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Overview of the talk

» Object: deterministic mean field game examined within the
probabilistic approach.

» Probabilistic approach consider the MFG as a symmetric Nash
equilibrium in the infinite player differential game.

» Aim: study the dependence of the solution of MFG on the
initial distribution of players.



Related works

» Probabilistic approach:

[Carmona, Delarue, 2015], [Carmona, Delarue, 2018], [Lacker,
2015], [A., 2015].

» Dependence of the solution of MFG on initial distribution of
players was considered by means of the master equation:
[Cardaliaguet, Delarue, Lasry, Lions, 2015/2019], [Carmona,
Delarue, 2018]. The key ingridient of the master equation is
the function ¢(to, xo, mo).
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Deterministic mean field game

Find a symmetric Nash equilibrium in the infinite-player game when

» the dynamics of each player is given by

d
Ex(t) = f(t,x(t), m(t), u(t));

> the reward of each player is equal to

;
a(x(T), m(T)) + / g(t,x(t), m(t), u(t))dt;

to

» the initial distribution of players is my.

Here

» m(t) is a distribution of players at time t; m(t) is a probability
on the phase space;

» u(t) € Uis a control; U is a control space.



Phase space

T 2 R/79.

» Elements of T¢ are the sets x = {x' +n: n € Z9}.
» Distance on TY: if X,y € T4, then

Ix =yl £ min{[lx" = y'|| : X" € x,y" € y}.



Space of trajectories

> Cs,r = C([s,r], T x R).
> If tels,r], w(-) = (x(-), z(-)) € Cs,, then



Assumptions

> U is compact is a metric space;
> f, g, o are continuous;
> f and g are Lipschitz continuous w.r.t. to x and m;

» o is Lipschitz continuous w.r.t. to x.



Mean field game

Find a symmetric Nash equilibrium in the infinite-player game when

» the dynamics of each player is given by

d
Zx(8) = F(t.x(1), m(2), u(1));

> the reward of each player is equal to

-

o(T).m(T) + [ g(ex(e), m(). u(®)e;
to

» the initial distribution of player is mo.

Here m(t) is a distribution of players at time t. For each t, m(t) is
a probability on T¢,



Relaxed problem

Each player tries to maximize
o(x(T),m(T))+z(T) — z(to)

subject to
(x(1), 2(¢)) € F(t,x(t), m(t)),

where

F(t,x,m) = co{(f(t,x, m,u), g(t,x,m, u))

:uEU}



Distribution of trajectories

Let x € P1(Csy,7) be a distribution of curves in the extended phase
space.

> m(t) £ ety € P(T9) is a distribution on the phase space;
> (t) £ étx € PHT? x R) is a distribution on the extended
phase space.
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Distribution of players’ trajectories

X € PY(Cy,. 1) is the distribution of players’ trajectories if,
»  is concentrated on the set of absolutely continuous curves;

> x-a.e. (x(-),2(-)) € Cq, 1 satisfy the differential inclusion

(x(2), 2(t)) € F(t,x(t), m(1)),

where m(t) = e:ffy is a distribution on the phase space;

> m(ty) = er,ix = mo.



Equilibrium distribution of trajectories

We say that x € P(Cy,. 1) is an equilibrium distribution of players’
trajectories if,

> Y is concentrated on the set of absolutely continuous curves;

» x-a.e. (x(+),z(+)) € Cy,, T satisfy the differential inclusion

(x(t), 2(¢)) € F(t,x(¢), m(t)),

where m(t) = e fx;
> m(to) = enltx = mo;

> for yae (x(),2()) € Ceo7 and any (), 21()) € Cop 7
satisfying (x1(t), z1(t)) € F(t, x1(t), m(t)) and x(to) = x1(to),

o(x(T),m(T)
> O'(Xl(T), m(T ) + Zl(T) — Zl(to).



Solution of the mean field game

Let y be an equilibrium distribution of players’ trajectories.
Set

> m(t) £ edtx;
>
V(s,y) 2 sup{o(x(T)) + 2(T) = 2(s) :
(x(). 2()
((

) satisfying

z(-
)

(V, m(-)) is a solution of the mean field game.

,2(1)) € F(t,x(t), m(t)), x(s) =



Theorem. Existence

There exists at least one solution of the mean filed game.

Proof is by fixed point arguments.



Purpose

Study the dependence my — V/(tp, ).



