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Chapter 1

Introduction

Differential game theory investigates conflict problems in systems which are driven by differential equations.
This topic lies at the intersection of game theory (several players are involved) and of controlled systems
(the differential equations are controlled by the players).

The scope of these notes is to review some basic results in the area: we will start with some insight of
Isaacs’ Theory, then will introduce the notion of strategies. The main part of these notes will be devoted
to the existence of a value for two-player zerosum differential games and its characterization as the unique
viscosity solution of some partial differential equation. Then we will analyze the notion of Nash equilibrium
payoff with delay (or memory) strategies. The last part will be devoted to differential games with incomplete
information.

This chapter is mainly dedicated with the more basic aspects of Isaacs’ theory. We start with a simple
game, through which we introduce a first notion of strategy. Then we discuss a verification Theorem, which
is typical of Isaacs’ approach.

Before this, let us fix some notations used throughout the text:
Some notations :

• 〈x, y〉 is the usual scalar product between two vectors x and y of a finite dimensional space and | · | the
associated euclidean norm.

• Br(x) is the closed ball of center x and of radius r

• If E is a set, then 1E is the indicator function of E (equal to 1 if E and to 0 outside of E).

• SN is the set of N ×N symmetric matrices.

• If O is an open subset of RN and V : O → R, then DV(x) and D2V(x) respectively denote the
gradient and the Hessian matrix of V at x whenever they exist.

• In the same way, if O is an open subset of R × RN and V = V(t, x) : O → R depends on time and
space, we denote by ∂tV(t, x) the time derivative of V and by DV(t, x) and D2V(t, x) the spatial
gradient and spatial Hessian matrix of V at a point (t, x).

1.1 A simple game as an appetizer

Let us start the description of differential games with a very popular exemple: the game “Lion and Man”.
The story goes as follows: a lion and a man are enclosed in a closed circular arena. The lion is famished
and—most surprizingly—the man is not so keen to be used as breakfast. Several questions arise then:

1. How long (at least) can the man escape the lion?

2. If he manages to escape all the time, what is the minimal distance he can put between him and the
lion?

These questions are formulated from the man’s viewpoint. For the lion they become:

5



6 CHAPTER 1. INTRODUCTION

1. How long (at most) does it take for the lion to catch the man?

2. If he does not succeed in catching the man, how close to him can he go?

These questions are typical of game theory: the lion try to minimize some quantity (capture time or distance
to the man) while the man aims at maximizing such quantities.

What is unusual for game theory here is that we are dealing with a continuous time problem. Dynamics
can be expressed in terms of instantaneous speeds for the lion and the man, which choose it at each time to
realize their goal. This kind of problem is typical from control theory.

Let us try to formalize a little bit these ideas. We assume that the lion can run with a maximal speed
denoted by L > 0 and that the man can run at a maximal speed M > 0. Let y(t) ∈ R2 be the position of
the man at time t and z(t) ∈ R2 be the position of the lion at time t. Then the man chooses at each time its
velocity y′(t) in the set of possible velocities U = {u ∈ R2 , |u| ≤M} while the lion chooses its velocity z′(t)
in the set V = {v ∈ R2 , |v| ≤ L}. The sets U and V are called control sets of the man and lion respectively.

The dynamics of the problem is:

y′(t) = u(t) where u(t) ∈ U, and z′(t) = v(t) where v(t) ∈ V .

Since man and lion have to stay in the arena, we also have to add to these equations the state constraints

|y(t)| ≤ R and |z(t)| ≤ R ∀t ≥ 0 .

Let us now try to formulate, in quite a naive way, some ideas to solve this game. This will oblige us to think
about a key notion in differential game theory: the notion of strategies.

First case : L > M This is the worse situation for the man. Obviously if the lion runs directly in the
man’s direction, capture will occur in a finite time. Mathematically this means that lion chooses at each
time the speed

v̄(y(t), z(t)) = L
y(t)− z(t)
|y(t)− z(t)|

.

So the lion will solve at each time the differential equation

z′(t) = v̄(y(t), z(t)) .(1.1)

Since the man always stay in the arena (|y(t)| ≤ R for all t), it is an easy exercise to show that the solution
z(t) of the above equation also remains in the arena. The map v̄ is a strategy, i.e., a decision rule which
allows to the lion to decide at each time what control to play. One can also check that this is a good strategy,
in the sense that it garanties the capture in controlled time whatever the man does: assume that the man
chooses at each time the control u(t) in U , then

d
dt |y(t)− z(t)|2 = 2〈y(t)− z(t), y′(t)− z′(t)〉

= 2〈y(t)− z(t), y′(t)〉 − 2〈y(t)− z(t), v̄(y(t), z(t))〉
≤ 2M |y(t)− z(t)| − 2L|y(t)− z(t)|

since the man runs with a maximal speed of M (i.e., |u(t)| ≤M) and z′(t) is given by (1.1). So

d

dt
|y(t)− z(t)|2 ≤ −2(L−M)|y(t)− z(t)|

which implies that
d

dt
|y(t)− z(t)| ≤ −(L−M)

Therefore capture holds before |y(0)− z(0)|/(L−M), even if the man knows that the lion plays the strategy
v̄.

Note that there is no reason why this strategy would be “optimal” for the lion, since it does not take
into account the fact that that the man is constrained to stay in the arena.
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Second case : L < M This case is much more auspicious for the man, although it is not completely
obvious that he can avoid the capture, since he is constrained to remain in the arena. We are going to show
that this is actually the case and, moreover, that he can stay at some fixed distance from the lion.

Let us assume, to fix the ideas and simplify the computation that the radius of the arena is R = 1 and
that the man starts from the boundary of the arena (Exercice : show that the man can indeed ensure to be in
this situation after a while by enlarging the initial distance between him and the lion). We now work in polar
coordonates. Let (ρM , θM ) and (ρL, θL) the polar coordonates of the man and the lion. The constraints on
the speed become

(ρ′M )2 + ρ2
M (θ′M )2 ≤M2 and (ρ′L)2 + ρ2

L(θ′L)2 ≤ L2 .

In order to avoid cumbersome technicalities, we just define the man’s strategy in a neighbourhood of the
“bad set” ρM = ρL and θM = θL (mod. 2π). The man is going to stay of the boundary of the arena:
ρM (t) = 1 for all t. So ρ′M = 0(t) and one can choose |θ′M (t)| = M . The man also chooses his radial speed
in feedback form, i.e.,

θ′M (t) = sM (θM (t), θL(t))(1.2)

where sM in the following way:

sM (θM , θL) =

{
M if θM − θL ≥ 0 and |θM − θL| < π

2 mod. 2π
−M if θM − θL < 0 and |θM − θL| < π

2 mod. 2π

This is a “strategy”, meaning that it depends on the current position of θM and θL. Let ε ∈ (0, 1) such that

|θM (0)− θL(0)|+ 1− ρL(0) > ε

and such that

L

(
1 +

1

(1− ε)2

)1/2

< M .

This is possible since the positions of lion and man are distinct at the initial time and L < M . We claim
that, whatever speed (ρ′L(t), θ′L(t)) the lion plays, one always has

ρ(t) := |θM (t)− θL(t)|+ 1− ρL(t) ≥ ε/2 ,

which just means that the distance between lion and man is bounded from below by a positive constant.
Note that, since the strategy sM is discontinuous, there could be an issue in defining the solution of equation
(1.2). This is however not the case because, if θM (t) = θL(t) (mod. 2π) for some t and ρL(t) is sufficiently
close to 1, then |θ′L(t)| < M = |θ′M (t)|, so that θL is well-defined and θM 6= θL on some small interval
(t, t+ h).

Let us now argue by contradiction and suppose that there is a first time t1 > 0 such that ρ(t1) = ε/2.
Then there is a nonempty interval (t0, t1) on which ρ(t) ∈ (ε/2, ε) for t ∈ (t0, t1). Let us show that ρ is
nondecreasing on this interval, which clearly yields to a contradiction. Note that, on this interval, we have
1− ρM (t) ≤ ε, which implies that ρM (t) ≥ 1− ε > 0.

We have, for almost all t ∈ (t0, t1), using the Cauchy-Schwarz inequality and the fact that θM (t) 6= θL(t)
for an coutable number of t,

d

dt
ρ(t) = sgn(θM (t)− θL(t))(θ′M (t)− θ′L(t))− ρ′L(t)

≥ −
(
(ρ′L(t))2 + (ρL(t)θ′L(t))2

)1/2(
1 +

1

(ρL(t))2

)1/2

+M

≥ −L
(

1 +
1

(1− ε)2

)1/2

+M ≥ 0

thanks to the choice of ε.

Third case : L = M This problem has been a mathematical challenge for some time. The solution is due
to Berkovitz (see the historical comments in Hajek’s monograph [124]).

The result is the following: the lion can get as close as he wants to the man, but the man can always
avoid the capture. In other words, capture never occurs, but the minimal distance between lion and man
becomes arbitrarily small.



8 CHAPTER 1. INTRODUCTION

Let us show that the lion can get as close as he wants to the man. For this, we will assume to simplify
the computations that at time 0 the lion is at the center of the arena. His strategy will be the following:
he is going to move as fast as possible in the man’s direction while always remaining on the same radius as
him, that is, by ensuring that z(t) remains on the segment [0, y(t)]. In polar coordinates this means that

θL(t) = θM (t) for all t. So θ
′
L = θ′M . Since ρL(t) ≤ ρM (t), the lion maximises ρ′L under the constraint

θ
′
L = θ

′
M . We get

ρ′L =
[
M2 − ρ̄2

L(θ
′
M )2

] 1
2

.

