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The Schrödinger problem

In his seminal article "Sur la théorie relativiste de l’électron et
l’interprétation de la mécanique quantique" in the Ann. Inst. Henri
Poincaré ’32 Schrödinger wrote

Imaginez que vous observez un système de particules en diffusion, qui
soient en équilibre thermodynamique. Admettons qu’à un instant

donné 0 vous les ayez trouvées en répartition à peu près uniforme et
qu’à T vous ayez trouvé un écart spontané et considérable par

rapport à cette uniformité. On vous demande de quelle manière cet
écart s’est produit. Quelle en est la manière la plus probable?

In plain words, the Schrödinger problem (SP) is the problem of finding
the most likely evolution of a cloud of independent Brownian particles
conditionally on the observation of their initial and final configuration,
i.e. an entropy minimization problem with marginal constraints
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The Schrödinger problem

In his seminal article "Sur la théorie relativiste de l’électron et
l’interprétation de la mécanique quantique" in the Ann. Inst. Henri
Poincaré ’32 Schrödinger wrote

Imaginez que vous observez un système de particules en diffusion, qui
soient en équilibre thermodynamique. Admettons qu’à un instant

donné 0 vous les ayez trouvées en répartition à peu près uniforme et
qu’à T vous ayez trouvé un écart spontané et considérable par

rapport à cette uniformité. On vous demande de quelle manière cet
écart s’est produit. Quelle en est la manière la plus probable?

SP is the object of a very dynamic research activity:
It has powerful connections with the theory of Large Deviations, PDEs,
Optimal transport, statistical machine learning and numerical algorithms
for PDE related problems
KEY IDEA: SP may be viewed as a (entropic) regularization of the Optimal
Transport problem
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The Mean Field Schrödinger problem
The Mean Field Schrödinger Problem (MFSP) is obtained by replacing in
the previous description the independent particles by interacting ones

Interacting Particle System

(Ω,Ft ,FT ) where Ω = C ([0,T ];Rd) with the uniform topology and
{Ft}t∈[0,T ] the coordinate filtration

Interaction Potential: a symmetric C2 function W : Rd → R s.t.
supz,v∈Rd ,|v |=1 v · ∇2W (z) · v < +∞

For N large, we consider Brownian particles (X i,N
t )t∈[0,T ],1≤i≤N{

dX i,N
t = − 1

N

∑N
k=1∇W (X i,N

t − X k,N
t )dt + dB i

t

X i,N
0 ∼ µin ∈ P2(Rd)

Driving Question: If at time T we observe that the sequence of empirical
path measures

1
N

N∑
i=1

δX i,N
T
≈ µfin ∈ P2(Rd),

what have done the particles in between?
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The Mean Field Schrödinger problem
The Mean Field Schrödinger Problem (MFSP) is obtained by replacing in
the previous description the independent particles by interacting ones

Interacting Particle System

(Ω,Ft ,FT ) where Ω = C ([0,T ];Rd) with the uniform topology and
{Ft}t∈[0,T ] the coordinate filtration

Interaction Potential: a symmetric C2 function W : Rd → R s.t.
supz,v∈Rd ,|v |=1 v · ∇2W (z) · v < +∞

For N large, we consider Brownian particles (X i,N
t )t∈[0,T ],1≤i≤N{

dX i,N
t = − 1

N

∑N
k=1∇W (X i,N

t − X k,N
t )dt + dB i

t

X i,N
0 ∼ µin ∈ P2(Rd)

Under suitable assumptions, the problem is equivalent to

"minimizing the LDP rate function among all path measures whose
marginal at time 0 is µin and whose marginal at time T is µfin"
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Denote by

Π(µin, µfin) :=
{
P ∈ P1(C ([0,T ];Rd)) : P0 = µin,PT = µfin

}
and for P,Q ∈ P1(C ([0,T ];Rd)), let H(P|Q) denote the relative
entropy of P with respect to Q,