Dependence on initial distribution

The mapping which assign to mg the reward of the representative
player V(to,-), where V is a value function of the mean field game,
is multivalued!



Designations

Let p: T9 x R — T be defined by the rule: for (x, z)

o(,2) £ x.
If p € C(TY), v € PY(T9 x R), then

0,112 [ (00 + 2(d(x.2)).



Mean field type differential inclusion (MFDI)

%V(t) € <I?(t, -,V(t))»v>-

Here, for t € [0, T], w = (x,z) € TY x R, v € P}(T? x R),

F(t,w,v) 2 F(t,p(w), ptr) = F(t,x, ptv).



Mean field type differential inclusion

Lets,re [0, T], s<r.
We say that [s, r] 3 t — v(t) € P1(T9) solves MFDI on [s, r] if
there exists x € P(Cs,,) such that
» u(t) = étx i.e. for any measurable E C T9 x R,
v(t, E) = xIw() : wi(t) € E};
>  is concentrated on the set of absolutely continuous curves;

» y-a.e. (x(+),z(+)) satisfy the differential inclusion

(x(t), 2(¢)) € F(t, x(¢), m(t)),

where m(t) = pfir(t) = edx.



Bellman propagator

Let [s,r] > t = m(t) € PY(T?) be given. For ¢y € C(T),

(B3, )(y) 2 sup{w(x(n) + 2(r) = 2(s)
(x(+), z(+)) satisfying
(%(1). 2(t)) € F(tx(e), m(1), x(s) =y}

> B,Sn’(_) : C(T9) — C(T9);
57 P .

> B =1d,
s,0 pb,r _ ps,r

> BoyBm() = Bu(y:



Proposition. Equivalent definition of solution of the mean
field game

A pair (V, m(+)) is a solution to mean field game if and only if
there exists a solution of MFDI on [tg, T] v(+) such that, for any
s e [to, T],

m(s) = piv(s), s € [to, T1;

m(to) = mo;

V(s,-) = Bylyo (- m(T));

o, m(T)),v(T)] = [V(s,-), v(s)].
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Value multifunction

A multifunction V : [0, T] x P(T9) = C(T9) is said to be a value
multifunction of the mean field game if, for any ty € [0, T],

mo € PY(TY), and ¢ € V(tg, mg), there exists a solution to the
mean field game such that

V(t07 ) = ¢()7 m(tO) = mo.



Properties of value multifunctions

» If V,, a € A are value multifunctions, then

()

is also a value multifunction.

» There exists a maximal value multifunction.



Mean field game dynamics

The multifunction W : PH(T9) x C(T?) = PH(T9) x C(T9) is
defined by the rule: (u, 1) € W"*(m, ¢) if and only if there exists a
solution of the MFDI on [s, r] v(-) satisfying the following
properties, for m(t) = pfv(t):

(V1) m(s) = m, m(r) = p;
(V2) ¢ = B,s,;(r.)w;
(W3) [, v(r)] = [¢, v(s)]-



Semigroup property

For any sg,s1,5 € [0, T], s <r <6,

WS2:50 _ sS2:51 o S1:50

Here, given multivalued mappings ®1,$5 : X = X,



Viability w.r.t. to mean field dynamics

We say that a upper semicontinuous multifunction
V[0, T] x PY(T9) = C(T9) is viable with respect to the mean
field game dynamics if, for any s,r € [0, T], s < r, m € P}(T¢),
¢ € V(s, m), there exist u € P(T9) and v € C(T?) such that
> (ILL7 /(/)) e \Ur75(m, ¢)l
> e V(r,p).



Property

The maximal value function is viable with respect to the mean field
game dynamics.



Theorem. Viability and MFG

Assume that a upper semicontinuous multifunction

V[0, T] x PY(T9) = C(T7) is viable with respect to the mean
field game dynamics and V(T, m) = {o(-, m)}. Then V is a value
multifunction.

Proof is by the discretization of the time interval [to, T].



Probabilities on the tangent space

Let m € P}(T9) and let ¢ > 0.

Denote by £¢(m) the set of probabilities 3 € P1(T9 x R9*+1) such
that

> the marginal distribution of 5 on T is m i.e., for any
measurable £ € T9, B(E x RI*1) = m(E);

» suppf C T9 x B, x [—c, c], where B stands for the ball of
radius ¢ centered in the origin.



Shift operator

For t > 0, let the operator ©7 : TY x R9*t1 — T9 x R be given by

O7(x,a, b) £ (x + Ta,Th).

