Convergence for finite state mean field control problems

Alekos Cecchin

Laboratoire de Mathématiques "J A Dieudonné" Université Côte d'Azur

Workshop on mean field games. 18-19 June 2020

Introduction

Mean field control problems as limits of N-agent optimization, when the number N of agents tends to infinity.

- We consider problems in continuous time where the position of each agent belongs to a finite state space $[d] = \{1, ..., d\}$.
- Agents are indistinguishable and control their transition rate from state to state in order to minimize a cost.
- Symmetric and mean field interaction: each agent knows its position and the number of other agents in any of the d states.
- Notion of optimality at prelimit level: Pareto equilibrium.

 Agents are cooperative and have a common cost to minimize.

Results for continuous state space

Mean field control problem analyzed in:

- ► [Carmona-Delarue '15]: open-loop controls, use stochastic maximum principle, get FBSDEs of McKean-Vlasov type;
- ▶ [Pham-Wei '18]: closed-loop controls, use dynamic programming, get HJB equation, viscosity solutions.

Mean field control problem

[Cardaliaguet-Graber-Porretta-Tonon '15]: potential mean field game, MFG system as necessary conditions for optimality.

Results for continuous state space

Mean field control problem analyzed in:

- ► [Carmona-Delarue '15]: open-loop controls, use stochastic maximum principle, get FBSDEs of McKean-Vlasov type;
- ▶ [Pham-Wei '18]: closed-loop controls, use dynamic programming, get HJB equation, viscosity solutions.

Mean field control problem

[Cardaliaguet-Graber-Porretta-Tonon '15]: potential mean field game, MFG system as necessary conditions for optimality.

Convergence of N-agent optimization studied in:

- ► [Lacker '17]: convergence of optimal controls via compactness arguments, no convergence rate;
- ► [Carmona-Delarue '15]: convergence rate, using strong convexity assumptions.

- 1. N-agent optimization
 - ightharpoonup Value function V^N

- 1. N-agent optimization
 - Value function V^N
- 2. Mean field control problem
 - ► Value function *V* is viscosity solution of HJB equation

- 1. N-agent optimization
 - Value function V^N
- 2. Mean field control problem
 - Value function V is viscosity solution of HJB equation

Mean field control problem

3. Convergence of V^N to V with convergece rate, under general assumption, using viscosity solution property

- 1. N-agent optimization
 - Value function V^N
- 2. Mean field control problem
 - Value function V is viscosity solution of HJB equation

- 3. Convergence of V^N to V with convergece rate, under general assumption, using viscosity solution property
- 4. Under convexity assumptions
 - Unique solution to MFCP
 - Regularity of V
 - Convergence of optimal trajectories, with convergence rate

Agents dynamics

N identical agents X^1, \ldots, X^N with $X_t^k \in [\![d]\!]$, Evolve in continuous time, finite horizon T. denote $\mathbf{x} = (x_1, \ldots, x_N), \mathbf{X}_t = (X_t^1, \ldots, X_t^N) \in [\![d]\!]^N$.

Player k chooses its transition rate $\beta_j^k(t, \mathbf{x}) \geq 0$ in Markovian feedback form:

$$\mathbb{P}\left[X_{t+h}^{k} = j|\boldsymbol{X}_{t} = \boldsymbol{x}\right] = \beta_{j}^{k}(t,\boldsymbol{x})h + o(h)$$

in order to minimize the cost

$$J^{k}(\beta^{1},\ldots,\beta^{N}) = \mathbb{E}\left[\int_{0}^{T} \ell(X_{t}^{k},\beta^{k}(t,\boldsymbol{X}_{t})) + f(X_{t}^{k},\mu_{t}^{N})dt + g(X_{T}^{k},\mu_{T}^{N})\right]$$

Given \mathbf{x} denote the empirical measure $m_{\mathbf{x}}^N = \frac{1}{N} \sum_{k=1}^N \delta_{x_k}$ $N \cdot m_{i,t}^N = \sum_k \mathbb{1}_{\{X_i^k = i\}}$ is the number of players in state i.

Optimization

Consider for simplicity

$$\ell^{i}(\beta^{k}(\mathbf{x})) = \ell(i, \beta^{k}(\mathbf{x})) = \frac{1}{2} \sum_{j \neq i} |\beta^{k}_{j}(t, i, \mathbf{x}^{-k})|^{2}$$

Mean field control problem

Agents are cooperative: common reward to minimize

$$J_N(\beta) = \frac{1}{N} \sum_{k=1}^N J^k(\beta)$$

strategy vector $\boldsymbol{\beta} = (\beta^1, \dots, \beta^N)$ not necessarily exchangeable.

