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Introduction Motivation

The Master Equation

Our project is to study

− ∂U

∂t
(x ,m, t) + AxU(x ,m, t) +

∫
Rn

Aξ
d

dm
U(ξ,m, t)(x) dm(ξ)

+
1
2λ
|DxU(x ,m, t)|2 +

1
λ

∫
Rn

DξU(ξ,m, t) · Dξ
d

dm
U(ξ,m, t)(x) dm(ξ)

=
d

dm
F (m)(x), U(x ,m,T ) =

d

dm
FT (m)(x)

where x ∈ Rn,m ∈ P(Rn), and t ∈ [0,T ]. Here Ax is second order elliptic
di�erential operator with usual assumptions:

Axϕ(x) = −1
2
tr
(
σσ∗D2ϕ(x)

)
.

See

P. L. Lions lectures in Collège de France

Book by Cardaliaguet, Delarue, Lasry, Lions (Annals of Mathematics Studies)

Two-volume set by Carmona, Delarue
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Introduction Motivation

Interpreting the Master Equation

First interpretation: mean �eld Nash equilibrium equation
d

dm
F (m) and

d

dm
FT (m) give the mean �eld's contribution to individual

cost (running and terminal, resp.)

Game is potential

Second interpretation: U(x ,m, t) is the decoupling �eld for a mean �eld type
control problem, which is formally

inf

{
Jm,t(v) :=

λ

2

∫ T

t

∫
Rn

|v(ξ, s)|2 dms(ξ) ds +

∫ T

t

F (ms) ds + FT (mT )

∣∣∣∣∣
∂sms + Axms +∇ · (vms) = 0, mt = m

}
.

Euler-Lagrange equations formally give HJ-FP system typical of MFG
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Introduction Motivation

Bellman equation

For the mean �eld type control problem, the value function satis�es

− ∂V

∂t
(m, t) +

∫
Rn

Ax
d

dm
V (m, t)(x) dm(x)

+
1
2λ

∫
Rn

∣∣∣∣D d

dm
V (m, t)(x)

∣∣∣∣2 dm(x) = F (m), V (m,T ) = FT (m).

We can di�erentiate with respect to m to get the master equation.

See Bensoussan, Frehse, Yam �Interpretation of the Master Equation..."

See also Pham, Wei 2018 for viscosity solutions theory of Bellman equations
on Wasserstein space

Our goal

Prove existence of classical solutions to Bellman and Master equations using only
optimal control techniques.

P. J. Graber et al. Control on Hilbert Spaces Online MFG June 19 7 / 40



Introduction Our approach

Table of Contents

1 Introduction
Motivation
Our approach

2 New method of lifting
Derivatives in the space P2

Hilbert space
Control problem reformulated

3 Main results

P. J. Graber et al. Control on Hilbert Spaces Online MFG June 19 8 / 40



Introduction Our approach

Lifting the problem

Main idea

�Lift� the mean �eld type control problem from the space of probability measures
to a Hilbert space.

Motivation:

Lions proposed lifting from measures to random variables as a way of de�ning
derivatives on Wasserstein space

L2 random variables form a Hilbert space

Classical optimal control works well on a Hilbert space

Lifting the problem gives reasonable results in the �rst-order case:
Bensoussan Yam 2018

A previous preprint uses exactly this idea

New contribution of the present work

(i) Our version of �lifting� is radically di�erent from that of Lions.
(ii) The results are not new; however, the method of proof is completely di�erent.
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New method of lifting Derivatives in the space P2

Wasserstein space

We denote by P2(Rn) the Wasserstein space of Borel probability measures m on
Rn such that

∫
Rn |x |2 dm(x) <∞, endowed with the metric

W2(µ, ν) =

√
inf

{∫
|x − y |2 dπ(x , y) : π ∈ Π(µ, ν)

}
. (1)

Consider an atomless probability space (Ω,A,P), and on it the space
L2(Ω,A,P;Rn) of square integrable random variables with values in Rn. For
X ∈ L2(Ω,A,P;Rn) we denote by LX the law of X , given by LX (A) = P(X ∈ A).
To any m in P2(Rn), one can �nd a random variable Xm in L2(Ω,A,P;Rn) such
that LXm = m. We then have

W 2
2 (m,m′) = inf

LXm =m, LX
m′ =m′

E[|Xm − Xm′ |2], (2)

where the in�mum is attained.
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New method of lifting Derivatives in the space P2

First derivative

We say F is continuously di�erentiable provided there exists a continuous function
dF

dm
: P2 × Rn → R such that, for some c : P2(Rn)→ [0,∞) that is bounded on

bounded subsets, we have∣∣∣∣ dF

dm
(m, x)

∣∣∣∣ ≤ c(m)
(
1 +|x |2

)
(3)

and

lim
ε→0

F (m + ε(m′ −m))− F (m)

ε
=

∫
dF

dm
(m, x) d(m′ −m)(x) (4)

for any m′ ∈ P2. Since
dF

dm
is unique only up to a constant, we require the

normalization condition ∫
dF

dm
(m, x) dm(x) = 0, (5)

which in particular ensures the functional derivative of a constant is 0.