The pair (θL
′
, ρL
′) is again a “strategy”, i.e., a decision rule for the lion. Let us underline that it now depends

on his opponent’s speed.

Let us check that the distance between the lion and the man goes to 0. Let us again argue by contradiction
and suppose that it is bounded from below by a positive constant ε > 0. Then

ρM (t) ≥ ρL(t) + ε ∀t ≥ 0 .

Note that

(ρ̄L(t) + ε)|θ̄′L(t)| ≤ ρM (t)|θ′M (t)| ≤M

so that

ρ′L(t) =
[
M2 − ρ2

L(θ
′
M )2

] 1
2 ≥

[
M2 − ρ2

LM
2

(ε+ ρ̄L)2

] 1
2

≥ Mε

1 + ε

since 0 ≤ ρ̄M (t) ≤ 1. But the above inequality implies that ρ̄ is increasing with a speed not smaller than
Mε/(1 + ε), which contradicts the fact that ρ̄M (t) ≤ 1. �

Let us finally show that the man can avoid the capture. In order to make our life simpler we are going
to assume that the lion plays the strategy described above, the general case being much more involved.

Without loss of generality (why ?) we can assume that the man’s initial position is in the interior of the
arena ( ρM (0) ∈ (0, 1)). Then he is going to spiral up to the boundary. More precisely he plays

θ′M = M
1
2

(
2− ρM
ρM

) 1
2

and ρ′M =
(
M − (ρMθ

′
M )2

) 1
2

This choice is possible because

M − (ρMθ
′
M )2 = M(1− 2ρM + ρ2

M ) = M(1− ρM )2

which gives ρ′M = M
1
2 (1− ρM ) and so

∀t ≥ 0, ρM (t) = 1− (1− ρM (0))e−
√
Mt .

Let us now check that the capture does not occur in finite time: we have

d
dt |y(t)− z(t)| = d

dt (ρM (t)− ρL(t)) = ρ′M (t)− ρ′L(t)

=
(
M − (ρMθ

′
M )2

) 1
2 −

(
M − (ρLθ

′
M )2

) 1
2

= −(θ′M )2(ρ2
M − ρ2

L)/[ρ′M (t) + ρ′L(t)]
≥ −2(θ′M )2(ρM − ρL)/[2ρ′M (t)]

≥ −(θ′M )2e
√
Mt(ρM − ρL)/(1− ρM (0))

Gronwall’s Lemma then implies that ρM (t)− ρL(t) > 0 for all t ≥ 0. �

The above approach is very naive: indeed we did not define rigourously the problem, nor what kind of
strategies the player are allowed to play. We have argued as if the order in which the players play did not
influence the solution, etc... One of the aims of differential game theory is to make rigourous the analysis
of such games. However, in order to better understand the difficulties, it is convenient to start with a more
computational aspect of the theory: Isaacs approach.
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1.2 A verification theorem for pursuit-evasion games

In this section we start the analysis of two-player zero-sum differential games by presenting some ideas due to
Isaacs and his followers. Although most of these ideas rely on regularity assumptions (on the value function)
that do not hold in general, they shed a precious light on the problem by revealing—in an idealized and
simplified framework—many phenomena that will be encountered in a more technical setting throughout the
other chapters. Another interesting aspect of these techniques is that they allow to solve explicitely several
games, in contrast with the subsequent theories which are mainly concerned with theoretical issues.

We restrict ourselves to present the very basic aspects of this theory, a deeper analysis exceeding largely
the scope of these notes. The interested reader can find significant developments in the monographs by
Isaacs himself [133], Blaquière, Gérard and Leitman [35], Baçsar and Olsder [15], Bernhard [40], Lewin [151]
and Melikyan [162].

1.2.1 A general framework

A pursuit-evasion differential game is given by a dynamics and a target: the dynamics is an (ordinary)
differential equation controlled by two controllers:

X ′t = f(Xt, ut, vt)

where ut belongs for any t to some control set U and is chosen at each time by the first Player and vt belongs
to some control set V and is chosen by the second Player. The state of the system Xt lies in RN and we
will always assume that f : RN × U × V → RN is smooth and bounded, so that the solution of the above
differential equation will be defined on [0,+∞).

The target C is a subset of RN . In the pursuit-evasion game we investigate a game in which the first
Player tries to maintain the state of the system as long as possible outside of the target C while the second
Player aims at reaching C as soon as possible.

We now have to explain the nature of information the Players are allowed to use in order to choose
their control all along the play. This is our first attempt to rigourously formalize the fondamental notion of
strategies.

Definition 1.1 (Feedback strategies) A feedback strategy for the first Player (resp. for the second Player)
is a map ū : R+ × RN → U (resp. v̄ : R+ × RN → V ).

This means that each Player chooses at each time t its control as a function of t and of the current
position of the system. As will be extensively explained later on, other definitions of strategies are possible
(and in fact more appropriate to prove existence of the value).

The main issue here is that, given two arbitrary strategies ū : R+ ×RN → U and v̄ : R+ ×RN → V and
an initial position x0 ∈ RN , the system{

X ′t = f(Xt, ū(t,Xt), v̄(t,Xt))
x(0) = x0

(1.3)

does not necessarily have a solution. Hence we have to restrict the choice of strategies for the Players.

Definition 1.2 A pair (Ū , V̄ ) of sets of strategies is admissible if:

1. all the Lebesgue measurable maps u : [0,+∞[→ U (resp. v : [0,+∞[→ V ) belong to Ū (resp. V̄ ).

2. for any pair (ū, v̄) of (Ū , V̄ ) and any initial position x0, equation (1.3) has a unique solution.

3. (concatenation property) if ū1 and ū2 belong to Ū , then for any time τ > 0 the strategy u3 defined by

ū3(t, x) = ū1(t, x) if t ∈ [0, τ ] and ū3(t, x) = ū2(t, x) otherwise

also belongs to Ū (and symmetrically for V̄ ).

4. (shift property) if ū belongs to Ū and τ > 0, then ū1(t, x) = ū(t+ τ, x) belongs to Ū (and symmetrically
for V̄ ).
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Notation: From now on we fix a given admissble pair Ū × V̄ of set of strategies. For any (ū, v̄) ∈ Ū × V̄
we denote by Xx0,ū,v̄

t the unique solution of (1.3).

Let us explain what means reaching the target: for given a trajectory X : [0,+∞)→ RN let

θC(X) := inf{t ≥ 0 | Xt ∈ C} .

We set θC(X) := +∞ if Xt /∈ C for all t ≥ 0. For x0 /∈ C, ū ∈ Ū and v̄ ∈ V̄ we define

J (x0, ū, v̄) := θC(Xx0,ū,v̄) .

Definition 1.3 For a fixed admissible pair (Ū , V̄ ) of sets of strategies the lower value function is given by

V−(x0) := sup
ū∈Ū

inf
v̄∈V̄
J (x0, ū, v̄)

while the upper value function is

V+(x0) := inf
v̄∈V̄

sup
ū∈Ū
J (x0, ū, v̄)

We say that the game has a value if V+ = V−. In this case we say that the map V := V+ = V− is the
value of the game. We say that a strategy ū∗ ∈ Ū (resp. v̄∗ ∈ V̄ ) is optimal for the first Player (resp. the
second Player) if

V−(x0) := inf
v̄∈V̄
J (x0, ū

∗, v̄) (resp. V+(x0) := supū∈Ū J (x0, ū, v̄
∗))

Let us note that upper and lower value functions a priori depend on the admissible sets of strategies
(Ū , V̄ ). In fact, with this definition of value function, the existence of a value is completely open. This is
the reason why we will be forced to give up this approach to obtain a more general result. However we shall
now see that it is nevertheless useful to understand some basic facts on the problem.

1.2.2 A verification Theorem

The following verification Theorem—largely due to Isaacs—allows to show that a given function is indeed
the value function of the game. For this, it will be enough to check that this (supposedly smooth) function
is the solution of a Partial Differential Equation (P.D.E.) called Hamilton-Jacobi-Isaacs equation (in short
Isaacs’equation).

Let us associate with the dynamics of the game

X ′(t) = f(Xt, ut, vt)

two functions called Hamiltonians of the system:

H−(x, p) := sup
u∈U

inf
v∈V
〈p, f(x, u, v)〉 and H+(x, p) := inf

v∈V
sup
u∈U
〈p, f(x, u, v)〉 .

Obviously

H−(x, p) ≤ H+(x, p) ∀(x, p) ∈ RN × RN .

We work here under Isaacs’condition, which suppose the equality between these two quantities:

H−(x, p) = H+(x, p) ∀(x, p) ∈ RN × RN .(1.4)

In this case we set

H(x, p) = H−(x, p) = H+(x, p) .