H(P|Q) =

{
EP

[
log
(
dP
dQ

)]
P � Q

+∞ otherwise

dP
dQ denotes the Radon-Nikodym density of P against Q



Introduction Connections with MFG Ergodic problem The infinite dimensional HJ

The mean field Schrödinger problem can be stated as

CT (µin, µfin) := inf
{
H(P|Γ(P)) : P ∈ Π(µin, µfin)

}
where Γ(P) is the law of the unique solution to{

dXt = −∇W ∗ Pt(Xt)dt + dBt

X0 ∼ µin

Its optimal value is called mean field entropic transportation cost
and its optimizers are called mean field Schrödinger bridges (MFSB)

Theorem (Backhoff, Conforti, Gentil, Léonard ’19)
Under mild assumptions MFSB exist

Uniqueness is still an open question
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Equivalent Formulations (BCGL ’19)
Benamou-Brenier Formulation:

It relates to the well known fluid dynamics representation of the Monge
Kantorovich distance due to Benamou and Brenier that has been recently
extended to the standard entropic transportation cost

inf
1
2

∫ T

0

∫
Rd

∣∣∣∣wt(z) +
1
2
∇ logµt(z) +∇W ∗ µt(z)

∣∣∣∣2 µt(dz)dt

over all absolutely continuous curves (µt)t∈[0,T ] ⊂ P2(Rd) s.t.

(t, z) 7→ ∇ logµt(z) ∈ L2 (dµtdt) (t, z) 7→ ∇W ∗ µt(z) ∈ L2 (dµtdt)

and that are weak solutions of the following continuity equation

∂tµt +∇ · (wtµt) = 0 µ0 = µin, µT = µfin

This formulation allows to interpret (MFSP) as a control problem in the
Riemannian manifold of optimal transport
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Connections with MFG
Theorem ( BCGL ’19)
Let P be an optimizer for (MFSP). Then there exists a weak gradient
field Ψ s.t.

dXt = (Ψt(Xt)−∇W ∗ Pt(Xt))dt + dBt

Now, set µt = (Xt)#P for all t ∈ [0,T ] and let µ and Ψ be C1,2, µ > 0
Then there exists ψ : [0,T ]× Rd → R such that

Ψt(x) = ∇ψt(x) ∀t ∈ [0,T ], x ∈ Rd

and (ψ(·), µ(·)) is a classical solution of the following mean field planning
PDE system


∂tψt(x) + 1

2∆ψt(x) + 1
2 |∇ψt(x)|2=

∫
Rd∇W (x − x̃)·(∇ψt(x)−∇ψt(x̃))µt(dx̃)

∂tµt(x)− 1
2∆µt(x) +∇ · ((−∇W ∗ µt(x) +∇ψt(x))µt(x)) = 0

µ0(x) = µin(x), µT (x) = µfin(x)

This type of PDE system has a similar structure to the planning MFG
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Connections with MFG

Benamou, Carlier, Di Marino, Nenna ’19 proposed an entropy
minimization viewpoint on variational MFG of this type −∂tψt − 1

2∆ψt + 1
2 |∇ψt |2 = f [µt ] in (0,T )× Rd

∂tµt − 1
2∆µt −∇ · (µt∇ψt) = 0 in (0,T )× Rd

µ|t=0 = µ0, ψT = g [µT ]

and developed a suitable efficient algorithm (using the Sinkhorn
algorithm) based on this entropic interpretation

The starting point of their analysis is the equivalence between the classical
Schrödinger bridge problem and the optimal control (with kinetic energy
as cost) of the Fokker-Planck equation
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Connections with MFG

Benamou, Carlier, Di Marino, Nenna ’19 proposed an entropy
minimization viewpoint on variational MFG of this type −∂tψt − 1

2∆ψt + 1
2 |∇ψt |2 = f [µt ] in (0,T )× Rd

∂tµt − 1
2∆µt −∇ · (µt∇ψt) = 0 in (0,T )× Rd

µ|t=0 = µ0, ψT = g [µT ]

and developed a suitable efficient algorithm (using the Sinkhorn
algorithm) based on this entropic interpretation

