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Overview of the talk

I Object: deterministic mean field game examined within the
probabilistic approach.

I Probabilistic approach consider the MFG as a symmetric Nash
equilibrium in the infinite player differential game.

I Aim: study the dependence of the solution of MFG on the
initial distribution of players.



Related works

I Probabilistic approach:
[Carmona, Delarue, 2015], [Carmona, Delarue, 2018], [Lacker,
2015], [A., 2015].

I Dependence of the solution of MFG on initial distribution of
players was considered by means of the master equation:
[Cardaliaguet, Delarue, Lasry, Lions, 2015/2019], [Carmona,
Delarue, 2018]. The key ingridient of the master equation is
the function ϕ(t0, x0,m0).



State spaces and outcomes

state of the system expected outcome
control problem vector in Rd real number
N player game with
weakly coupled dy-
namics

vector in (Rd)N vector in RN

infinite player game vector in (Rd)c vector in Rc

mean field game probability on
Rd

continuous func-
tion from Rd

to R



Deterministic mean field game

Find a symmetric Nash equilibrium in the infinite-player game when
I the dynamics of each player is given by

d

dt
x(t) = f (t, x(t),m(t), u(t));

I the reward of each player is equal to

σ(x(T ),m(T )) +

∫ T

t0

g(t, x(t),m(t), u(t))dt;

I the initial distribution of players is m0.

Here
I m(t) is a distribution of players at time t; m(t) is a probability

on the phase space;
I u(t) ∈ U is a control; U is a control space.



Phase space

Td , Rd/Zd .

I Elements of Td are the sets x = {x ′ + n : n ∈ Zd}.
I Distance on Td : if x , y ∈ Td , then

‖x − y‖ , min{‖x ′ − y ′‖ : x ′ ∈ x , y ′ ∈ y}.



Space of trajectories

I Cs,r , C ([s, r ],Td × R).
I If t ∈ [s, r ], w(·) = (x(·), z(·)) ∈ Cs,r , then

et(w(·)) , x(t),

êt(w(t)) , w(t).



Assumptions

I U is compact is a metric space;
I f , g , σ are continuous;
I f and g are Lipschitz continuous w.r.t. to x and m;
I σ is Lipschitz continuous w.r.t. to x .



Mean field game

Find a symmetric Nash equilibrium in the infinite-player game when
I the dynamics of each player is given by

d

dt
x(t) = f (t, x(t),m(t), u(t));

I the reward of each player is equal to

σ(x(T ),m(T )) +

∫ T

t0

g(t, x(t),m(t), u(t))dt;

I the initial distribution of player is m0.

Here m(t) is a distribution of players at time t. For each t, m(t) is
a probability on Td .



Relaxed problem

Each player tries to maximize

σ(x(T ),m(T )) + z(T )− z(t0)

subject to
(ẋ(t), ż(t)) ∈ F (t, x(t),m(t)),

where

F (t, x ,m) , co
{

(f (t, x ,m, u), g(t, x ,m, u)) : u ∈ U
}



Distribution of trajectories

Let χ ∈ P1(Ct0,T ) be a distribution of curves in the extended phase
space.
I m(t) , et]χ ∈ P1(Td) is a distribution on the phase space;
I ν(t) , êt]χ ∈ P1(Td × R) is a distribution on the extended

phase space.

t

x



Distribution of players’ trajectories

χ ∈ P1(Ct0,T ) is the distribution of players’ trajectories if,
I χ is concentrated on the set of absolutely continuous curves;
I χ-a.e. (x(·), z(·)) ∈ Ct0,T satisfy the differential inclusion

(ẋ(t), ż(t)) ∈ F (t, x(t),m(t)),

where m(t) , et]χ is a distribution on the phase space;
I m(t0) = et0]χ = m0.