Let us recall that the argument of an optimization problem is the set of optimizers (if any) of this problem. Let
us denote by ũ(x, p) and ṽ(x, p) elements of arg maxu∈U min

v∈V
〈p, f(x, u, v)〉 and of arg minv∈V max

u∈U
〈p, f(x, u, v)〉:

ũ(x, p) ∈ arg maxu∈U min
v∈V
〈p, f(x, u, v)〉 and ṽ(x, p) ∈ arg minv∈V max

u∈U
〈p, f(x, u, v)〉 ∀(x, p) .
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Theorem 1.4 (Verification Theorem) Let us assume that the target is closed and that Isaacs’condition
(1.4) holds. Suppose that there is a nonnegative map V : RN → R, continuous on RN and of class C1 over
RN\C, with V(x) = 0 on C and satisfying the Isaacs’equation:

H(x,DV (x)) + 1 = 0 ∀x ∈ RN\C .(1.5)

Let us furthermore assume that the maps x → ū∗(x) := ũ(x,DV (x)) and x → v̄∗(x) := ṽ(x,DV (x)) belong
to Ū and V̄ respectively.

Then the game has a value and V is the value of the game. Moreover the strategies ū∗(x) and v̄∗(x) are
optimal, in the sense that

V(x) = J (x, ū∗, v̄∗) = sup
ū∈Ū
J (x, ū, v̄∗) = inf

v̄∈V̄
J (x, ū∗, v̄)

for all x ∈ RN\C.

This result is quite striking since it reduces the resolution of the game to that of a P.D.E. and furthermore
provides in the same time the optimal feedbacks of the players. Unfortunately it is of limited interest because
the value function is very seldom smooth enough for this result to apply. In fact Isaacs’ theory is mainly
concerned with the singularities of the value function, i.e., the set of points where the value function fails to
be either continuous, or differentiable.

The reverse result also holds true: if the game has a value and if this value has the regularity described
in the Theorem, then it satisfies Isaacs’ equation (1.5). This statement shall be proved, under much more
general conditions, in a subsequent chapter.

Proof: Let us fix x0 ∈ RN . We first show that

sup
ū
J (x0, ū, v̄

∗) ≤ V (x0) .

For this, let ū ∈ Ū and let us set Xt = Xx0,ū,v̄
∗

and τ := J (x0, ū, v̄
∗). Then, for any t ∈ [0, τ), we have

d
dtV(Xt) = 〈DV(Xt), f(Xt, ū(t,Xt), v̄

∗(Xt))〉
≤ maxu∈U 〈DV(Xt), f(Xt, u, v̄

∗(Xt))〉
= H(Xt, DV(Xt))
= −1

Let us integrate the above inequality between 0 and t ≤ τ . We get

V(Xt)−V(x0) ≤ −t .

Since V(Xt) is nonnegative and since this inequality holds for any t ≤ τ , τ has to be finite. For t = τ , we
have V(x(τ)) = 0 since Xτ belongs to C. So by continuity of V on RN ,

V(x0) ≥ τ = J (x0, ū, v̄
∗) .

One can show in the same way that V(x0) ≤ J (x0, ū
∗, v̄) for any v̄ ∈ V̄ . Hence

J (x0, ū, v̄
∗) ≤ V(x0) ≤ J (x0, ū

∗, v̄)

which proves that the game has a value, that this value is V and that the strategies ū∗(x) and v̄∗(x) are
optimal. �

Corollary 1.5 Under the notations and assumptions of Theorem 1.4, one has

V(Xx0,ū
∗,v̄∗

t ) = V(x0)− t ∀t ∈ [0,V(x0)], ∀x0 ∈ RN\C .

Proof: Indeed
d
dtV(Xt) = 〈DV(Xt), f(Xt, ū

∗(Xt), v̄
∗(Xt))〉

= H(Xt, DV(Xt)) = −1

�
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1.2.3 The Hamiltonian system

Let us now give some hints about the explicit computation of the value function V. The key idea is that
it is possible to compute V along the characteristics associated with Isaacs’ equation (1.5). This system of
ordinary differential equations is a Hamiltonian system.

Throughout this section we assume that V is as in Theorem 1.4 and of class C2 in RN\C. We also
assume that the maps ũ(x, p) and ṽ(x, p) are uniquely defined. Finally we suppose that the Hamiltonian
H(x, p) := H−(x, p) = H+(x, p) is of class C2 on RN × RN∗ (which implies in general some regularity on f).

Theorem 1.6 Let x0 ∈ RN\C be an initial position, ū∗ and v̄∗ be the optimal strategies given in Theorem
(1.4) and let us set Xt = Xx0,ū

∗,v̄∗ . Then the pair (X,P ), where Pt := DV(Xt), is a solution of the
Hamiltonian system {

X ′t = ∂H
∂p (Xt, Pt)

P ′t = −∂H∂x (Xt, Pt)
(1.6)

on [0,V(x0)).

Remarks 1.7

1. The variable P is often called the adjoint variable of X.

2. In control theory (i.e., when f only depends on u or on v), the existence of such an adjoint is an
optimality condition for a given trajectory X. This statement is known as the Pontryagin maximum
principle.

Proof of Theorem 1.6: We first use the following Lemma, proved below:

Lemma 1.8
∂H

∂p
(x, p) = f(x, ũ(x, p), ṽ(x, p))

In particular X ′t = ∂H
∂p (Xt, Pt). Let us now notice that, by definition of P ,

P ′t = D2V(Xt)X
′
t = D2V(Xt)f(Xt, ū

∗(Xt), v̄
∗(Xt))) = D2V(Xt)

∂H

∂p
(Xt, Pt).

Differentiating Isaacs’ equation (1.5), we get

∂H

∂x
(x,DV(x)) +D2V(x)

∂H

∂p
(x,DV(x)) = 0 ∀x ∈ RN\C ,

from which we deduce the equation satisfied by Pt. �

Proof of Lemma 1.8: Let us recall that the maximum and the minimum ũ(x, p) et ṽ(x, p) are supposed to
be unique. Since f is continuous and U and V are compact, this easily implies that the maps (x, p)→ ũ(x, p)
and (x, p)→ ṽ(x, p) are continuous on RN × RN∗ . Let q ∈ RN and h > 0. We have (omitting the x variable
for simplicity)

H(p+ hq)−H(p) = 〈f(ũ(p+ hq), ṽ(p+ hq)), p+ hq〉 − 〈f(ũ(p), ṽ(p)), p〉

But
〈f(ũ(p+ hq), ṽ(p+ hq)), p+ hq〉 ≤ 〈f(ũ(p+ hq), ṽ(p)), p+ hq〉

while
〈f(ũ(p), ṽ(p)), p〉 ≥ 〈f(ũ(p+ hq), ṽ(p)), p〉 ,

so that
H(p+ hq)−H(p) ≤ h〈f(ũ(p+ hq), ṽ(p)), q〉 .

Dividing by h > 0 and letting h→ 0+, we obtain

〈DH(p), q〉 ≥ 〈f(ũ(p), ṽ(p)), q〉 .

The same inequality for −q leads to the opposite inequality. �

Let us now assume that the target is the closure of an open set with a smooth boundary: more precisely
we suppose that C = {x ∈ RN , φ(x) ≤ 0} where φ : RN → R is a C2 function such that Dφ(x) 6= 0 whenever
φ(x) = 0.
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Proposition 1.9 If we assume furthermore that V is of class C1 on RN\C, then

∀x ∈ ∂C, H(x,Dφ(x)) < 0 et DV(x) = − Dφ(x)

H(x,Dφ(x))

Remarks 1.10

1. The pair (X,P ) in Theorem 1.6 admits for an initial condition for X: X0 = x0 and a terminal condition

for P : PT = − Dφ(XT )
H(x,Dφ(XT )) where T = V(x0).

2. We shall see below that the condition H(x,Dφ(x)) ≤ 0 in ∂C is necessary in order to ensure the value
function to be continuous in a neighborhood of ∂C.

Proof of Proposition 1.9: Let y ∈ ∂C. Then V(y) = 0. Since V = 0 on ∂C, V has a local maximum at
y on ∂C = {x ∈ RN ; φ(x) = 0}, so that, by the Euler-Lagrange condition, there is some λ ∈ R such that
DV(y) = λDφ(y). Now note that, since Dφ(y) 6= 0,

φ (y + hDφ(y)) = φ(y) + h|Dφ(y)|2 + o(h) = h|Dφ(y)|2 + o(h) > 0

for any h > 0 sufficiently small. So the point y+ hDφ(y) belongs to RN\C = {x ∈ RN , φ(x) > 0} for h > 0
sufficiently small. Since V is positive on RN\C, this implies that

0 < V (y + hDφ(y)) = V(y) + h〈Dφ(y), DV(y)〉+ o(y) = hλ|Dφ(y)|2 + o(h) .

Dividing by h > 0 and letting h→ 0+ we get λ ≥ 0.
Recall that H(x,DV(x)) = −1, so that H(x, λDφ(x)) = −1. Since H is 1−positively homogeneous with

respect to p, one gets λ = −1/H(x,Dφ(x)). �

The idea in order to compute V at some point x0 could be the following: one looks at a solution to

(1.6) with limit condition X0 = x0 and PT = − Dφ(XT )
H(x,Dφ(XT )) where T = θC(X). Then T = θC(X) is a good

candidate for V(x0).

Unfortunately such a solution does not always exist, or there might be several solutions. Moreover, even
if it exists and is unique, it does not necessarily give the right answer. This is due to the fact that the value
function is not C1—nor even continuous—in general.