Optimization

Consider for simplicity

$$\ell^{i}(\beta^{k}(\mathbf{x})) = \ell(i, \beta^{k}(\mathbf{x})) = \frac{1}{2} \sum_{j \neq i} |\beta^{k}_{j}(t, i, \mathbf{x}^{-k})|^{2}$$

Agents are cooperative: common reward to minimize

$$J_N(\beta) = \frac{1}{N} \sum_{k=1}^N J^k(\beta)$$

strategy vector $oldsymbol{eta}=(eta^1,\dots,eta^N)$ not necessarily exchangeable.

Single optimization problem for the process $\boldsymbol{X} = (X^1, \dots, X^N)$ defined by the generator

$$\mathcal{L}_t^N \phi(\mathbf{x}) = \sum_{k=1}^N \sum_{i \neq i} \beta_j^k (x_k, \mathbf{x}^{-k}) [\phi(j, \mathbf{x}^{-k}) - \phi(\mathbf{x})]$$

Value function

Value function $v^N(t, x)$

- ▶ HJB equation is ODE, indexed by $x \in [\![d]\!]^N$;
- Well-posedness of HJB;
- Existence and uniqueness of optimal startegy β .

Mean field control problem

Possible to consider also open-loop controls and non-convex ℓ : multiple optimizers, non exchangeable.

Value function

Value function $v^{N}(t,x)$

- ▶ HJB equation is ODE, indexed by $x \in [d]^N$;
- Well-posedness of HJB;
- ightharpoonup Existence and uniqueness of optimal startegy $oldsymbol{eta}$.
- Possible to consider also open-loop controls and non-convex ℓ : multiple optimizers, non exchangeable.

Mean-field assumption: There exists

$$lpha^{\it N}:[0,T] imes S_d^{\it N}
ightarrow [0,+\infty)^{d imes d}$$
 such that

$$\beta_j^k(t, x_k, \mathbf{x}^{-k}) = \alpha_{x_k, j}^N(t, \mu_{\mathbf{x}}^N)$$

$$S_d = \{ m \in \mathbb{R}^d : m_i \ge 0, \quad \sum_{i=1}^d m_i = 1 \}, \ S_d^N = S_d \cap \frac{1}{N} \mathbb{Z}^d$$

Value function

Value function $v^{N}(t,x)$

- ▶ HJB equation is ODE, indexed by $x \in [d]^N$;
- Well-posedness of HJB;
- ightharpoonup Existence and uniqueness of optimal startegy $oldsymbol{eta}$.

Mean field control problem

Possible to consider also open-loop controls and non-convex ℓ : multiple optimizers, non exchangeable.

Mean-field assumption: There exists

 $lpha^{\it N}: [{\tt 0},{\it T}] imes {\it S}_d^{\it N} \stackrel{\cdot}{
ightarrow} [{\tt 0},+\infty)^{d imes d}$ such that

$$\beta_j^k(t, x_k, \mathbf{x}^{-k}) = \alpha_{x_k, j}^N(t, \mu_{\mathbf{x}}^N)$$

$$S_d = \{ m \in \mathbb{R}^d : m_i \ge 0, \quad \sum_{i=1}^d m_i = 1 \}, \ S_d^N = S_d \cap \frac{1}{N} \mathbb{Z}^d$$

Assume $\alpha_{i,j} \in [0, M]$ for any N.

Mean field **N**-agent problem

The cost becomes

$$\begin{split} J_{N}(\alpha^{N}) &= \frac{1}{N} \sum_{k=1}^{N} \mathbb{E} \left[\sum_{i=1}^{d} \mathbb{1}_{\{X_{T}^{k} = i\}} g^{i}(\mu_{T}^{N}) \right. \\ &+ \int_{0}^{T} \sum_{i=1}^{d} \mathbb{1}_{\{X_{t}^{k} = i\}} \left(\ell(i, \alpha^{N}(t, i, \mu_{t}^{N})) + f(i, \mu_{t}^{N}) \right) dt \right] \\ &= \mathbb{E} \left[\int_{0}^{T} \sum_{i=1}^{d} \mu_{i,t}^{N} \left(\ell^{i}(\alpha^{N}(t, i, \mu_{t}^{N})) + f^{i}(\mu_{t}^{N}) \right) dt + \sum_{i=1}^{d} \mu_{i,T}^{N} g^{i}(\mu_{T}^{N}) \right] \end{split}$$