If m is a probability on T9, 3 € £(m) is a probability on the

tangent space, 7 > 0, then
v 20748 c PHTY x R)

is a shift of the probability m in the direction given by .



‘Frozen’ Bellman propagator

If me PYT9), s,r € [0, T], s <r, then

(A5 0)(x) 2 sup{ 6(x + (r—s)a) + (r — 5)b
(a,b) € F(s, x, m)}.

Ay C(T9) — C(T9).



Set-valued derivative of the multifunction

Let V: [0, T] x PY(T9) = C(T9) be upper semicontinuous,
t €0, T], m € PY(TY), ¢ € C(T9).

Recall that, for ¢ € C(T9), v € P}(T? x R),
6.2 [ (@00 + 2(nce),
Td xR

If me PYTY), m € PY(TY x R) is defined by the rule: for
@ € C(T9 x R),

/TdXR o(x,z)m(d(x, z)) = /Td ©(x, 0)m(dx).



Set-valued derivative of the multifunction

A probability 5 € £(m) belongs to DEV(t, m, ¢) if, for some
{7',,} =1 C (0,400), {Bn}azy € L9(m), {¢n}o2y C C(T9) and
£ ©™4B,, mn £ pivn,
1. Tny W1(B, Bn) — 0 as n — oc;
2. ¢n € V(t+ T, mp);

3. t t+7'
1A 00— ol _
n—>oo Th
4, R
I O B
n—o0 Th
5.

/ dist(v; F(t,x, m))5(d(x,v)) =0.
Td xRA+1



Bounded and Lipschitz continuous functions

For M, C > 0, let BLy ¢ denote the set of functions ¢ such that
> (ol < M;
> ¢ is C-Lipschitz continuous.



Theorem

Assume that a upper semicontinuous multifunction
V[0, T] x PY(T9) = C(T9) has nonempty values and there exist
constants M and C such that, for any t € [0, T], m € P(T9),

V(t, m) C BLp,c(TY).

Then, V is viable with respect to the mean field game dynamics if
and only if, there exists a constant ¢ > 0 such that, for any
t € [0, T], me PYTY), ¢ € V(t, m),

EV(t, m, ¢) # @.



Proof of the viability theorem

The proof is analogous to the proof of Nagumo-type viability
theorems. It involves the properties of ‘frozen’ dynamics in the
space PY(T9) x C(T¢).



Corollary. Infinitesimal condition on the value multifunction

Let V: [0, T] x P}(T9) = C(T?) be upper semicontinuous.
Assume that, for any t € [0, T], m € P}(T9), ¢ € V(t, m),
> V(t,m) # o,
> V(t,m) C BLM7C(Td) where the constants M and C do not
dependent on t and m;
» V(T,m)={o(-,m)};
» DgV(t, m, ¢) # &, where the constant ¢ does not depend on
t, mand ¢.
Then V is a value multifunction of the mean field game.



Master equation

% + H(t,x, m,Vyp)
OH(t x
+/ (t,x,m,Vyp)
Td

op

Ome(t, x, m)(y)m(dy) = 0.

Here
> ¢ is a function from [0, T] x T9 x P1(T9) with values in R,
» 0p/0t, Vxp, Vmp stand for its derivatives w.r.t to time,
state and measure variable.

» H is Hamiltonian

H(t,X, m, P) = ma&([<pa f(t,X, m, U)> + g(t,X, m, U)]
ue



Master equation and value function [Carmona, Delarue,
2018]

» Let [(to, x0, mo) be an expected reward of the representative
player who starts at the time tg, at the state xp under the
condition that the distribution of all players is mg.

» Under certain regularity conditions the classical solution to the
master equation is equal to T'.

» If the coefficients of the master equation are continuous, the
value function I is well-defined, unique and continuous with its
derivative w.r.t. x, then it solves master equation in the
viscosity sense.



Value function and value multifunction

» If [ is a value function, then the multifunction V defined by
the rule

V(to, mg) = {[(to, -, mo)}
is a value multifunction.

> If V is single-valued i.e. V(to, mg) = {¢¢;,m }» then the
function T (to, x0, mg) = bto,mo(X0) is a value function.



Future problems

» Extend the results to the case when the dynamics of each
player is driven by SDE.

» Find the link between the sub- and superdifferentials of the
function of probability and the set-valued derivative.



Thank you for your attention!