In pratice one looks at all the solutions of the backward system
X ′t = −∂H∂p (Xt, Pt)

P ′t = ∂H
∂x (Xt, Pt)

X0 = ξ, P0 = − Dφ(ξ)
H(ξ,Dφ(ξ))

for ξ ∈ ∂C and try to deduce from this the function V.

1.2.4 Usable part of the boundary and discontinuities

Usable part of the boundary

We have seen above (Proposition 1.9) that a necessary condition for the value to be of class C1 on RN\C is
that

∀x ∈ ∂C, H(x,Dφ(x)) < 0

where C := {x ∈ RN | φ(x) ≤ 0}. This leads us to call usable part of the boundary ∂C the set of points
x ∈ ∂C such that H(x,Dφ(x)) < 0. We denote this set by UP .

Proposition 1.11 Let us assume that the game has a value V and that Isaacs’ condition (1.4) holds. If
x ∈ UP then

lim
y→x, y/∈C

V(y) = 0

On the contrary, if H(x,Dφ(x)) > 0, then

∃τ > 0, ∃r > 0, such that, if |y − x| ≤ r and y /∈ C, then V(y) ≥ τ
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Remarks 1.12

1. The Proposition states that the second Player (which plays with v) can ensure an almost immediate
capture in a neighborhood of the points of UP.

2. On the contrary, in a neighborhood of a point x ∈ ∂C such that H(x,Dφ(x)) > 0 holds, the first
Player can postpone the capture at least for a positive time.

3. What happens at points x ∈ ∂C such that H(x,Dφ(x)) = 0 is much more intricate. The set of such
points—improperly called Boundary of the Usable Part (BUP)—plays a central role in the computation
of the boundary of the domain of the value function.

Proof of Proposition 1.11: If x ∈ UP then, from the definition of H,

H(x,Dφ(x)) = inf
v∈V

sup
u∈U
〈f(x, u, v), Dφ(x)〉 < 0

and thus there are θ > 0, v0 ∈ V such that, for any u ∈ U ,

〈f(x, u, v0), Dφ(x))〉 ≤ −2θ.

By continuity, there is some r′ > 0 with

∀y ∈ B(x, r′), ∀u ∈ U, 〈f(y, u, v0), Dφ(y)〉 ≤ −θ.

Let M be an upper bound of |f | and of |Dφ| on B(x, r′) × U × V and B(x, r′) respectively. Let r ∈
(0, (r′θ)/(M2 + θ)) (note that r < r′). Then φ(y) ≤ rM in B(x, r) because φ(x) = 0 and φ is M−Lipschitz
continuous.

Let us now fix y ∈ B(x, r)\C and ū ∈ Ū a strategy for the first Player. Let us set Xt = Xy,ū,v̄
t , where

v̄ := v0 (constant strategy). Then Xt ∈ B(x, r′) for t ∈ [0, (r′ − r)/M ] since |x′(t)| ≤ M . On this interval
one has

d

dt
φ(Xt) = 〈Dφ(Xt), f(Xt, ū(t,Xt), v0)〉 ≤ −θ

So
φ(Xt) ≤ φ(x)− θt ≤Mr − θt .

For t = Mr/θ (such a t belongs to [0, (r′ − r)/M ] by the choice of r), this implies that φ(Xt) ≤ 0. Hence
J (y, ū, v̄0) ≤Mr/θ. So, for any y ∈ B(x, r)

V(y) ≤ sup
ū∈Ū
J (y, ū, v̄0) ≤Mr/θ ,

which shows that limy→x, y/∈C V(y) = 0 since r is arbitrary.

If H(x,Dφ(x)) > 0, one can do similar estimates with a constant strategy ū := u0 for Player 1, where
u0 ∈ U is such that

inf
v∈V
〈f(x, u0, v), Dφ(x)〉 > 0 .

�

Discontinuities

We now investigate what happens at points of discontinuity of the value function.

Proposition 1.13 Let us still assume that the game has a value V and that Isaacs’ condition (1.4) holds.
Let x /∈ C and r > 0 such that B(x, r) ⊂ RN\C. Let us assume that there are two maps V1 and V2 of class
C1 in B(x, r) and a map ψ : RN → R such that

a) ∀y ∈ B(x, r), if ψ(y) = 0, then Dψ(y) 6= 0.
b) ∀y ∈ B(x, r), if ψ(y) > 0, then V(y) = V1(y).
c) ∀y ∈ B(x, r), if ψ(y) < 0, then V(y) = V2(y).
d) ∀y ∈ B(x, r), if ψ(y) = 0, then V1(y) > V2(y).
Then

H(x,Dψ(x)) = 0.
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Remarks 1.14

1. The set {x | ψ(x) = 0} is called a semi-permeable surface or barrier for the game. One can show that
each player can prevent the other one from crossing the barrier in one direction.

2. Equation H(x,Dψ(x)) = 0 is also called Isaacs’ equation. It is a geometric equation, in the sense
that one is interested not in the solution ψ itself, but in the set {ψ(x) = 0}. Since H is 1−positively
homogeneous, if ψ is a solution, then so is θ ◦ ψ for any smooth nondecreasing map θ : R→ R.

3. An important particular application of the Proposition concerns the domain of the value function (i.e.,
the set dom(V) := {x | V(x) < +∞}). If the boundary of the domain is smooth, then it satisfies
Isaacs’ equation.

4. If ψ satisfies Isaacs’ equation, then the set {x ∈ RN ; ψ(x) = 0} is invariant for the solution of (1.6)
in the following sense: the solution (X,P ) of (1.6) with initial conditions X0 = x and P0 = Dψ(x)
satisfies ψ(Xt) = 0 pour tout t ≥ 0 small.

Proof of Proposition 1.13: Up to reducing r if necessary, we can assume that there is η > 0 such that

inf
y∈B(x,r)

V1(y) ≥ sup
y∈B(x,r)

V2(y) + η(1.7)

Let M be an upper bound of |f | and |Dψ| on B(x, r). Let us argue by contradiction by assuming for instance
that H(x,Dψ(x)) > 0. Then there is u0 ∈ U and θ > 0 such that

〈f(x, u0, v), Dψ(x)〉 ≥ 2θ ∀v ∈ V .

By continuity we can find r′ ∈ (0, r) such that

〈f(y, u0, v), Dψ(y)〉 ≥ θ ∀y ∈ B(x, r′), ∀v ∈ V .

As in the proof of Proposition 1.11, we can then show that there is a ball B(x, r′′) (for some 0 < r′′ < r′)
such that, if y ∈ B(x, r′′) with ψ(y) < 0, then there is a time t∗ ≤ Mr′′/θ such that ψ(Xy,ū0,v̄

t∗ ) > 0, where
ū0 := u0 and v̄ ∈ V̄ is any strategy of Player 2.

Let now v̄∗ be an optimal strategy for Player 2 when starting from a reference point y0 ∈ B(x, r′′)

with ψ(y0) < 0. Let Xt = Xy0,u0,v̄
∗

t . Then there is a time t∗ ∈ (0,Mr′′/θ) such that ψ(Xt∗) > 0 and
y∗ := Xt∗ ∈ B(x, r). Let now u1 be an ε−optimal response to the strategy v̄∗(·+ t∗, ·). By definition of the
value one has

J (y∗, u1, v̄
∗(·+ t∗, ·)) ≥ V(y∗)− ε = V1(y∗)− ε .

Let us now define the new control u by u(t) = u0 on [0, t∗) and u(t) = u1(t) on [t∗,+∞). Then

V(y0) = V2(y0) ≥ J (y0, u, v̄
∗) = J (y∗, u1, v̄

∗(·+ t∗, ·))− t∗ ≥ V1(y∗)− ε−Mr′′/θ

which yields to a contradiction with (1.7) if we choose ε and r′′ small enough. �

1.2.5 Some classical differential games

We complete this section by introducing other classes of two-player zero-sum differential that are classicaly
studied in the literature.

Bolza problem

Bolza problem is a problem with finite horizon: the game ends up at some fixed terminal time denoted here T .
Let us fix an admissible pair (Ū , V̄ ) of feedback strategies. Given an initial condition (t0, x0) ∈ [0, T ]×RNa
strategy ū ∈ Ū for the first Player and a strategy v̄ ∈ V̄ for the second player, the payoff is given by

J (t0, x0, ū, v̄) :=

∫ T

t0

`(s,Xs, ū(s,Xs), v̄(s,Xs))ds+ g(x(T ))
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where X is the unique solution to the following differential equation{
X ′t = f(Xt, ū(t,Xt), v̄(t,Xt))
x(t0) = x0

(1.8)

We assume that ` : [0, T ] × RN × U × V → R and g : RN → R are smooth and bounded. The first Player
minimizes the payoff while the second Player maximises it. This leads to the definition of the value functions:
Upper value function:

V+(t0, x0) := inf
ū∈Ū

sup
v̄∈V̄
J (t0, x0, ū, v̄)

Lower value function:
V−(t0, x0) := sup

v̄∈V̄
inf
ū∈Ū
J (t0, x0, ū, v̄)

Isaacs’ condition takes the form:

H(t, x, p) := inf
u∈U

sup
v∈V
{`(t, x, u, v) + 〈p, f(x, u, v)〉} = sup

v∈V
inf
u∈U
{`(t, x, u, v) + 〈p, f(x, u, v)〉}

for any (t, x, p) ∈ [0, T ]× RN × RN . We assume that there exists ũ(t, x, p) and ṽ(t, x, p) such that

H(t, x, p) := sup
v∈V
{`(t, x, ũ(t, x, p), v) + 〈p, f(x, ũ(t, x, p), v)〉} = inf

u∈U
{`(t, x, u, ṽ(t, x, p)) + 〈p, f(x, u, ṽ(t, x, p))〉} .