IDEA: we control the state variable µ through a vector field v : (0,T ) ×
Rd → Rd in order to minimize

1
2

∫ T

0

∫
Rd

|vt |2µt(dx)dt +

∫ T

0
F (µt)dt + G (µT )

when µ solves ∂tµ+∇ · (µv) = 0 with µ|t=0 = µ0
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The ergodic problem
Assume now that W is convex, then the particles system is rapidly
mixing and there is a well defined equilibrium µ∞

To the coupled HJB-FP systems we can associate the ergodic problem
with unknowns (λ, ψ, µ)

 λ+ 1
2∆ψ(x) + 1

2 |∇ψ(x)|2 =
∫
Rd ∇W (x − x̃) · (∇ψ(x)−∇ψ(x̃))µ(dx̃)

− 1
2∆µ(x) +∇ · ((−∇W ∗ µ(x) +∇ψ(x))µ(x)) = 0

The equilibrium solution (0, 0, µ∞) is a solution to the above equation

These systems have a broad range of applications:
in the theory of MFGs they describe Nash equilibria of a large
number of players;
when minimizing the rate function associated with a Large
Deviations principle or the objective function of a McKean Vlasov
control problem they express necessary optimality conditions
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Free energy functional

The free energy (or entropy) functional is defined for µ ∈ P2(Rd) as

µ 7→ F̃(µ) :=

{ ∫
logµ(x)µ(dx) +

∫ ∫
W (x − y)µ(dy)µ(dx) µ� L

+∞ otherwise

F̃ is a Lyapunov function for the mean-field SDE

Its unique minimizer is the stationary solution µ∞

BCGL (’19) give an answer to the following questions:

For T large, how far is the time T/2 marginal, PT/2, of a MFSB
from µ∞?
For t � T , how far is the time t marginal, Pt , of a MFSB from the
solution PMFSDE of the mean-field SDE?

PMFSDE is the law of the unique solution to McKean-Vlasov Dynamics
SDE {

dXt = −∇W ∗ µt(Xt)dt + dBt

X0 ∼ µin, µt = Law(Xt) ∀t ∈ [0,T ]
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The non linear Fisher information functional

The non linear Fisher information functional IF̃ is defined for µ ∈ P2(Rd)

IF̃ (µ) =

{ ∫
Rd |∇ logµ+ 2∇W ∗ µ(x)|2 µ(dx), if ∇ logµ ∈ L2

µ

+∞ otherwise

where by ∇ logµ ∈ L2
µ we mean µ� L (the Lebesgue measure) and

logµ is an absolutely continuous function in Rd whose derivative is in L2
µ

The non linear Fisher information functional is formally the expected
value of the observed information

The non linear Fisher information functional can be seen to be equal to
the gradient of the free energy F̃ along the marginal flow of the McKean
Vlasov dynamics

The non linear Fisher information functional is used to state an HWI
inequality, a powerful functional inequality relating the relative entropy
(H) to the quadratic transport cost (W) and the Fisher information (I)
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An HJB equation on the space of probability measures

Mimicking the well-known duality between the Monge-Kantorovich
problem and the Hamilton-Jacobi equation, the MFSP can be formally
seen as in duality with the solution of an infinite dimensional
Hamilton-Jacobi-Bellmann (HJB) equation in P2(Rd)

Let us modify the problem adding a penalization at the final time and
removing the corresponding marginal constraint

For all t ∈ [0,T ] and µ ∈ P2(Rd) we define

u(t, µ) := inf{H(P|Γ(P)) + G(PT ) : P ∈ P1(Ω),Pt = µ}
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As we have seen for the classical MFSP, the previous problem can be
rewritten equivalently as

u(t, µ) := inf
1
2

∫ T

t

∫
Rd

∣∣∣∣ws(z) +
1
2
∇ logµs(z) +∇W ∗ µs(z)

∣∣∣∣2µs(dz)ds + G(µT )

over all absolutely continuous curves (µs)s∈[t,T ] ⊂ P2(Rd) s.t. that are
weak solutions of the following continuity equation