We will often denote
dF

dm
(m)(x) :=

dF

dm
(m, x). Then

dF

dm
(m) ∈ L2m(Rn).
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New method of lifting Derivatives in the space P2

Second derivative I

We say F is twice continuously di�erentiable provided there exists a continuous

function
d2F

dm2
: P2 × Rn × Rn → R such that, for some c : P2(Rn)→ [0,∞) that

is bounded on bounded subsets,∣∣∣∣∣ d2F

dm2
(m, x , x̃)

∣∣∣∣∣ ≤ c(m)
(
1 +|x |2 +|x̃ |2

)
(6)

and

lim
ε→0

1
ε

∫ (
dF

dm
(m + ε(m̃′ −m), x)− dF

dm
(m, x)

)
d(m′ −m)(x)

=

∫∫
d2F

dm2
(m, x , x̃) d(m′ −m)(x) d(m̃′ −m)(x̃) (7)
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New method of lifting Derivatives in the space P2

Second derivative II

for any m′, m̃′ ∈ P2. To ensure
d2F

dm2
(m, x , x̃) is uniquely de�ned, we will use the

normalization convention∫
d2F

dm2
(m, x , x̃) dm(x̃) = 0 ∀x ,

∫
d2F

dm2
(m, x , x̃) dm(x) = 0 ∀x̃ . (8)

Again, we will write
d2F

dm2
(m, x , x̃) =

d2F

dm2
(m)(x , x̃), where we note that

d2F

dm2
(m) ∈ L2m×m.

Standard arguments show that
d2F

dm2
(m) is symmetric, i.e.

d2F

dm2
(m)(x , x̃) =

d2F

dm2
(m)(x̃ , x).
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New method of lifting Hilbert space

Let (Ω,A,P) be an atomless probability space. For m ∈ P2, let
Hm := L2(Ω,A,P; L2m(Rn;Rn)). On Hm we de�ne the inner product

〈X ,Y 〉Hm = E
∫

X (x) ·Y (x) dm(x) =

∫
Ω

∫
Rn

X (ω, x) ·Y (ω, x) dm(x) dP(ω). (9)

When it is su�ciently clear which inner product we mean, we will often drop the
subscript Hm.

Note Hm
∼= L2(Ω× Rn,A⊗ B,P×m;Rn), where B is the Borel σ-algebra on Rn.

De�nition

Let m ∈ P2,X ∈ Hm. We de�ne X ⊗m ∈ P2 by duality: for all continuous

functions φ : Rn → R such that x 7→ |φ(x)|
1+|x|2 is bounded, we have∫

φ(x) d(X⊗m)(x) = E
[∫

φ
(
X (x)

)
dm(x)

]
=

∫
Ω

∫
Rn

φ
(
X (ω, x)

)
dm(x) dP(ω).
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New method of lifting Hilbert space

Lemma

The map X 7→ X ⊗m is a contraction from Hm to P2,
i.e. W2(X ⊗m,Y ⊗m) ≤‖X − Y ‖Hm

.

If X (ω, x) = X (x) is deterministic, then X ⊗m = X ]m where
X ]m(E ) := m(X−1(E )).

Lemma

Let X ,Y ∈ Hm, and suppose X ◦ Y ∈ Hm. Then (X ◦ Y )⊗m = X ⊗ (Y ⊗m).

Examples

(i) If X (x) = x is the identity map, then X ⊗m = m.
(ii) If X (x) = a is a constant map, then X ⊗m = δa, the Dirac delta mass
concentrated at a.