Exercice 1.1 (Verification Theorem) Show that if V is a C1 function on (0, T ) × RN , continuous on
[0, T ]×RN , which satisfies the terminal condition V(T, x) = g(x) and the Hamilton-Jacobi-Isaacs equation:

∂tV(t, x) +H(t, x,DV(t, x)) = 0 ∀x ∈ (0, T )× RN ,

and if, furthermore the maps ū∗(t, x) := ũ(t, x,DV(t, x)) and v̄∗(t, x) := ṽ(t, x,DV(t, x)) belong to Ū and
V̄ respectively, the game has a value which is V.

Show that in this case the strategies ū∗(t, x) and v̄∗(t, x) are optimal for the Players.

Mayer problem is a particular case of Bolza problem in which ` = 0.

Exercice 1.2 Let us suppose that the assumption of the previous exercise hold and that ` = 0. Show that
the value function V is constant along trajectories when the players play their optimal strategies.

Infinite horizon problem

In this problem we are again dealing with an integral cost, but the horizon is now infinite. In order for the
payoff to be well-defined we need to introduce a discount factor λ > 0 which indicates that a payoff today is
more interesting than a payoff tomorrow.

Let us fix an admissible pair (Ū , V̄ ) of feedback strategies. Given an initial condition x0 ∈ RN , a strategy
ū ∈ Ū for the first Player and a strategy v̄ ∈ V̄ for the second player, the outcome of the game is given by

J (x0, ū, v̄) :=

∫ +∞

0

e−λt`(Xt, ū(t,Xt), v̄(t,Xt))dt

where X is the unique solution to (1.8) with initial condition (0, x0). We assume that ` : RN × U × V → R
is smooth and bounded. Here again the first player minimizes while the second player maximizes.
Upper value function:

V+(x0) := inf
ū∈Ū

sup
v̄∈V̄
J (x0, ū, v̄)

Lower value function:
V−(x0) := sup

v̄∈V̄
inf
ū∈Ū
J (x0, ū, v̄)

In this game Isaacs’ condition takes the form

H(x, p) = inf
u∈U

sup
v∈V
{L(x, u, v) + 〈p, f(x, u, v)〉} sup

v∈V
inf
u∈U
{L(x, u, v) + 〈p, f(x, u, v)〉}

for any (x, p) ∈ RN × RN . Note that the upper and lower value functions are bounded in RN .
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Exercice 1.3 State and prove a verification Theorem for this game.
Indications :
i) The Hamilton-Jacobi-Isaacs’ equation for this game is

−λV(x) +H(x,DV(x)) = 0

ii) There is no terminal condition for the value function. To overcome this difficulty, it is natural to
assume that the candidate value function is bounded.
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Chapter 2

Strategies

In this chapter we introduce the different notions of strategies used in this notes. Since in the sequel we
shall mainly work in the framework of nonanticipative strategies and of nonanticipative strategies with delay,
the reader can first restrict his lecture to the first section, which is devoted to these notions. Some more
refined notions of strategies are used when working outside of Isaacs’ condition, or for differential games with
incomplete information.

In order to fix the ideas, we mainly work in the framework of a two-player differential game and for
bounded controls. The extension to other frameworks is straightforward in general.

We aim at formalizing the fact that the players play in continuous time and observe eachother contin-
uously. This is not an easy task and, actually, no completely satisfactory definition has been found up to
now.

2.1 Nonanticipative and delay strategies

Let U and V be metric spaces and −∞ < t0 < t1 ≤ +∞. We denote by U(t0, t1) the set of bounded,
Lebesgue measurable maps u : [t0, t1]→ U . We set U(t0) := U(t0,+∞) (or, if the game has a fixed horizon
T , U(t0) := U(t0, T )). Elements of U(t0) are called the open loop controls played by Player 1. Symetrically let
us denote by V(t0, t1) the set of bounded Lebesgue measurable maps v : [t0, t1]→ V . We will systematically
call Player 1 the player playing with the control u and Player 2 the player playing with the control v. If
u1, u2 ∈ U(t0) and t1 ≥ t0, we write u1 ≡ u2 on [t0, t1] whenever u1 and u2 coincide almost everywhere on
[t0, t1].

A strategy for Player 1 is a map α from V(t0) to U(t0). This means that Player 1 answers to each control
v ∈ V(t0) of Player 2 by a control u = α(v) ∈ U(t0). However since we wish to formalize the fact that no
player can guess in advance the future behaviour of the other player, we have to require that such a map α
is nonanticipative.

Definition 2.1 (Nonanticipative strategy) A map α : V(t0)→ U(t0) is nonanticipative if, for any time
t1 > t0 and any controls v1, v2 ∈ V(t0) such that v1 = v2 almost everywhere in [t0, t1] we have α(v1) = α(v2)
almost everywhere in [t0, t1].

We denote by A(t0) the set of Player 1’s nonanticipative strategies α : V(t0) → U(t0). In a symmetric
way we denote by B(t0) the set of Player 2’s nonanticipative strategies, which are the nonanticipative maps
β : U(t0)→ V(t0).

In order to put the game under normal form, one should be able to say that, for any pair of nonanticipative
strategies (α, β) ∈ A(t0)× B(t0) there is a unique pair of controls (u, v) ∈ U(t0)× V(t0) such that

α(v) = u and β(u) = v .

The pair (u, v) would be the natural answer of the players to the strategies (α, β). Unfortunately this is not
possible, as shows exercice 2.2. For this reason we are lead to introduce a more restrictive notion of strategy,
the nonanticipative strategies with delay.
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Definition 2.2 (Delay strategies) A nonanticipative strategy with delay (in short delay strategy) for Player
1 is a map α : V(t0)→ U(t0) for which there is a delay τ > 0 such that, for any two controls v1, v2 ∈ V(t0)
and for any t ≥ t0, if v1 ≡ v2 on [t0, t], then α(v1) ≡ α(v2) on [t0, t+ τ ].

In particular, the restriction of α(v) to the interval [t0, t0 +τ ] is independent of v because any two controls
v1, v2 ∈ V(t0) coincide almost everywhere on [t0, t0].

We also note that delay strategies are nonanticipative strategies, but the converse is false in general. For
instance, if σ : V → U is Borel measurable, then the map

α(v)(t) = σ(v(t)) ∀t ∈ [t0,+∞), ∀v ∈ V(t0)

is a nonanticipative strategy but not a delay strategy, unless σ is constant.
We denote by Ad(t0) (resp. Bd(t0)) the set of delay strategies for Player 1 (resp. Player 2).

The key property of delay strategies is given in the following Lemma:

Lemma 2.3 Let α ∈ A(t0) and β ∈ B(t0). Assume that either α or β is a delay strategy. Then there is a
unique pair of controls (u, v) ∈ U(t0)× V(t0) such that

α(v) = u and β(u) = v almost everywhere in [t0,+∞) .

Proof : Let us assume to fix the ideas that α is a delay strategy. Let τ be the associated delay.
We first claim that, for any integer k ≥ 1, there is a unique pair of Lebesgue measurable maps (uk, vk) :

[t0, t0 +kτ ]→ U ×V such that α(vk) = uk and β(uk) = vk on [t0, t0 +kτ ]. We prove the claim by induction.
For k = 1, let us pick any control v ∈ V(t0) and set u1 = α(v) and v1 = β(u1). Since α is a delay strategy,

we know that the restriction of α(v) to [t0, t0 + τ ] is independent of v, so that α(v1) = α(v) = u1 almost
everywhere on [t0, t0 + τ ]. So the property holds for k = 1.

Let us now assume that the result holds for some k ≥ 1: there is a unique pair (uk, vk) ∈ U(t0)×V(t0) such
that α(vk) = uk and β(uk) = vk a.e. on [t0, t0 + kτ ]. We extend uk and vk in arbitrary controls on [t0,+∞).
Let us now set uk+1 = α(vk) and vk+1 = β(uk+1) on [t0,+∞). Then from our construction uk+1 = uk a.e.
on [t0, t0 + kτ ]. Since β is a nonanticipative strategy, this implies that vk = β(uk) = β(uk+1) = vk+1 a.e. on
[t0, t0 + kτ ]. But α is a delay strategy and therefore uk+1 = α(vk) = α(vk+1) a.e. on [t0, t0 + (k+ 1)τ ]. This
completes the proof of the claim by induction.

By construction the pair (uk, vk) is unique. Hence, if l ≤ k, we have

(uk, vk) = (ul, vl) a.e. on [t0, t0 + lτ ] .

So, if we set

(u, v) = (uk, vk) on [t0, t0 + kτ ]

the pair (u, v) satisfies the desired property. �

2.2 Random strategies

As before we fix (U, dU ) and (V, dV ) two compact metric spaces. Let us endow U(t0) with the topology of
the L1

loc convergence: we say that a sequence (un) of controls in U(t0) converges to some control u ∈ U(t0) if

lim
n→+∞

∫ T

0

dU (un(t), u(t))dt = 0 ∀T ≥ 0 .