Equilibrium distribution of trajectories

We say that χ ∈ P1(Ct0,T ) is an equilibrium distribution of players’
trajectories if,
I χ is concentrated on the set of absolutely continuous curves;
I χ-a.e. (x(·), z(·)) ∈ Ct0,T satisfy the differential inclusion

(ẋ(t), ż(t)) ∈ F (t, x(t),m(t)),

where m(t) , et]χ;
I m(t0) = et0]χ = m0;
I for χ-a.e. (x(·), z(·)) ∈ Ct0,T and any (x1(·), z1(·)) ∈ Ct0,T

satisfying (ẋ1(t), ż1(t)) ∈ F (t, x1(t),m(t)) and x(t0) = x1(t0),

σ(x(T ),m(T )) + z(T )− z(t0)

≥ σ(x1(T ),m(T )) + z1(T )− z1(t0).



Solution of the mean field game

Let χ be an equilibrium distribution of players’ trajectories.
Set
I m(t) , et]χ;
I

V (s, y) , sup
{
σ(x(T )) + z(T )− z(s) :

(x(·), z(·)) satisfying

(ẋ(·), ż(·)) ∈ F (t, x(t),m(t)), x(s) = y
}

(V ,m(·)) is a solution of the mean field game.



Theorem. Existence

There exists at least one solution of the mean filed game.

Proof is by fixed point arguments.



Purpose

Study the dependence m0 7→ V (t0, ·).



Dependence on initial distribution

The mapping which assign to m0 the reward of the representative
player V (t0, ·), where V is a value function of the mean field game,
is multivalued!



Designations

Let p : Td × R→ Td be defined by the rule: for (x , z)

p(x , z) , x .

If φ ∈ C (Td), ν ∈ P1(Td × R), then

[φ, ν] ,
∫
Td×R

(φ(x) + z)ν(d(x , z)).



Mean field type differential inclusion (MFDI)

d

dt
ν(t) ∈

〈
F̂ (t, ·, ν(t)),∇

〉
.

Here, for t ∈ [0,T ], w = (x , z) ∈ Td × R, ν ∈ P1(Td × R),

F̂ (t,w , ν) , F (t, p(w), p ]ν) = F (t, x , p ]ν).



Mean field type differential inclusion

Let s, r ∈ [0,T ], s < r .
We say that [s, r ] 3 t 7→ ν(t) ∈ P1(Td) solves MFDI on [s, r ] if
there exists χ ∈ P1(Cs,r ) such that
I ν(t) = êt]χ i.e. for any measurable E ⊂ Td × R,
ν(t,E ) = χ{w(·) : w(t) ∈ E};

I χ is concentrated on the set of absolutely continuous curves;
I χ-a.e. (x(·), z(·)) satisfy the differential inclusion

(ẋ(t), ż(t)) ∈ F (t, x(t),m(t)),

where m(t) = p ]ν(t) = et]χ.



Bellman propagator

Let [s, r ] 3 t 7→ m(t) ∈ P1(Td) be given. For ψ ∈ C (Td),

(Bs,r
m(·)ψ)(y) , sup

{
ψ(x(r)) + z(r)− z(s) :

(x(·), z(·)) satisfying

(ẋ(t), ż(t)) ∈ F (t, x(t),m(t)), x(s) = y
}

I Bs,r
m(·) : C (Td)→ C (Td);

I Bs,s
m(·) = Id;

I Bs,θ
m(·)B

θ,r
m(·) = Bs,r

m(·).



Proposition. Equivalent definition of solution of the mean
field game

A pair (V ,m(·)) is a solution to mean field game if and only if
there exists a solution of MFDI on [t0,T ] ν(·) such that, for any
s ∈ [t0,T ],
1. m(s) = p]ν(s), s ∈ [t0,T ];
2. m(t0) = m0;

3. V (s, ·) = Bs,T
m(·)σ(·,m(T ));

4. [σ(·,m(T )), ν(T )] ≥ [V (s, ·), ν(s)].