If X (ω, x) = X (ω) is just an L2 random variable in Rn, then X ⊗m = LX . Proof:∫
φ(x) d(X ⊗m)(x) = E

[∫
φ (X ) dm(x)

]
= E

[
φ (X )

]
(10)
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New method of lifting Hilbert space

Lifting functionals on P2 I

Let F : P2 → R. For every m ∈ P2, the map X 7→ F (X ⊗m) is a functional on
Hm. We de�ne the �partial derivative� of F with respect to X ∈ Hm as the unique
element DXF (X ⊗m) of Hm, if it exists, such that

lim
ε→0

F
(
(X + εY )⊗m

)
− F (X ⊗m)

ε
= 〈DXF (X ⊗m),Y 〉 ∀Y ∈ Hm. (11)
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New method of lifting Hilbert space

Lifting functionals on P2 II

Theorem (Bensoussan, PJG, Yam)

Let F : P2 → R be continuously di�erentiable and assume x 7→ dF
dm (m, x) is

continuously di�erentiable in Rn. Assume that its derivative D dF
dm (m)(x) is

continuous in both m and x with∣∣∣∣D dF

dm
(m)(x)

∣∣∣∣ ≤ c(m)
(
1 +|x |

)
(12)

for some constant c(m) depending only on m. Then

DXF (X ⊗m) = D
dF

dm
(X ⊗m)(X (·)). (13)

If X (x) = x , then X ⊗m = m, and thus (13) gives the L-derivative

DXF (m) = D
dF

dm
(m)(·). (14)
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New method of lifting Hilbert space

Lifting functionals on P2 III

Proof.

Note that, by (12), D dF
dm (X ⊗m,X (·)) ∈ Hm for any X ∈ Hm. Let Y ∈ Hm be

arbitrary. For ε 6= 0, let µ = (X + εY )⊗m, ν = X ⊗m, and for t ∈ [0, 1] set
νt = ν + t(µ− ν). Then we have

1
ε

(
F
(
(X + εY )⊗m

)
− F (X ⊗m)

)
=

1
ε

∫ 1

0

∫
Rn

dF

dm
(νt , x) d(µ− ν)(x) dt

=
1
ε
E
∫ 1

0

∫
Rn

(
dF

dm

(
νt ,X (x) + εY (x)

)
− dF

dm

(
νt ,X (x)

))
dm(x) dt

→ E
∫
Rn

D
dF

dm

(
X ⊗m,X (x)

)
· Y (x) dm(x)

= 〈D dF

dm

(
X ⊗m,X (·)

)
,Y 〉Hm

using the continuity of D dF
dm .
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New method of lifting Hilbert space

Partial derivatives wrt m I

Let F : P2 → R and let X ∈ ∩m∈P2Hm. We de�ne the partial derivative of
F (X ⊗m) with respect to m, denoted ∂F

∂m (X ⊗m)(x), to be the derivative of
m 7→ F (X ⊗m) in the sense given before.

Lemma

Let X : Ω× Rn → Rn be a (A⊗ B,B) measurable vector �eld (where B is the
Borel σ-algebra on Rn) such that

E
∣∣X (x)

∣∣2 ≤ c(X )
(
1 +|x |2

)
∀x ∈ Rn, (15)

where c(X ) is a constant depending only on X . Then X ∈ ∩m∈P2Hm.
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New method of lifting Hilbert space

Partial derivatives wrt m II

Proposition

Let F : P2 → R be continuously di�erentiable and let X ∈ ∩m∈P2Hm. Then

∂F

∂m
(X ⊗m)(x) = E

dF

dm
(X ⊗m)(X (x)). (16)
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New method of lifting Hilbert space

Partial derivatives wrt m III

Proof.

For ε 6= 0 let µ = X ⊗
(
m + ε(m′ −m)

)
, ν = X ⊗m, and for t ∈ [0, 1] set

νt = ν + t(µ− ν). We have, as ε→ 0,

1
ε

(
F
(
X ⊗

(
m + ε(m′ −m)

))
− F (X ⊗m)

)
=

1
ε

∫ 1

0

∫
Rn

dF

dm
(νt , x) d(µ− ν)(x)

= E
∫ 1

0

∫
Rn

dF

dm

(
νt ,X (x)

)
d(m′ −m)(x)

→ E
∫
Rn

dF

dm

(
X ⊗m,X (x)

)
d(m′ −m)(x),

using the continuity of dF
dm . The claim follows.
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New method of lifting Hilbert space

A formula for second derivatives

Let F : P2 → R be twice continuously di�erentiable and let X ,Z ∈ Hm. Then
D2

XF (X ⊗m) exists in a Gâteaux sense and

D2
XF (X ⊗m)(Z )(x) = D2 dF

dm
(X ⊗m)(X (x))Z (x)

+ Ẽ
∫
Rn

D1D2
d2F

dm2
(X ⊗m)(X̃ (x̃),X (x))Z̃ (x̃) dm(x̃) (17)

in which X̃ (x̃), Z̃ (x̃) are independent copies of X (x),Z (x), and in which the
expectation Ẽ is independent of X (x).