In the same way we endow V(t0) with the topology of the L1
loc convergence.

We now introduce the notions of random strategies. Let us fix a nonempty set S of probability spaces.
It is the set where the players are going to find random variables in order to randomize their strategies. In
practice S has to be “large”: for instance

S = {([0, 1]n, B([0, 1]n),Ln), for some n ∈ N∗} ,

where B([0, 1]n) is the class of Borel sets and Ln is the Lebesgue measure on Rn.
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Definition 2.4 (Random delay strategies) A random delay strategy (in short, a “random strategy”)
for Player 1 is a pair ((Ωα,Fα,Pα), α), where (Ωα,Fα,Pα) belongs to the set of probability spaces S and
α : Ωα × V(t0) 7→ U(t0) satisfies

(i) α is a measurable map from Ωα×V(t0) to U(t0), with Ωα endowed with the σ−field Fα and U(t0) and
V(t0) with the Borel σ−field associated with the L1

loc topology,

(ii) there is a delay τ > 0 such that, for any v1, v2 ∈ V(t0), any t ≥ t0, and any ω ∈ Ωα,

v1 ≡ v2 on [t0, t] ⇒ α(ω, v1) ≡ α(ω, v2) on [t0, t+ τ ] .

We denote by Ar(t0) the set of random delay strategies for Player 1. By abuse of notations, an element
of Ar(t0) is simply noted α—instead of ((Ωα,Fα,Pα), α)—, the underlying probability space being always
denoted by (Ωα,Fα,Pα).

Random delay strategies for Player 2 are defined symmetrically: a random strategy is a map β : Ωβ ×
U(t0) 7→ V(t0), where (Ωβ ,Fβ ,Pβ) belongs to S, which satisfies the conditions:

(i) β is measurable from Ωβ × U(t0) to V(t0),

(ii) there is a delay τ > 0 such that, for any u1, u2 ∈ U(t0), any t ≥ t0 and any ω ∈ Ωβ ,

u1 ≡ u2 on [t0, t] ⇒ β(ω, u1) ≡ β(ω, u2) on [t0, t+ τ ] .

The set of random delay strategies for Player 2 is denoted by Br(t0). Elements of Br(t0) are denoted simply
by β, and the underlying probability space by (Ωβ ,Fβ ,Pβ).

Lemma 2.5 For any pair (α, β) ∈ Ar(t0)×Br(t0) and any ω := (ω1, ω2) ∈ Ωα ×Ωβ, there is a unique pair
(uω, vω) ∈ U(t0)× V(t0), such that

α(ω1, vω) = uω and β(ω2, uω) = vω .(2.1)

Furthermore the map ω → (uω, vω) is measurable from Ωα × Ωβ endowed with Fα ⊗ Fβ into U(t0) × V(t0)
endowed with the Borel σ−field associated with the L1

loc topology.

Proof : Let us prove simultaneously the existence, uniqueness and measurability of ω → (uω, vω). Without
loss of generality we assume that the strategies α and β have the same associated delay τ > 0. As for Lemma
2.3, we argue by induction to prove that the map ω → (uω, vω)|[t0,t+nτ]

from Ωα×Ωβ into L1([t0, t+nτ ], U×V )
is well-defined and measurable.

Let us start with n = 1. Let us fix û and v̂ in U(t0) and V(t0). Since α(ω1, ·) and β(ω2, ·) have
a delay τ , the restrictions of α(ω1, v̂) and β(ω2, û) to [t0, t0 + τ ] do not depend on û and v̂. Hence we
set (uω, vω) := (α(ω, v̂), β(ω, û)) in [t0, t0 + τ ], which uniquely defines (uω, vω) on this interval. In order to
prove the measurability of the map ω → (uω, vω), it is enough to show that, for any Borel subsets B1 and
B2 of U(t0, t0 + τ) and V(t0, t0 + τ), the set

Ω := {ω ∈ Ωα × Ωβ | (uω, vω)|[t0,t0+τ]
∈ B1 ×B2}

is measurable. This is indeed the case because

Ω = {ω1 ∈ Ωα | α(ω1, v̂)|[t0,t0+τ]
∈ B1} × {ω2 ∈ Ωβ | β(ω2, û)|[t0,t0+τ]

∈ B2} ,

which is measurable since α and β are measurable. So the result holds true for n = 1.
Let us now assume that ω → (uω, vω)|[t0,t0+nτ]

from Ωα × Ωβ into L1([t0, t0 + nτ ]) is well-defined and

measurable, and let us show that this still holds true for n+ 1. Let us fix again û and v̂ in U(t0) and V(t0).
For any (u, v) ∈ U(t0, t0 +nτ)×V(t0, t0 +nτ), we denote by ũ and ṽ the maps equal to u and v on [t0, t0 +nτ ]
and to û and v̂ on [tn, T ]. Note that (u, v) 7→ (ũ, ṽ) is continuous from L1 to L1. We extend (uω, vω) to
[t0, t0 + (n + 1)τ ] by setting (uω, vω) := (α(ω1, ṽω), β(ω2, ũω)) on [t0, t0 + (n + 1)τ ]. Since α and β have
a delay τ , this extension is unique and does not depend on the choice of û and v̂. In order to prove the
measurability of the map ω → (uω, vω)|[t0,t0+(n+1)τ]

, it is again enough to show that, for any Borel subsets

B1 and B2 of U(t0, t0 + (n+ 1)τ) and V(t0, t0 + (n+ 1)τ), the set

Ω := {ω ∈ Ωα × Ωβ | (uω, vω)|[t0,t0+(n+1)τ)
∈ B1 ×B2}

is measurable. This is indeed the case because Ω is the preimage of the set B1 × B2 by the map ω →
(α(ω1, ṽω), β(ω2, ũω)) which is measurable as the composition of the mesurable maps ω 7→ (uω, vω)|[t0,t0+nτ]

,

the map (u, v) 7→ (ũ, ṽ) and the maps α and β. �
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2.3 Exercises

Exercice 2.1 Let f : [0,+∞) × RN × U × V → RN be continuous in all its variables and uniformly
Lipschitz continuous with respect to the space variable x. Let us fix an initial condition x0 and let ū :
[0,+∞) × RN × V → U be a Borel measurable map which is also uniformly Lipschitz continuous with
respect to the space variable x. For any control v ∈ V(t0) let Xv be the unique solution to the diffential
equation {

X ′t = f(t,Xt, ū(t,Xt, vt), vt) t ≥ 0
Xt0 = x0

Then we set α : V(t0)→ U(t0) by

α(v)(t) = ū(t,Xv
t , vt) ∀v ∈ V(t0) .

Show that α is nonanticipative.

Exercice 2.2 Assume that U = V = [−1, 1].

1. Let (α, β) be the pair of nonanticipative strategies defined by:

α(v)(t) = v(t) and β(u)(t) = u(t) for a.e. t ≥ t0, ∀(u, v) ∈ U(t0)× V(t0) .

Show that there is infinitely many pairs of controls (u, v) ∈ U(t0)× V(t0) such that

α(v) = u and β(u) = v a.e. in [t0,+∞) .

2. If now we define α and β by

α(v)(t) = −v(t) and β(u)(t) = sgn(u(t)) for a.e. t ≥ t0, ∀(u, v) ∈ U(t0)× V(t0) ,(2.2)

(where sgn(s) = 1 if s ≥ 0 and −1 otherwise), show that there is no pair (u, v) ∈ U(t0) × V(t0) for
which (2.2) holds.

Exercice 2.3 Let β ∈ B(t0), t1 > t0 and u0 ∈ U(t0) be fixed. Show that the map β1 : U(t0)→ V(t0) defined
by

β1(u)(t) = β0(ũ)(t) where ũ =

{
u0 on [t0, t1)
u on [t1,+∞) ∀t ∈ [t1,+∞), ∀u ∈ U(t1) ,

is a nonanticipative strategy on [t1,+∞).

2.4 Comments

Nonanticipative strategies were introduced by Varaiya [208], Roxin [184], Elliott-Kalton [92, 93]. They were
extensively used in the viscosity solution approach of differential games and, in particular, in the seminal
work by Evans-Souganidis [96]. Throughout these notes we prefer to work with the notion of delay strategies,
which allows to put the game in the so-called normal form.



Chapter 3

Zerosum differential games: viscosity
solution approach

This chapter is devoted to the analysis of two-player, zero-sum differential games. The main issue is to
prove the existence of a value for such games and to characterize it as the unique solution of some partial
differential equation, the Hamilton-Jacobi-Isaacs equation.

We start with a finite horizon problem, called Bolza problem, for which we explain the proof of the
existence of a value in a rather simple framework. This leads us to introduce the notion of viscosity solution
for Hamilton-Jacobi equations, notion that we discuss in some details in the second section. Then we give
some “explicit solution” of the Bolza problem, and complete the chapter by the analysis of an infinite horizon
problem.

3.1 Bolza problem

We start with the analysis of Bolza problem, which is a game with a finite horizon (the game ends at some
fixed time T ), where the payoffs of the players consists in a running payoff and a terminal one.

3.1.1 Definition of the value functions

Throughout the chapter, we denote by T > 0 the finite horizon of the game, i.e., the time at which the game
ends.

