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N-player stochastic differential game

Consider N players, each adjusting its state to maximise/minimise a given cost criterion over
a finite or infinite time horizon.

Mean field game (MFG): agents know the current and future distribution of all others
- anticipate the future.a

Best reply strategy (BRS): agents determine their locally best action by minimising
their cost over a short receding time horizon; also known as model predictive (MPC) or
receding horizon control.b

N-player stochastic differential game BRS for the N-player game

MFG BRS for MFG

MPC

N →∞ N →∞

MPC

aLasry and Lions, CR Math 343 2006 and Jap. J. Math. 2, 2007; Huang, Caines and Malhame CIS 6 2016 and
J. Sys. Sci. Comp. 20, 2017

bDegond, Herty and Liu, CMS 15, 2017; Barker, J. Dyn. Games 6, 2019
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Focus of the talk

We will focus on (MFG) and (BRS) problems in case of a quadratic Hamiltonian as well as
congestion cost and a confinement potential on a bounded domain.

How do solutions of BRS and MFG models compare ?

Under which conditions are solutions close ?

When should we prefer one to another ?
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Mean field games: the setting

Consider N interacting agents on the torus Td , each agent with state Xt is trying to optimise

J(α; m) = E
[∫ T

0

(
α2

s

2
+ h(Xs ,m(Xs ))

)
ds

]
.

subject to the constraint that

dXt = αt dt + σdBt with initial condition L(X0) = m0.

Functions and parameters:

m : Td → [0,∞) is the density of the agent distribution

h : Td ×(0,∞)→ R is a density dependent cost

αt : [0,T ]→ Td is a control chosen by a representative agent

σ > 0 the amplitude of the noise and dBt a d-dimensional Wiener process.

Then the optimal cost trajectory u(x , t) is

u(x , t) = inf
α∈A

E
[∫ T

t

(
α2

s

2
+ h(Xs ,m(Xs ))

)
ds

∣∣∣∣Xt = x

]
.

and the optimal control by α∗t = −∇u(Xt , t).
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The limit N →∞:

Then the distribution of agents m(x , t) and the optimal cost trajectory u = u(x , t) solve the
MFG

∂t u =
|∇u|2

2
− h(x ,m)−

σ2

2
∇2u

∂t m = ∇ · [m∇u] +
σ2

2
∇2m

m(x , 0) = m0

u(x ,T ) = 0 .
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Best reply strategy: the idea

Agents consider a rescaled cost functional over a short time

J∆t (α; m) = E
[∫ t+∆t

t

(
α2

s

2
+

1

∆t
h(Xs ,m(Xs ))

)
ds

∣∣∣∣Xt = x

]
.

Taking the limit ∆t → 0, yields the optimal control

αt = − [∇h(x ,m(x))]|x=Xt

Then the distribution of agents evolves according to the Fokker–Planck equation

∂t m = ∇ · [(∇h(x ,m(x))) m] +
σ2

2
∇2m

m(x , 0) = m0 .
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The stationary problems

MFG: triple (m, u, λ) ∈ C 2(Td )× C 2(Td )× R solves

−
σ2

2
∇2m −∇ · (m∇u) = 0

−
σ2

2
∇2u +

|∇u|2

2
− h(x ,m) + λ = 0∫

Td
m dx = 1∫

Td
u dx = 0 .

BRS: setting ∂t m = 0 gives

∇ · [(∇h(x ,m(x))) m] +
σ2

2
∇2m = 0∫

Td
m dx = 1 .

We will consider the stationary MFG and BRS on Ω with no flux boundary conditions in
the following.
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Problem setting and assumptions:

General assumptions:

(A1) Ω ⊂ Rd is an open bounded set with a C 2,α boundary, for some α ∈ (0, 1) and d ≥ 1.

(A2) h(x , ·) is an increasing function for every x ∈ Ω.

(A3) There exists a continuous function g : (0,∞)→ [0,∞) such that

sup
x∈Ω
|h(x ,m)| ≤ g(m) for every m ∈ (0,∞)

BRS assumptions:

(BRS1) h ∈ C 2 (Ω× (0,∞)) ∩ C 1
(
Ω̄× (0,∞)

)
.

(BRS2) There exists a continuous function f : (0,∞)→ [0,∞) such that

sup
x∈Ω
|∇x h(x ,m)| ≤ f (m) for every m ∈ (0,∞).

MFG assumptions:

(MFG1) h ∈ C (Ω× (0,∞))

(MFG2) limm→0 supx∈Ω h(x ,m) < infx∈Ω h
(

x , 1
|Ω|

)
.