P. J. Graber et al. Control on Hilbert Spaces Online MFG June 19 25 / 40



New method of lifting Control problem reformulated

Table of Contents

1 Introduction
Motivation
Our approach

2 New method of lifting
Derivatives in the space P2

Hilbert space
Control problem reformulated

3 Main results

P. J. Graber et al. Control on Hilbert Spaces Online MFG June 19 26 / 40



New method of lifting Control problem reformulated

Recall that (Ω,A,P) is an atomless probability space, and for m ∈ P2,
Hm := L2(Ω,A,P; L2m(Rn;Rn)). Now assume

(Ω,A,P) is su�ciently large to contain a standard Wiener process in Rn,
denoted w(t), with �ltration Wt = {Ws

t }s≥t where
Ws

t = σ
(
(w(τ)− w(t)) : t ≤ τ ≤ s

)
.

(Ω,A,P) is rich enough to support random variables that are independent of
the entire Wiener process.

Denote by Hm,t the space of all X = Xt ∈ Hm such that X is independent of Wt .

For X ∈ Hm,t we de�ne σ-algebras Ws
Xt = σ(X ) ∨Ws

t , and the �ltration
generated by these will be denoted WXt .

L2WXt
(t,T ;Hm) will be the set of all processes in L2(t,T ;Hm) that are adapted to

WXt , L2Wt
(t,T ;HX⊗m) the set of all processes in L2(t,T ;HX⊗m) that are

adapted to Wt .

Lemma

There is a linear isometry L2Wt
(t,T ;HX⊗m)→ L2WXt

(t,T ;Hm) given by
v(s)(x) 7→ v(s)(X (x)).
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New method of lifting Control problem reformulated

Control problem: �rst formulation

De�ne the cost functional JX⊗m,t : L2Wt
(t,T ;HX⊗m)→ R by

JX⊗m,t(v·t(·)) =
λ

2

∫ T

t

∫
Rn

E|vξt(s)|2 d(X ⊗m)(ξ) ds

+

∫ T

t

F (X·t(s; v·t(·))⊗ (X·t ⊗m)) ds + FT (X·t(T ; v·t(·))⊗ (X·t ⊗m)) (18)

where X·t(s; v·t(·)) is de�ned by

Xxt(s; v·t(·)) = x +

∫ s

t

vxt(τ) dτ + σ(w(s)− w(t)). (19)

This is just a classical SDE for each x ∈ Rn.
The value function is de�ned as

V (X ⊗m, t) := inf
v
JX⊗m,t(v·t(·)). (20)
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New method of lifting Control problem reformulated

Control problem: second formulation

By the isometry L2Wt
(t,T ;HX⊗m)→ L2WXt

(t,T ;Hm) given by vxt(s) 7→ vXt(s),
the �rst formulation is equivalent to a second:

Let JXt : L2WXt
(t,T ;Hm)→ R be given by

JXt(vXt(·)) =
λ

2

∫ T

t

∥∥vXt(s)
∥∥2
Hm

ds

+

∫ T

t

F (XXt(s; vXt(·))⊗m) ds + FT (XXt(T ; vXt(·))⊗m) (21)

where

XXt(s; vXt(·)) = X +

∫ s

t

vXt(τ) dτ + σ(w(s)− w(t)). (22)

This is an SDE on the in�nite dimensional space Hm.

Remark

(i) XXt(s; vXt(·)) ∈ Hm,s for all s ≥ t.
(ii) XXt(s; vXt(·))⊗m is an abuse of notation. It actually means
X·t(s; v·(·))⊗ (X·t ⊗m).
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Main results

Assumptions I

F and FT are twice continuously di�erentiable.
Essential estimates:∣∣∣∣D2 dF

dm
(m)(x)

∣∣∣∣ ≤ c ,

∣∣∣∣∣DD2
d2F

dm2
(m)(x , x̃)

∣∣∣∣∣ ≤ c ,

∣∣∣∣D dFT

dm
(m)(x)

∣∣∣∣ ≤ cT ,

∣∣∣∣∣D2D1
d2FT

dm2
(m)(x , x̃)

∣∣∣∣∣ ≤ cT ,∀x , x̃ ∈ Rn.