Dynamics: For a fixed initial position (t0, x0) ∈ [0, T ]× RN we consider the differential equation{
X ′t = f(t,Xt, ut, vt) t ∈ [t0, T ]
Xt0 = x0

(3.1)

Throughout this section, we assume that
(i) U and V are compact metric spaces,

(ii) the map f : [0, T ]× RN × U × V is bounded and continuous in all its variables
(iii) f is uniformly Lipschitz continuous with respect to the space variable:

|f(t, x, u, v)− f(t, y, u, v)| ≤ Lip(f)|x− y|
∀(t, x, y, u, v) ∈ [0, T ]× RN × RN × U × V

(3.2)

The Lebesgue measurable maps u : [t0, T ] → U and v : [t0, T ] → V are the controls played by the first and
the second Player respectively. We denote by U(t0) the set of Lebesgue measurable controls u : [t0,+∞)→ U
of the first Player and by V(t0) the set of Lebesgue measurable controls v : [t0,+∞) → V of the second
Player. For any pair (u, v) ∈ U(t0)× V(t0), equation (3.1) has a unique solution, denoted Xt0,x0,u,v.

Payoffs: The payoff of the players depends on a running payoff ` : [0, T ] × RN × U × V → R and on a
terminal payoff g : RN → R. Namely, if the players play the controls (u, v) ∈ U(t0) × V(t0), then the cost
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the first Player is trying to minimize (it is a payoff for the second Player who is maximizing) is given by

J (t0, x0, u, v) =

∫ T

t0

`(s,Xt0,x0,u,v
s , us, vs)ds+ g(Xt0,x0,u,v

T ) .

Throughout this section we assume that (i) g : RN → R is bounded and Lipschitz continuous,
(ii) ` : [0, T ]× RN × U × V → R is continuous, bounded

and Lipschitz continuous with respect to the x variable.
(3.3)

We denote by Lip(`) and Lip(g) the Lipschitz constants.

Strategies: In Chapter 2 we have defined a delay strategy for the first Player as a map α : V(t0)→ U(t0)
for which there is a delay τ such that for any two controls v1, v2 ∈ V(t0) and for any t ∈ [t0, T ], if v1 ≡ v2 in
[t0, t], then α(v1) ≡ α(v2) in [t0, (t+ τ)∧ T ]. The set of strategies for the first Player are denoted by Ad(t0).
Delay strategies for the second Player are defined in a symmetric way and the set of those strategies is
denoted by Bd(t0). Following Lemma 2.3, we shall systematically use the fact that if (α, β) ∈ Ad(t0)×Bd(t0)
is a pair of strategies, then there is a unique pair of controls (u, v) ∈ U(t0)× V(t0) such that

α(v) = u and β(u) = v a.e. in [t0, T ] .(3.4)

In particular we always use the notation (αs, βs) for (us, vs) and Xt0,x0,α,β
t for Xt0,x0,u,v

t . The payoff asso-
ciated to the two strategies (α, β) ∈ Ad(t0)× Bd(t0) is given by

J (t0, x0, α, β) =

∫ T

t0

`(s,Xt0,x0,α,β
s , αs, βs)ds+ g(Xt0,x0,α,β

T ) .

Definition 3.1 (Value functions) The upper value function is given by

V+(t0, x0) := inf
α∈Ad(t0)

sup
β∈Bd(t0)

J (t0, x0, α, β)(3.5)

while the lower value function is

V−(t0, x0) := sup
β∈Bd(t0)

inf
α∈Ad(t0)

J (t0, x0, α, β) .(3.6)

Remark 3.2 Obviously, the following inequality always holds:

V−(t0, x0) ≤ V+(t0, x0) ∀(t0, x0) ∈ [0, T ]× RN .

So the key point is to prove the reverse one and to characterize the value V+ = V−.

Lemma 3.3 (Equivalent definition of the value functions) We have

V+(t0, x0) := inf
α∈Ad(t0)

sup
v∈V(t0)

J (t0, x0, α(v), v)

and
V−(t0, x0) := sup

β∈Bd(t0)

inf
u∈U(t0)

J (t0, x0, u, β(u))

Proof : Let us check for instance the first equality. Obviously

V+(t0, x0) ≥ inf
α∈Ad(t0)

sup
v∈V(t0)

J (t0, x0, α(v), v)

because V(t0) ⊂ Bd(t0). We also know that for any (α, β) ∈ Ad(t0)×Bd(t0), there is a unique pair of controls
(u, v) ∈ U(t0)× V(t0) for which (3.4) holds. Then

J (t0, x0, α, β) = J (t0, x0, α(v), v) ≤ sup
v′∈V(t0)

J (t0, x0, α(v′), v′) .

Hence
sup

β∈Bd(t0)

J (t0, x0, α, β) ≤ sup
v′∈V(t0)

J (t0, x0, α(v′), v′) .

Taking the infimum over α ∈ Ad(t0) completes the proof. �
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3.1.2 Dynamic programming property and regularity of the value functions

The aim of this section is to prove some fundamental estimates for the value functions. For this we concentrate
on the upper value. We can do so without loss of generality because

(−V−)(t0, x0) = inf
β∈Bd(t0)

sup
α∈Ad(t0)

(−J (t0, x0, α, β)) ,

which means that the map (−V−) can be seen as an upper value for the game with running payoff −`,
terminal payoff −g, and where the first Player is maximizing while the second Player is minimizing. Hence
any result for V+ directly translates into a result for (−V−), and so for V−.

Dynamic programming property

The main result of this section is the following Theorem:

Theorem 3.4 (Dynamic programming) Let (t0, x0) ∈ [0, T )× RN and h ∈ (0, T − t0). Then

V+(t0, x0) = inf
α∈Ad(t0)

sup
v∈V(t0)

{∫ t0+h

t0

`(s,Xt0,x0,α(v),v
s , α(v)s, vs)ds+ V+(t0 + h,X

t0,x0,α(v),v
t0+h )

}
.(3.7)

Before proving the result we need some preliminary remarks. The first one is a easy statement which is
used throughout these notes:

Lemma 3.5 Let A and B be some sets and let f, g : A× B → R be two maps. Let us assume that there is
a constant k ≥ 0 such that

sup
a∈A, b∈B

|f(a, b)− g(a, b)| ≤ k .

Then ∣∣∣∣ inf
a∈A

sup
b∈B

f(a, b)− inf
a∈A

sup
b∈B

g(a, b)

∣∣∣∣ ≤ k ,(3.8)

as soon as one of the two inf sup is finite.

Proof : Indeed, if for instance infa∈A supb∈B f(a, b) is finite, then, since

f(a, b) ≤ g(a, b) + k ∀a ∈ A, b ∈ B ,

we get, by taking the supb and then the infa in the above inequality,

inf
a∈A

sup
b∈B

f(a, b) ≤ inf
a∈A

sup
b∈B

g(a, b) + k .

The reverse statement

inf
a∈A

sup
b∈B

f(a, b) ≥ inf
a∈A

sup
b∈B

g(a, b)− k

can be proved in the same way, so that infa∈A supb∈B g(a, b) is finite and (3.8) holds. �

The next remark deals with the space regularity of the value functions. We shall see later that the value
functions are also Lipschitz continuous in time.

Lemma 3.6 The map V+ is Lipschitz continuous with respect to the x variable uniformly in the time
variable: namely there is some C > 0 such that, for any t ∈ [0, T ] and any x, y ∈ RN , we have

|V +(t, x)− V +(t, y)| ≤ C|x− y| .(3.9)

Proof of Lemma 3.6 : Let us fix (t0, x0, y0) ∈ [0, T ] × RN × RN and (u, v) ∈ U(t0) × V(t0). We set
X1
t = Xt0,x0,u,v

t and X2
t = Xt0,y0,u,v

t . Since f is globally Lipschitz continuous, Gronwall’s Lemma implies
that

|X1
t −X2

t | ≤ |x0 − y0|eLip(f)(t−t0) ∀t ∈ [t0, T ] .
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Using the Lipschitz continuity of ` and g we get

|J (t0, x0, u, v)− J (t0, y0, u, v)| ≤
∫ T
t0
|`(s,X1

s , us, vs)− `(s,X2
s , us, vs)|ds+ |g(X1

T )− g(X2
T )|

≤ Lip(`)
∫ T
t0
|X1

s −X2
s |ds+ Lip(g)|X1

T −X2
T |

≤ C|x0 − y0|
(3.10)

where C only depends on Lip(f), Lip(`), Lip(g) and T . The above inequality holds for any pair of controls
(u, v) ∈ U(t0)× V(t0), hence for any pair of strategies:

|J (t0, x0, α, β)− J (t0, y0, α, β)| ≤ C|x0 − y0| ∀α ∈ Ad(t0), β ∈ Bd(t0) .

We complete the proof of (3.9) thanks to Lemma 3.5. �

Our next step is the following Lemma, which states that nearly optimal strategies for a given initial
position (t0, x0) remain nearly optimal for points of the form (t0, y0) with y0 sufficiently close to x0.

Lemma 3.7 For any ε > 0 there is some η > 0 with the following property: for any (t0, x0) ∈ [0, T ]× RN ,
any ε−optimal strategy ᾱ ∈ Ad(t0) for V+(t0, x0), i.e., such that

sup
v∈V(t0)

J (t0, x0, ᾱ(v), v) ≤ V+(t0, x0) + ε ,

remains (2ε)−optimal for V+(t0, y0) for any y0 ∈ B(x0, η):

sup
v∈V(t0)

J (t0, y0, ᾱ(v), v) ≤ V+(t0, y0) + 2ε ∀y0 ∈ B(x0, η) .