∂sµs +∇ · (wµs) = 0 µt = µ,

Then the optimal value u(t, µ) is a candidate solution for an HJB
equation on the space of probability measures
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Since the articles of Crandall and Lions ’84 on infinite dimensional HJB
equations, the last years have witnessed a massive scientific production
around the study of these equations
Several different strategies:

Lifting of functions: we associate to any v : P2(Rd)→ R a function
V defined on L2(Ω,F0,P;Rd) by setting for any random variable
X ∈ L2(Ω,F0,P;Rd)

V (X ) = v(µ)

where µ ∈ P2(R2) is such that µ = Law(X )
For derivatives we use Lions derivative exploiting the Hilbert space
properties of L2(Ω,F0,P;Rd)

use the intrinsic notion of derivative on Wasserstein spaces that
comes form optimal transport theory
when the infinite dimensional HJB equations is associated to
controlled gradient flows of a free energy, as in our case, a powerful
approach exploiting the geometry of the underlying control problem
and the HWI inequality is the one developed by Feng and
collaborators
. . .
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The HJB equation on the space of probability measures

Formally the HJB equation looks like{
−∂tu(t, µ) + Hu(t, µ) = 0,
u(T , µ) = G(µT )

where the Hamiltonian is written as an operator over functions on P2(Rd)

Hf (µ) =
1
2

∫
Rd

(
gradW2 f (µ) · gradW2F̃(µ)

)
µ(dx)+

1
2

∫
Rd

|gradW2 f (µ)|2µ(dx)

Note that
HF̃(µ) = IF̃ (µ)

indeed IF̃ (µ) =
∫
Rd|gradW2F̃(µ)|2µ(dx)
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IDEA: the problem can be represented as an infinite dimensional gradient
flow for the free energy functional F̃

u(t, µ) := inf
1
2

∫ T

t

∫
Rd

|vs(z)|2µs(dz)ds + G(µT )

over all absolutely continuous curves (µs)s∈[t,T ] ⊂ P2(Rd) s.t. that are
weak solutions of the following continuity equation

µ̇s = −1
2
gradW2F̃(µs) + v(s) µt = µ

for a control v(s) ∈ TµsP2(Rd)

A non-trivial obstruction to the adaptation of Feng’s technique to this
setup is that the free energy F̃ does not have compact level sets

IDEA: use of Tataru’s distance and Ekeland’s optimization principle
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Some properties of the gradient flow:
In the following, let us call

d := W2, E :=
1
2
F̃ and IE := ‖gradW2E‖2 =

1
4
IF̃

For simplicity, let us consider the stationary HJ equation

u − λHu = h

with Hu = 1
2‖gradW2u‖2 − 〈gradW2E , gradW2u〉

The metric d is such that ∀ρ, γ ∈ P2(Rd)

‖1
2
gradW2d2(ρ, γ)‖2 = d2(ρ, γ)

Let S(t) be the semigroup generated by the gradient flow

µ̇t = −1
2
gradW2F̃(µt)
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Some properties of the gradient flow:

Let µt be the gradient flow, then for any 0 ≤ t ≤ T

E(µt)− E(µ(0)) ≤ −
∫ t

0
IE(µ(r))dr

Moreover, there exists κ ∈ R s.t. for any γ ∈ P2(Rd) and any
t ∈ [0,T ]

1
2

d
dt
(
d2(µ(t), γ)

)
≤ E(γ)− E(µ(t))− κ

2
d2(µ(t), γ)

HWI inequality: Let ∀µ, γ ∈ P2(Rd)
If IE(µ) <∞, then

〈−gradW2E(µ),
1
2
gradW2d2(µ, γ)〉 ≤ E(γ)− E(µ)− κ

2
d2(µ, γ)
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Strategy for the comparison principle