Mean field **N**-agent problem

The cost becomes

$$\begin{split} J_{N}(\alpha^{N}) &= \frac{1}{N} \sum_{k=1}^{N} \mathbb{E} \left[\sum_{i=1}^{d} \mathbb{1}_{\{X_{T}^{k} = i\}} g^{i}(\mu_{T}^{N}) \right. \\ &+ \int_{0}^{T} \sum_{i=1}^{d} \mathbb{1}_{\{X_{t}^{k} = i\}} \left(\ell(i, \alpha^{N}(t, i, \mu_{t}^{N})) + f(i, \mu_{t}^{N}) \right) dt \right] \\ &= \mathbb{E} \left[\int_{0}^{T} \sum_{i=1}^{d} \mu_{i,t}^{N} \left(\ell^{i}(\alpha^{N}(t, i, \mu_{t}^{N})) + f^{i}(\mu_{t}^{N}) \right) dt + \sum_{i=1}^{d} \mu_{i,T}^{N} g^{i}(\mu_{T}^{N}) \right] \end{split}$$

Optimal control problem for Markov chain $\mu_t^N \in S_d^N$

$$\mathbb{P}\left(\left.\mu_{t+h}^{N}=m+\frac{1}{N}(e_{j}-e_{i})\right|\mu_{t}^{N}=m\right)=\textcolor{red}{\mathsf{Nm}_{i}\alpha_{i,j}^{N}(t,m)}h+o(h)$$

HJB-N equation

$$\begin{split} &V^N(t,m) \quad \text{value function, } m \in S_d^N, \text{ HJB equation is ODE} \\ &-\frac{d}{dt}V^N + \sum_{i \in \llbracket d \rrbracket} m_i H(D^{N,i}V^N(t,m)) = \sum_{i \in \llbracket d \rrbracket} m_i f^i(m) \\ &V^N(T,m) = \sum_{i \in \llbracket d \rrbracket} m_i g^i(m), \\ &\text{where } [D^{N,i}V^N(t,m)]_j := N \big[V^N \big(m + \frac{1}{N}(e_j - e_i) \big) - V^N(m) \big], \\ &H^i(z) = \sum_{j \neq i} \{ -a^*(-z_j)z_j - \frac{1}{2}|a^*(-z_j)|^2 \}, \ a^*(r) = \begin{cases} 0 & r \leq 0 \\ r & 0 \leq r \leq M \\ M & r \geq M \end{cases} \end{split}$$

HJB-N equation

 $V^N(t,m)$ value function, $m \in S_d^N$, HJB equation is ODE

$$\begin{split} &-\frac{d}{dt}V^N + \sum_{i \in \llbracket d \rrbracket} m_i H(D^{N,i}V^N(t,m)) = \sum_{i \in \llbracket d \rrbracket} m_i f^i(m) \\ &V^N(T,m) = \sum_{i \in \llbracket d \rrbracket} m_i g^i(m), \end{split} \tag{HJB-N}$$

where
$$[D^{N,i}V^N(t,m)]_j := N[V^N(m+\frac{1}{N}(e_j-e_i))-V^N(m)],$$

 $H^i(z) = \sum_{j \neq i} \{-a^*(-z_j)z_j - \frac{1}{2}|a^*(-z_j)|^2\}, \ a^*(r) = \begin{cases} 0 & r \leq 0 \\ r & 0 \leq r \leq M \\ M & r > M \end{cases}$

HJB well-posed, unique optimal control

$$\alpha_{i,j}^{N}(t,m) = a^* \left(-N \left[V^{N} \left(m + \frac{1}{N}(e_j - e_i)\right) - V^{N}(m)\right]\right)$$

Result: $\min_{\beta} J_N(\beta) = \min_{\alpha_N} J_N(\alpha_N)$ and $v^N(t, x) = V^N(t, u^N_x)$

Mean field control problem

$$N \to \infty$$
: X^1, X^2, \ldots i.i.d., $\mu^N \to \mu = \mathcal{L}(X)$, $\lim_N V^N$??