Value multifunction

A multifunction V : [0,T ]× P1(Td)⇒ C (Td) is said to be a value
multifunction of the mean field game if, for any t0 ∈ [0,T ],
m0 ∈ P1(Td), and φ ∈ V(t0,m0), there exists a solution to the
mean field game such that

V (t0, ·) = φ(·), m(t0) = m0.



Properties of value multifunctions

I If Vα, α ∈ A are value multifunctions, then

V , cl

(⋃
α∈A
Vα

)

is also a value multifunction.
I There exists a maximal value multifunction.



Mean field game dynamics

The multifunction Ψr ,s : P1(Td)× C (Td)⇒ P1(Td)× C (Td) is
defined by the rule: (µ, ψ) ∈ Ψr ,s(m, φ) if and only if there exists a
solution of the MFDI on [s, r ] ν(·) satisfying the following
properties, for m(t) = p]ν(t):

(Ψ1) m(s) = m, m(r) = µ;

(Ψ2) φ = Bs,r
m(·)ψ;

(Ψ3) [ψ, ν(r)] ≥ [φ, ν(s)].



Semigroup property

For any s0, s1, s2 ∈ [0,T ], s < r < θ,

Ψs2,s0 = Ψs2,s1 ◦Ψs1,s0 .

Here, given multivalued mappings Φ1,Φ2 : X ⇒ X ,

(Φ2 ◦ Φ1)(x) ,
⋃

y∈Φ1(x)

Φ2(y).



Viability w.r.t. to mean field dynamics

We say that a upper semicontinuous multifunction
V : [0,T ]× P1(Td)⇒ C (Td) is viable with respect to the mean
field game dynamics if, for any s, r ∈ [0,T ], s ≤ r , m ∈ P1(Td),
φ ∈ V(s,m), there exist µ ∈ P1(Td) and ψ ∈ C (Td) such that
I (µ, ψ) ∈ Ψr ,s(m, φ);
I ψ ∈ V(r , µ).



Property

The maximal value function is viable with respect to the mean field
game dynamics.



Theorem. Viability and MFG

Assume that a upper semicontinuous multifunction
V : [0,T ]× P1(Td)⇒ C (Td) is viable with respect to the mean
field game dynamics and V(T ,m) = {σ(·,m)}. Then V is a value
multifunction.

Proof is by the discretization of the time interval [t0,T ].



Probabilities on the tangent space

Let m ∈ P1(Td) and let c > 0.

Denote by Lc(m) the set of probabilities β ∈ P1(Td × Rd+1) such
that
I the marginal distribution of β on Td is m i.e., for any

measurable E ∈ Td , β(E × Rd+1) = m(E );
I suppβ ⊂ Td × Bc × [−c , c], where Bc stands for the ball of

radius c centered in the origin.



Shift operator

For t ≥ 0, let the operator Θτ : Td × Rd+1 → Td × R be given by

Θτ (x , a, b) , (x + τa, τb).

If m is a probability on Td , β ∈ Lc(m) is a probability on the
tangent space, τ ≥ 0, then

ν , Θτ ]β ∈ P1(Td × R)

is a shift of the probability m in the direction given by β.



‘Frozen’ Bellman propagator

If m ∈ P1(Td), s, r ∈ [0,T ], s ≤ r , then

(As,r
m φ)(x) , sup

{
φ(x + (r−s)a) + (r − s)b :

(a, b) ∈ F (s, x ,m)
}
.

As,r
m : C (Td)→ C (Td).



Set-valued derivative of the multifunction

Let V : [0,T ]× P1(Td)⇒ C (Td) be upper semicontinuous,
t ∈ [0,T ], m ∈ P1(Td), φ ∈ C (Td).

Recall that, for φ ∈ C (Td), ν ∈ P1(Td × R),

[φ, ν] ,
∫
Td×R

(φ(x) + z)ν(dxdz).

If m ∈ P1(Td), m̂ ∈ P1(Td × R) is defined by the rule: for
ϕ ∈ C (Td × R),∫

Td×R
ϕ(x , z)m̂(d(x , z)) ,

∫
Td

ϕ(x , 0)m(dx).