We recall the stationary HJ equation

u − λHu = h

with Hu = 1
2‖gradW2u‖2 − 〈gradW2E , gradW2u〉

Notation: we say that (f , g) ∈ H if f belongs to the domain of H and
g ∈ Hf

Definition: We say that u : P2(Rd)→ Rd is a (viscosity) subsolution if u
is bounded, upper semi-continuous and if for all (f , g) ∈ H there exists a
ρ0 ∈ P2(Rd) such that

u(ρ0)− f (ρ0) = sup
ρ

u(ρ)− f (ρ),

u(ρ0)− λg(ρ0)− h(ρ0) ≤ 0
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Strategy for the comparison principle

We recall the stationary HJ equation

u − λHu = h

with Hu = 1
2‖gradW2u‖2 − 〈gradW2E , gradW2u〉

Notation: we say that (f , g) ∈ H if f belongs to the domain of H and
g ∈ Hf

Definition: We say that u : P2(Rd) → Rd is a (viscosity) supersolution if
u is bounded, lower semi-continuous and if for all (f , g) ∈ H there exists
a ρ0 ∈ P2(Rd) such that

u(ρ0)− f (ρ0) = inf
ρ
u(ρ)− f (ρ),

u(ρ0)− λg(ρ0)− h(ρ0) ≥ 0
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The comparison principle

Let w be a weak sub-solution to u − λHu = h1 and let v be a weak
super-solution to u − λHu = h2. Then we have

sup
µ

w(µ)− v(µ) ≤ sup
µ

h1(µ)− h2(µ)

REM: In general, the comparison principle proof relies upon test functions
which behave like distance functions

For instance, in the Rd case, these test functions take the form 1
2 |x − y |

NOTE: In the infinite dimensional case, functions like d2 are not
necessarily included in the domain of the Hamiltonian
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IDEA: if ϕ(µ) = 1
2ad

2(µ, γ) for some a > 0 and γ ∈ P2(Rd), then
formally

Hϕ(µ) = −a〈gradW2E(µ),
1
2
gradW2d2(µ, γ)〉+

1
2
a2d2(µ, γ)

Applying HWI we get a proper upper bound

Hϕ(µ) ≤ a [E(γ)− E(µ)]− a
κ

2
d2(ρ, γ) +

1
2
a2d2(µ, γ)

This leads to the definition of a new Hamiltonian H†:

D(H†) :=

{
ϕ(µ) =

1
2
ad2(µ, γ)

∣∣∣∣∀ a > 0,∀ γ : E(γ) <∞
}

and for ϕ(µ) = 1
2ad

2(µ, γ) we set

H†ϕ(µ) = a [E(γ)− E(µ)]− a
κ

2
d2(ρ, γ) +

1
2
a2d2(µ, γ) ≥ Hϕ(µ)
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NOTE: for this new Hamiltonian optimizers did not exist in general

Ekeland’s perturbed optimization principle claims that, if we add a small
perturbation to the test function, we can always attain the extrema

New test functions ⇒ new Hamiltonian H̃†

IDEA: use of Tataru distance as a penalization function defined as

dT (µ, ν) := inf
t≥0

{
t + eκ̂td(µ,S(t)ν)

}
where κ̂ = 0 ∧ κ
i.e. we will work with test functions

f0(ρ) =
1
2
ad2(ρ, γ) + bdT (ρ, π) + c

for a, b > 0, c ∈ R, and γ, π such that E(γ) + E(π) <∞ and modify the
Hamiltonian in this way

H̃†f0(ρ) = a [E(γ)− E(ρ)]−aκ
2
d2(ρ, γ)+b+

1
2
a2d2(ρ, γ)+abd(ρ, γ)+

1
2
b2
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Strategy for the comparison principle

The comparison principle holds for H̃† and H̃‡ so that for them we know
there is uniqueness of viscosity solutions, however a-priori it is unclear
how to show that such solutions exist

It is much easier to construct viscosity solutions for approximations of the
operators H† and H‡ that are in terms of smooth test functions
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Perspectives

Our Aims are:
well-posedness of the Hamilton-Jacobi equation
Existence of strong solutions for HJB (bounds on the derivatives and
regularity results)
Long time behavior
Link with FBSDE and MFSP
study a richer class of equations, possibly including a stochastic
component modeling a source of common noise
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