One reference player X chooses its transition rate $\alpha = (\alpha_{i,j})_{i,j=1}^d$, $\alpha_{i,j}(t) \in [0,M]$ deterministic (in feedback form)

$$\mathbb{P}(X_{t+h}=j|X_t=i)=\alpha_{i,j}(t)h+o(h) \qquad j\neq i$$

in order to minimize, $\mathcal{L}(X_t) = \mathbb{P} \circ X_t^{-1} \in \mathcal{S}_d$,

$$J(\alpha) = \mathbb{E}\left[\int_0^T \frac{1}{2} \sum_{j \neq X_t} |\alpha_{X_t,j}(t)|^2 + f(X_t, \mathcal{L}(X_t)) dt + g(X_T, \mathcal{L}(X_T))\right]$$

Mean field control problem

$$N \to \infty$$
: X^1, X^2, \ldots i.i.d., $\mu^N \to \mu = \mathcal{L}(X)$, $\lim_N V^N$??

One reference player X chooses its transition rate $\alpha = (\alpha_{i,j})_{i,j=1}^d$, $\alpha_{i,j}(t) \in [0,M]$ deterministic (in feedback form)

$$\mathbb{P}(X_{t+h} = j | X_t = i) = \alpha_{i,j}(t)h + o(h) \qquad j \neq i$$

in order to minimize, $\mathcal{L}(X_t) = \mathbb{P} \circ X_t^{-1} \in \mathcal{S}_d$,

$$J(\alpha) = \mathbb{E}\left[\int_0^T \frac{1}{2} \sum_{j \neq X_t} |\alpha_{X_t,j}(t)|^2 + f(X_t, \mathcal{L}(X_t)) dt + g(X_T, \mathcal{L}(X_T))\right]$$

Rewrite in the form, $\mu_t^i = \mathbb{P}(X_t = i)$, $\mu_t = \mathcal{L}(X_t)$

$$\dot{\mu}_t^i = \sum_{j \neq i} \left(\mu_t^j \alpha_{j,i}(t) - \mu_t^i \alpha_{i,j}(t) \right)$$

$$J(\alpha) = \int_0^T \sum_{i=1}^d \mu_t^i \left(\frac{1}{2} \sum_{i \neq i} |\alpha_{i,j}(t)|^2 + f^i(\mu_t) \right) dt + \sum_{i=1}^d \mu_T^i g^i(\mu_T)$$

HJB equation

Single deterministic optimal control problem

HJB equation for value function V(t, m):

$$\begin{split} &-\partial_t V + \sum_{i \in \llbracket d \rrbracket} m_i H \Big(\left\{ (\partial_{m_j} - \partial_{m_i}) V \right\}_{j=1}^d \Big) = \sum_{i \in \llbracket d \rrbracket} m_i f^i(m) \\ &V(T,m) = \sum_{i \in \llbracket d \rrbracket} m_i g^i(m), \end{split} \tag{HJB}$$

Single deterministic optimal control problem

HJB equation for value function V(t, m):

$$-\partial_{t}V + \sum_{i \in \llbracket d \rrbracket} m_{i}H\left(\left\{(\partial_{m_{j}} - \partial_{m_{i}})V\right\}_{j=1}^{d}\right) = \sum_{i \in \llbracket d \rrbracket} m_{i}f^{i}(m)$$

$$V(T, m) = \sum_{i \in \llbracket d \rrbracket} m_{i}g^{i}(m),$$
(HJB)

- ▶ First order PDE in $[0, T] \times S_d$, no boundary conditions;
- $N[V^N(m+\tfrac{1}{N}(e_j-e_i))-V^N(m)]\to (\partial_{m_i}-\partial_{m_i})V(m);$
- no classical solutions;
- existence of optimal controls, non-uniqueness;
- ▶ Potential mean field game: $f^i(m) = F(m)$.

Viscosity solution

► Value function V is the unique viscosity solution of (HJB) in $[0,T)\times S_d$

- ▶ Test functions in $C^1([0, T) \times S_d)$.
- V is Lipschitz-continuous.

Viscosity solution

- Value function V is the unique viscosity solution of (HJB) in $[0,T)\times S_d$.
- ▶ Test functions in $C^1([0, T) \times S_d)$.
- V is Lipschitz-continuous.
- $\blacktriangleright \mu_t \in \operatorname{Int}(S_d) \text{ if } \mu_0 \in \operatorname{Int}(S_d).$
- ightharpoonup gives property on D_zH .

Theorem

Value function V is the unique viscosity solution of (HJB) in $[0, T) \times \operatorname{Int}(S_d)$.

Viscosity solution

▶ Value function V is the unique viscosity solution of (HJB) in $[0,T)\times S_d$

Mean field control problem

- ▶ Test functions in $C^1([0, T) \times S_d)$.
- V is Lipschitz-continuous.
- $\mu_t \in \operatorname{Int}(S_d)$ if $\mu_0 \in \operatorname{Int}(S_d)$.
- \triangleright gives property on D_zH .