(23)

Semi-convexity conditions:

D2 dF

dm
(m)(x)ξ · ξ + D2D1

d2F

dm2
(m)(x , x̃)ξ · ξ̃ ≥ −c ′|ξ|(|ξ|+ |ξ̃|),

D2 dF

dm
(m)(x)ξ · ξ + D2D1

d2F

dm2
(m)(x , x̃)ξ · ξ̃ ≥ −c ′|ξ|(|ξ|+ |ξ̃|),∀x , x̃ , ξ, ξ̃.

(24)
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Main results

Assumptions II

Continuity condition:

(m, x) 7→ D2 dF

dm
(m)(x), (m, x , x̃) 7→ D2D1

d2F

dm2
(m)(x , x̃) are continuous from

P2(Rn)× Rnand P2(Rn)× Rn × Rn → L(Rn;Rn), respectively, (25)

and likewise for FT .
Condition to guarantee objective is convex:

λ− T (c ′T +
c ′T

2
) > 0. (26)

Smallness condition:

λ− T (cT + c
T

2
) > 0 (27)
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Main results

Lifted Bellman Equation

The Bellman equation for V (X ⊗m, t) is

∂V

∂t
(X ⊗m, t) +

1
2
〈D2

XV (X ⊗m, t)(σN), σN〉

− 1
2λ
||DXV (X ⊗m, t)||2 + F (X ⊗m) = 0, V (X ⊗m,T ) = FT (X ⊗m).

(28)

Our de�nition of classical solution includes these essential features:

V ,DX ,D
2
XV are continuous (V and DXV are Hölder in time)

V is right-di�erentiable in time

Theorem (Bensoussan, PJG, Yam)

Under the above assumptions, V (X ⊗m, t) is the unique classical solution to the
Bellman equation.
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Main results

Back down to original Bellman equation

A simple corollary of our theorem is that V (m, t) solves the original Bellman
equation:

− ∂V

∂t
(m, t) +

∫
Rn

Ax
d

dm
V (m, t)(x) dm(x)

+
1
2λ

∫
Rn

∣∣∣∣D d

dm
V (m, t)(x)

∣∣∣∣2 dm(x) = F (m), V (m,T ) = FT (m).

To derive this, just plug in X (x) = x .
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Main results

Solving the Master Equation I

Let U(x ,m, t) =
d

dm
V (m, t)(x). Then formally U satis�es the Master Equation:

− ∂U

∂t
(x ,m, t) + AxU(x ,m, t) +

∫
Rn

Aξ
d

dm
U(ξ,m, t)(x) dm(ξ)

+
1
2λ
|DxU(x ,m, t)|2 +

1
λ

∫
Rn

DξU(ξ,m, t) · Dξ
d

dm
U(ξ,m, t)(x) dm(ξ)

=
d

dm
F (m)(x), U(x ,m,T ) =

d

dm
FT (m)(x).
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Solving the Master Equation II

To justify this, we need more regularity:∣∣∣∣D d

dm
F (m)(x)

∣∣∣∣ ≤ c(1 + |x |),
∣∣∣∣D2 d

dm
F (m)(x)

∣∣∣∣ ≤ c ,

∣∣∣∣D3 d

dm
F (m)(x)

∣∣∣∣ ≤ c ,∣∣∣∣∣D1
d2

dm2
F (m)(x , x̃)

∣∣∣∣∣ ≤ c(1 + |x̃ |),

∣∣∣∣∣D2D1
d2

dm2
F (m)(x , x̃)

∣∣∣∣∣ ≤ c ,∣∣∣∣∣D2
1

d2

dm2
F (m)(x , x̃)

∣∣∣∣∣ ≤ c(1 + |x̃ |),

∣∣∣∣∣D2
1D2

d2

dm2
F (m)(x , x̃)

∣∣∣∣∣ ≤ c .

(29)

Theorem (Bensoussan, PJG, Yam)

In addition to all the previous assumptions, take λ ≥ λT for λT su�ciently large
depending on c , cT , and T . Then U satis�es the Master Equation in a pointwise
sense.

We do not fully treat uniqueness; see previous references.
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Main idea behind all the proofs

The optimal trajectory for the control problem can be derived from a
forward-backward system of SDEs:

YXt(s) = X − 1
λ

∫ s

t

ZXt(τ) dτ + σ(w(s)− w(t)), (30)

ZXt(s) = E

∫ T

s

DXF (YXt(τ)⊗m) dτ + DXFT (YXt(T )⊗m)

∣∣∣∣∣Ws
Xt

 . (31)

We look for a priori estimates on the pair (YXt(s),ZXt(s)), including a sensitivity
analysis wrt m. All of our estimates on V arise as a corollary.
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