum principle.

Thus, since −ut + H = f (m), and m(0),m(T ) are a priori
bounded above and below, it follows that
||ut ||L∞ ≤ ||H(Dx u)||L∞ + C , and in particular reduces the
problem to estimating only the space gradient.
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A Priori Gradient Estimate

The second step is to bound the space gradient using
Bernstein’s method.

The bound ||ut ||L∞ ≤ ||H(Dx u)||L∞ + C obtained in the first
step comes into play here as well, because, at points (x0, t0)
where H(Dx u) is near its maximum value, it provides an a
priori lower bound
f (m(x0, t0)) = −ut + H ≈ −ut + ||H(Dx u)||L∞ ≥ −C .

This amounts to a strictly positive lower bound
m(x0, t0) ≥ f −1(−M) > 0, and thus a lower bound for the
ellipticity of the problem, which is essential in the Bernstein
estimate.
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Bernstein’s method.

The bound ||ut ||L∞ ≤ ||H(Dx u)||L∞ + C obtained in the first
step comes into play here as well, because, at points (x0, t0)
where H(Dx u) is near its maximum value, it provides an a
priori lower bound
f (m(x0, t0)) = −ut + H ≈ −ut + ||H(Dx u)||L∞ ≥ −C .

This amounts to a strictly positive lower bound
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Existence of Classical Solutions

The classical a priori estimates for elliptic, quasilinear, oblique
derivative problems yield a Hölder bound for Du.

Smooth solutions are then obtained through the non-linear
method of continuity. Namely, we consider, for 0 ≤ θ ≤ 1 the
following homotopy of MFG systems:

−ut + Hθ = f (m(x , t)) in Td × [0,T ],
mt − div(mDpHθ) = 0 in Td × [0,T ],
m(0, x) = mθ

0(x), x ∈ Td ,

u(x ,T ) = g(m(x ,T )) x ∈ Td .

(MFGθ)

where Hθ(p) = θH(p) + (1− θ)(1
2 |p|

2 + f (1)),
mθ

0(x) = θm0(x) + (1− θ). When θ = 0, this has the trivial
solution (u,m) ≡ (g(1), 1).
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Existence of Classical Solutions

We fix 0 ≤ α < 1. We consider the set

S = {θ ∈ [0, 1] : (MFGθ) has a unique C3,α × C2,α solution}.

We know that 0 ∈ S, and S can be seen to be open by the
Implicit Function Theorem and the classical theory of linear
elliptic oblique problems. We also know that 0 ∈ S.

The a priori estimates obtained so far, together with a
classical stability theorem for quasilinear oblique problems, can
be shown to imply that S is closed as well. Thus S = [0, 1],
which completes the proof.
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Existence and Uniqueness of Weak Solutions

Strategy: obtain the weak solution (u,m) as limε→0+(uε,mε),
where (uε,mε) is the classical solution to the strictly elliptic
MFG system:
−uεt + H(Dx uε) = f + ε log mε in Td × [0,T ],
mε

t − div(mεDpH) = 0 in Td × [0,T ],
mε(0, x) = m0(x), uε(x ,T ) = g(mε(x ,T )) x ∈ Td ,

The key point is that some of the a priori estimates obtained
previously are independent of ε. We lose the a priori lower
bound on mε. However, the bounds on ||u||L∞ are still
available, and it is possible to modify the Bernstein argument
to obtain an upper bound on ||m||L∞ and ||u−t ||L∞ .
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Existence and Uniqueness of Weak solutions

One can then combine the a priori L∞ estimates obtained
here with some standard integral estimates that come from
the Lasry-Lions monotonicity method.

This yields enough compactness to guarantee that, up to a
subsequence, (uε,mε) converges to the weak solution (u,m).

The uniqueness proof follows similar lines, through a careful
application of the standard Lasry-Lions argument.
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