Theorem

Value function V is the unique viscosity solution of (HJB) in $[0,T) \times \operatorname{Int}(S_d)$.

► Analogous results for continuous state space: [Pham-Wei '18], [Wu-Zhang '19].

Convergence

Previous results

Aim: $V^N o V$ with convergence rate.

Previous results

Aim: $V^N \rightarrow V$ with convergence rate.

Results for continuous state space:

► [Lacker '17], [Djete-Possamai-Tan '20] and [Fornasier-Lisini -Orrieri -Savaré '19]: convergence of optimal controls via compactness arguments (common noise, deterministic, ...);

Mean field control problem

► [Carmona-Delarue '15]: convergence rate, using convexity of f and g in (x, m).

Previous results

Aim: $V^N \rightarrow V$ with convergence rate.

Results for continuous state space:

► [Lacker '17], [Djete-Possamai-Tan '20] and [Fornasier-Lisini -Orrieri -Savaré '19]: convergence of optimal controls via compactness arguments (common noise, deterministic, ...);

Mean field control problem

► [Carmona-Delarue '15]: convergence rate, using convexity of f and g in (x, m).

Prove convergence using viscosity solution characterization of V:

- ► (HJB-N) is finite difference scheme for (HJB).
- results on approximation scheme for viscosity solutions in
 - ► [Capuzzo Dolcetta-Ishii '84]: discounted control problem;
 - ► [Souganidis '85]: general HJ equation.

Main convergence result

Theorem

Assume
$$m \to \sum_{i \in \llbracket d \rrbracket} m_i f^i(m)$$
 and $m \to \sum_{i \in \llbracket d \rrbracket} m_i g^i(m)$ Lipschitz.

$$\sup_{t \in [0,T], m \in S_d^N} |V^N(t,m) - V(t,m)| \leq \frac{C}{\sqrt{N}}$$

▶ Use Lipschitz-continuity of V and V^N , uniformly in N.

Main convergence result

Theorem

Assume $m \to \sum_{i \in \llbracket d \rrbracket} m_i f^i(m)$ and $m \to \sum_{i \in \llbracket d \rrbracket} m_i g^i(m)$ Lipschitz.

$$\sup_{t \in [0,T], m \in S_d^N} |V^N(t,m) - V(t,m)| \leq \frac{C}{\sqrt{N}}$$

- ▶ Use Lipschitz-continuity of V and V^N , uniformly in N.
- ▶ Valid also for cost $c(t, x, \alpha, m)$ not convex in α and transition rate $Q_{i,j}(t, \alpha, \mu)$: in this case, non-uniqueness of N-optimal control and non-existence of limiting optimal control.

Approximation

Corollary

Let α be an optimal control for mean field control problem. Then α (not depending on m) is quasi-optimal for N-agent optimization:

$$J^{N}(\alpha) \le \inf_{\alpha^{N}} J^{N}(\alpha^{N}) + \frac{C}{\sqrt{N}}$$

Approximation

Corollary

Let α be an optimal control for mean field control problem. Then α (not depending on m) is quasi-optimal for N-agent optimization:

$$J^{N}(\alpha) \leq \inf_{\alpha^{N}} J^{N}(\alpha^{N}) + \frac{C}{\sqrt{N}}$$

Apply standard arguments in propagation of chaos to estimate

$$|J^{N}(\alpha) - J(\alpha)| \leq \frac{C}{\sqrt{N}}, \qquad \sup_{t \in [0,T]} \mathbb{E}|\mu_{t}^{N}(\alpha) - \mu(\alpha)| \leq \frac{C}{\sqrt{N}}$$

Assume initial conditions X_0^k , k = 1, ..., N, i.i.d.

Approximation

Corollary

Let α be an optimal control for mean field control problem. Then α (not depending on m) is quasi-optimal for N-agent optimization:

$$J^{N}(\alpha) \leq \inf_{\alpha^{N}} J^{N}(\alpha^{N}) + \frac{C}{\sqrt{N}}$$

Apply standard arguments in propagation of chaos to estimate

$$|J^{N}(\alpha) - J(\alpha)| \leq \frac{C}{\sqrt{N}}, \qquad \sup_{t \in [0,T]} \mathbb{E}|\mu_{t}^{N}(\alpha) - \mu(\alpha)| \leq \frac{C}{\sqrt{N}}$$

Assume initial conditions X_0^k , k = 1, ..., N, i.i.d.