(MFG3) supx∈Ω h
(

x , 1
|Ω|

)
< limm→∞ infx∈Ω h(x ,m).
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BRS: existence of stationary solutions

Definition of classical BRS solutions: Let assumptions (A1)-(A3) and (BRS1)-(BRS2) be
satisfied. Then a function m : Ω→ (0,∞) is a classical solution if it satisfies

m ∈ C 2 (Ω) ∩ C 1
(
Ω̄
)

−
σ2

2
∇2m −∇ · (m∇[h(x ,m)]) = 0 , x ∈ Ω

−
σ2

2
∇m · ν −m∇[h(x ,m)] · ν = 0 , x ∈ ∂Ω∫

Ω
m dx = 1 .

Theorem:

There exists a unique solution m : Ω→ (0,∞) to the stationary BRS.
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MFG: existence of stationary solutions

Definition of classical MFG solutions: Let assumptions (A1)-(A3) and (MFG1)-(MFG3) be
satisfied. Then the triple m : Ω→ (0,∞), u : Ω→ R and λ ∈ R is a classical solution if it
satisfies

m ∈ C 2 (Ω) ∩ C 1
(
Ω̄
)

and u ∈ C 2 (Ω) ∩ C 1
(
Ω̄
)

−
σ2

2
∇2m −∇ · (m∇u) = 0 , x ∈ Ω

−
σ2

2
∇2u +

|∇u|2

2
− h(x ,m) + λ = 0 , x ∈ Ω

−
σ2

2
∇m · ν = 0 and ∇u · ν = 0 , x ∈ ∂Ω∫

Ω
m dx = 1 and

∫
Ω

u dx = 0.

Theorem:

There exists a unique solution (m, u, λ) to the MFG system.

M.T. Wolfram (Warwick) MFG vs. BRS 10 / 19



Idea of the proof

Introduce Z =
∫

Ω e
− 2

σ2 u
dx , then m = 1

Z
e
− 2

σ2 u
and finding a MFG solution is equivalent

to finding a unique solution (u, λ,Z) ∈
[
C 2 (Ω) ∩ C 1

(
Ω̄
)]
× R×(0,∞) to

u ∈ C 2 (Ω) ∩ C 1
(
Ω̄
)

−
σ2

2
∇2u +

|∇u|2

2
− h

(
x ,

1

Z
e
− 2

σ2 u
)

+ λ = 0 , x ∈ Ω

−∇u · ν = 0 , x ∈ ∂Ω∫
Ω

1

Z
e
− 2

σ2 u
dx = 1, and

∫
Ω

u dx = 0 .
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MFG vs. BRS in case of a specific example

Specific example with quadratic potential and logarithmic congestion: a

h(x ,m) = βx2 + log m, with β ≤ 0.

Then the stationary MFG on the real line

σ2

2
∂2

xx m + ∂x (m∂x u) = 0 , x ∈ R ,

−
|∂x u|2

2
+ log m + βx2 +

σ2

2
∂2

xx u + λ = 0 , x ∈ R ,

with
∫
R m dx = 1 has the explicit solution

m(x) =
( a

π

)1/2
e−ax2

, u(x) = bx2 and λ = log
(π

a

)
− σ2b ,

Stationary BRS:

∂x
(
m∂x (log m + βx2)

)
+
σ2

2
∂2

xx m = 0 , x ∈ R

with
∫
R m dx = 1 has the explicit solution m(x) =

(
2β

(2+σ2)π

)1/2
e
− 2β

(2+σ2)
x2

.

aGomes, Pimentel and Voskanyan, Springer Briefs in Mathematics, 2016; Gueant, J. Math. Pures Appl. 92, 2009
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Comparison:

For σ > 0, the stationary distributions of the MFG system and the BRS are given by normal
distributions, with mean 0 and variances a1 and a2 respectively, where

a1 =
σ4

−2 + 2(1 + 2σ4β)1/2
and a2 =

2 + σ2

4β
.

Then, for fixed β ≥ 0

lim
σ2→0

a2

a1
= 1 and lim

σ2→∞

a2

a1
=

1

(2β)1/2
.

While, for fixed σ > 0

lim
β→0

a2

a1
= 1 +

σ2

2
and lim

β→∞
(2β)1/2 a2

a1
=

2 + σ2

σ2
.
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Simulation results

(a) β = 0.1, σ2

2 = 10 (b) β = 0.1, σ2

2 = 0.2

(c) β = 1, σ2

2 = 10 (d) β = 1, σ2

2 = 0.2

(e) β = 10, σ2

2 = 10 (f) β = 10, σ2

2 = 0.2
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Trapped in wells:

(a) Potential F (x) when
h(x,m) = F (x) + log(m)

(b) σ2

2 = 0.2 (c) σ2

2 = 1
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Conclusions:

Comparison of stationary (MFG) and (BRS): first insights in concrete example, but no
general statements.

Dynamics (MFG) vs. (BRS): to come....

Thank you very much for your attention !

References:
M. Barker, P. Degond and MTW, Comparing the best reply strategy and mean field games:
the stationary case, Arxiv, 2019.
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