Set-valued derivative of the multifunction

A probability β ∈ Lc(m) belongs to Dc
FV(t,m, φ) if, for some

{τn}∞n=1 ⊂ (0,+∞), {βn}∞n=1 ⊂ Lc(m), {φn}∞n=1 ⊂ C (Td) and
νn , Θτn]βn, mn , p]νn,
1. τn,W1(β, βn)→ 0 as n→∞;
2. φn ∈ V(t + τn,mn);

3.

lim
n→∞

‖At,t+τn
m φn − φ‖

τn
= 0;

4.
lim
n→∞

[φn, νn]− [φ, m̂]

τn
≥ 0;

5. ∫
Td×Rd+1

dist(v ;F (t, x ,m))β(d(x , v)) = 0.



Bounded and Lipschitz continuous functions

For M,C > 0, let BLM,C denote the set of functions φ such that
I ‖φ‖ ≤ M;
I φ is C -Lipschitz continuous.



Theorem

Assume that a upper semicontinuous multifunction
V : [0,T ]× P1(Td)⇒ C (Td) has nonempty values and there exist
constants M and C such that, for any t ∈ [0,T ], m ∈ P1(Td),

V(t,m) ⊂ BLM,C (Td).

Then, V is viable with respect to the mean field game dynamics if
and only if, there exists a constant c > 0 such that, for any
t ∈ [0,T ], m ∈ P1(Td), φ ∈ V(t,m),

Dc
FV(t,m, φ) 6= ∅.



Proof of the viability theorem

The proof is analogous to the proof of Nagumo-type viability
theorems. It involves the properties of ‘frozen’ dynamics in the
space P1(Td)× C (Td).



Corollary. Infinitesimal condition on the value multifunction

Let V : [0,T ]× P1(Td)⇒ C (Td) be upper semicontinuous.
Assume that, for any t ∈ [0,T ], m ∈ P1(Td), φ ∈ V(t,m),
I V(t,m) 6= ∅;
I V(t,m) ⊂ BLM,C (Td) where the constants M and C do not

dependent on t and m;
I V(T ,m) = {σ(·,m)};
I Dc

FV(t,m, φ) 6= ∅, where the constant c does not depend on
t, m and φ.

Then V is a value multifunction of the mean field game.



Master equation

∂ϕ

∂t
+ H(t, x ,m,∇xϕ)

+

∫
Td

∂H(t, x ,m,∇xϕ)

∂p
∂mϕ(t, x ,m)(y)m(dy) = 0.

Here
I ϕ is a function from [0,T ]× Td × P1(Td) with values in R,
I ∂ϕ/∂t, ∇xϕ, ∇mϕ stand for its derivatives w.r.t to time,

state and measure variable.
I H is Hamiltonian

H(t, x ,m, p) , max
u∈U

[〈p, f (t, x ,m, u)〉+ g(t, x ,m, u)].



Master equation and value function [Carmona, Delarue,
2018]

I Let Γ(t0, x0,m0) be an expected reward of the representative
player who starts at the time t0, at the state x0 under the
condition that the distribution of all players is m0.

I Under certain regularity conditions the classical solution to the
master equation is equal to Γ.

I If the coefficients of the master equation are continuous, the
value function Γ is well-defined, unique and continuous with its
derivative w.r.t. x , then it solves master equation in the
viscosity sense.



Value function and value multifunction

I If Γ is a value function, then the multifunction V defined by
the rule

V(t0,m0) , {Γ(t0, ·,m0)}

is a value multifunction.
I If V is single-valued i.e. V(t0,m0) = {φt0,m0}, then the

function Γ(t0, x0,m0) , φt0,m0(x0) is a value function.



Future problems

I Extend the results to the case when the dynamics of each
player is driven by SDE.

I Find the link between the sub- and superdifferentials of the
function of probability and the set-valued derivative.



Thank you for your attention!