Results for continuous state space:

- ► [Lacker '17], [Djete-Possamai-Tan '20]: no convergence rate
- ightharpoonup [Carmona-Delarue '15]: rate, requires convexity of f and g.

Convexity

- Uniqueness of optimal control of MFCP?
- Existence of classical solution to (HJB)?
- Convergence of optimal control and optimal trajectories?

Convexity

- ► Uniqueness of optimal control of MFCP?
- Existence of classical solution to (HJB)?
- Convergence of optimal control and optimal trajectories?

Assume that the functions

$$S_d \ni m \to \sum_{i \in \llbracket d \rrbracket} m_i f^i(m), \qquad S_d \ni m \to \sum_{i \in \llbracket d \rrbracket} m_i g^i(m).$$

are convex and in $\mathcal{C}^{1,1}(\mathcal{S}_d)$.

Classical solution

Theorem

Assume convexity. Then the value function $V \in C^{1,1}([0,T] \times S_d)$ and is a classical solution to (HJB). Unique optimal control, in feedback form,

$$\alpha_{i,j}(t,m) = a^* \Big((\partial_{m_i} - \partial_{m_j}) V(t,m) \Big)$$

Classical solution

Theorem

Assume convexity. Then the value function $V \in \mathcal{C}^{1,1}([0,T] \times S_d)$ and is a classical solution to (HJB).

$$\alpha_{i,j}(t,m) = a^* \Big((\partial_{m_i} - \partial_{m_j}) V(t,m) \Big)$$

- Prove that V is semiconcave and semiconvex.
- Equivalent problem, set $w_{i,j} = \mu^i \alpha_{i,j}$,

Unique optimal control, in feedback form,

$$\dot{\mu}_t^i = \sum_{j \neq i} (w_{j,i}(t) - w_{i,j}(t))$$

$$J(\alpha) = \int_0^T \sum_{i=1}^d \left(\frac{1}{\mu_t^i} \sum_{j \neq i} \frac{|w_{i,j}(t)|^2}{2} + \mu_t^i f^i(\mu_t) \right) dt + \sum_{i=1}^d \mu_T^i g^i(\mu_T)$$

Convergence

Convergence of optimal (μ^N, α^N) to (μ, α) ?

Rely on regularity of V. Approximate

$$N\Big[V\Big(m+\frac{1}{N}(e_j-e_i)\Big)-V(m)\Big]=(\partial_{m_j}-\partial_{m_i})V(t,m)+\mathcal{O}\Big(\frac{1}{N}\Big)$$

Convergence

Convergence of optimal (μ^N, α^N) to (μ, α) ?

Rely on regularity of V. Approximate

$$N\left[V\left(m+\frac{1}{N}(e_j-e_i)\right)-V(m)\right]=(\partial_{m_j}-\partial_{m_i})V(t,m)+\mathcal{O}\left(\frac{1}{N}\right)$$

Analogous convergence results for MFG:

- ► [Cardaliaguet-Delarue-Lasry-Lions '19]: continuous state space.
- ▶ [Bayraktar-Cohen '18] and [Cecchin-Pelino]: finite state space.

Convergence of optimal trajectories

 μ^N empirical measure using optimal N-control $\alpha^N(t,m)$ given by V^N ρ^N empirical measure using limiting control $\alpha(t,m)$, given by V μ unique optimal trajectory of MFCP, optimal control $\alpha(t,m)$

Theorem

Assume $V \in \mathcal{C}^{1,1}([0,T] \times S_d)$.

$$\mathbb{E}\bigg[\sup_{t\in[0,T]}|\mu_t^N-\rho_t^N|\bigg]\leq \frac{C}{N^{1/4}},$$

$$\mathbb{E}\bigg[\sup_{t\in[0,T]}|\mu_t^N-\mu_t|\bigg]\leq \frac{C}{N^{1/9}}.$$

Conclusion and perspectives

We obtained

1. Convergence of V^N to V with convergence rate, via viscosity solutions, under general assumptions.

Mean field control problem

2. Convergence of optimal trajectories μ^N to μ if V is smooth, e.g. under convexity assumptions.

For future work:

Analogous results for continuous state space.

Conclusion and perspectives

We obtained

1. Convergence of V^N to V with convergence rate, via viscosity solutions, under general assumptions.

Mean field control problem

2. Convergence of optimal trajectories μ^N to μ if V is smooth, e.g. under convexity assumptions.

For future work:

Analogous results for continuous state space.

THANK YOU FOR YOUR ATTENTION