Proof of Lemma 3.7: Let C be a Lipschitz constant of V+ with respect to x. According to inequality
(3.10) established in the proof of Lemma 3.6, there is also a constant C ′ such that, for any y0 ∈ RN , for any
pair of controls (u, v) ∈ U(t0)× V(t0),

|J (t0, x0, u, v)− J (t0, y0, u, v)| ≤ C ′|x0 − y0| .

Hence
sup

v∈V(t0)

J (t0, y0, ᾱ(v), v) ≤ sup
v∈V(t0)

J (t0, x0, ᾱ(v), v) + C ′|x0 − y0|

≤ V+(t0, x0) + ε+ C ′|x0 − y0|
≤ V+(t0, y0) + ε+ (C ′ + C)|x0 − y0|

This proves that ᾱ is (2ε)−optimal for V+(t0, y0) as soon as |y0 − x0| ≤ η := ε/(C + C ′). �

Proof of Theorem 3.4 : Let us set

W (t0, t0 + h, x0) = inf
α∈Ad(t0)

sup
v∈V(t0)

{∫ t0+h

t0

`(s,Xt0,x0,α(v),v
s , α(v)s, vs)ds+ V+(t0 + h,X

t0,x0,α(v),v
t0+h )

}

We first show inequality V+ ≤W .
Let us fix some ε > 0 and let α0 be ε−optimal for W (t0, t0 + h, x0):

sup
v∈V(t0)

{∫ t0+h

t0

`(s,Xt0,x0,α
0(v),v

s , α0
s, vs)ds+ V+(t0 + h,X

t0,x0,α
0(v),v

t0+h )

}
≤W (t0, t0 + h, x0) + ε .(3.11)

For any x ∈ RN , let αx be ε−optimal for the game V+(t0 + h, x). From Lemma 3.7, there is some η > 0
such that αx is (2ε)−optimal for V+(t0 + h, y) for any y ∈ B(x, η). Since RN is locally compact, we can
find a countable family (xi)i∈N∗ such that the family of balls (B(xi, η/2))i∈N∗ is a locally finite covering of
RN : any point x belongs to some ball B(xi, ηxi) and to at most to a finite number of such balls. Let us set
O1 = B(x1, η/2) and Oi = B(xi, η/2)\

⋃
j<iB(xj , η/2) for i ≥ 2. Let us also fix τ ∈ (0, η/(2‖f‖∞)).

We are now ready to define a new strategy by setting, for any t ∈ [t0, T ] and v ∈ V(t0),

α(v)t =

{
α0(v)t if t ∈ [t0, t0 + h)

αxi
(
v|[t0+h,T ]

)
t

if t ∈ [t0 + h, T ] and X
t0,x0,α

0(v),v
t0+h−τ ∈ Oi
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where v|[t0+h,T ]
is the restriction of v to [t0 + h, T ].

We claim that α is a delay strategy. Since f is bounded, we have

|Xt0,x0,α
0(v),v

t0+h | ≤ |x0|+ ‖f‖∞T ∀v ∈ V(t0) .

The covering (B(xi, ηxi))i∈N∗ being locally finite, there is some k ∈ N∗ such that

B(0, |x0|+ ‖f‖∞T ) ⊂
⋃

i∈{1,...,k}

B(xi, η/2) =
⋃

i∈{1,...,k}

Oi .

In particular the definition of α only involves a finite number of strategies: namely the αxi (for i ∈ {1, . . . , k})
and α0. Up to reducing τ if necessary, we can assume that τ is a delay common to α0 and to all the αxi for
i ∈ {1, . . . , k}. We claim that τ is also a delay for α. Indeed let v1, v2 ∈ V(t0) be such that v1 = v2 a.e. in [t0, t]
for some t ∈ [t0, T ]. If t ≤ t0 + h− τ , then α(v1) ≡ α0(v1) ≡ α0(v2) ≡ α(v2) on [t0, t+ τ ]. If t ≥ t0 + h− τ
then X

t0,x0,α
0(v1),v1

t0+h−τ = X
t0,x0,α

0(v2),v2

t0+h−τ belongs to some Oi, so that α(v1) ≡ α0(v1) ≡ α0(v2) ≡ α(v2) on
[t∨ (t0 + h− τ), t0 + h] and α(v1) ≡ αxi((v1)|[t0+h,T ]

) ≡ αxi((v2)|[t0+h,T ]
) ≡ α(v2) on [t∨ (t0 + h), T ∧ (t+ τ)],

because αxi is has a delay τ . This proves that α is a delay strategy.

Next we claim that

J (t0, x0, α(v), v) ≤W (t0, t0 + h, x0) + 3ε ∀v ∈ V(t0) .

Let us fix v ∈ V(t0) and set Xs = X
t0,x0,α(v),v
s . We note that

Xs =

{
X
t0,x0,α

0(v),v
s if s ∈ [t0, t0 + h]

X
t0+h,Xt0+h,α

xi (vh),vh

s if s ∈ [t0 + h, T ] and Xt0+h−τ ∈ Oi

where vh = v|[t0+h,T ]
. Hence

J (t0, x0, α(v), v) =

∫ t0+h

t0

`(s,Xt0,x0,α
0(v),v

s , α0(v)s, vs)ds

+

k∑
i=1

1Oi(Xt0+h−τ )

{∫ T

t0+h

`(s,X
t0+h,Xt0+h,α

xi (vh),vh

s , αxi(vh)s, v
h
s )ds+ g(X

t0+h,Xt0+h,α
xi (vh),vh

T )

}

If Xt0+h−τ belongs to Oi, then, by the definition of Oi and the choice of τ , Xt0+h belongs to B(xi, η).
Therefore αxi is (2ε)−optimal for V+(t0 + h,Xt0+h), which means that∫ T

t0+h

`(s,X
t0+h,Xt0+h,α

xi (vh),vh

s , αxi(vh)s, v
h
s )ds+ g(X

t0+h,Xt0+h,α
xi (vh),vh

T ) ≤ V+(t0 + h,Xt0+h) + 2ε .

Hence

J (t0, x0, α(v), v) ≤
∫ t0+h

t0

`(s,Xt0,x0,α
0(v),v

s , α0(v)s, vs)ds+ V+(t0 + h,Xt0,x0,α
0,v

t0+h ) + 2ε

We now use the ε−optimality of α0 in W (t0, t0 + h, x0) (i.e., (3.11)) to get

J (t0, x0, α(v), v) ≤ W (t0, t0 + h, x0) + 3ε .

This inequality holds for any v ∈ V(t0), so that

V+(t0, x0) ≤ sup
v∈V(t0)

J (t0, x0, α(v), v) ≤ W (t0, t0 + h, x0) + 3ε .

Since ε is arbitrary, inequality V+ ≤W is proved.

Let us now show the reverse inequality: W ≤ V+. Let ε > 0 be fixed and let ᾱ ∈ Ad(t0) be ε−optimal
for V+(t0, x0). Let us fix some v̄ ∈ V(t0) and define a new delay strategy αv̄ ∈ Ad(t0 + h) by setting:

αv̄(v)t = ᾱ(ṽ)t where ṽs =

{
v̄s if s ∈ [t0, t0 + h]
vs otherwise

∀t ∈ [t0 + h, T ], v ∈ V(t0 + h) .
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Then, if we set Xt = X
t0,x0,ᾱ(v̄),v̄
t , we have

V+(t0 + h,Xt0+h) ≤ sup
v∈V(t0+h)

J (t0 + h,Xt0+h, α
v̄(v), v) .(3.12)

Let V(t0, t0 + h, v̄) be the set of controls v ∈ V(t0) such that v = v̄ on [t0, t0 + h]. Then, by definition of αv̄,
we have

J (t0, x0, ᾱ(v), v) =

∫ t0+h

t0

`(s,Xs, ᾱ(v̄)s, v̄s)ds+J (t0+h,Xt0+h, α
v̄(v|[t0+h,T ]

), v|[t0+h,T ]
) ∀v ∈ V(t0, t0+h, v̄) .

Hence

sup
v∈V(t0,t0+h,v̄)

J (t0, x0, ᾱ(v), v) =

∫ t0+h

t0

`(s,Xs, ᾱ(v̄)s, v̄s)ds+ sup
v∈V(t0+h)

J (t0 + h,Xt0+h, α
v̄(v), v) .

Combining (3.12) with the above inequality then leads to∫ t0+h

t0

`(s,Xs, ᾱ(v̄)s, v̄s)ds+ V+(t0 + h,Xt0+h) ≤ sup
v∈V(t0,t0+h,v̄)

J (t0, x0, ᾱ(v), v)

≤ sup
v∈V(t0)

J (t0, x0, ᾱ(v), v) ≤ V+(t0, x0) + ε

since ᾱ is ε−optimal for V+(t0, x0). Taking the supremum over v̄ and using the definition of W then implies
that W (t0, t0 + h, x0) ≤ V+(t0, x0) + ε. This gives the desired result since ε is arbitrary. �

Regularity of the value functions

From the dynamic programming property we can deduce a space-time regularity for the value functions:

Corollary 3.8 The maps V+ and V− are bounded and Lipschitz continuous in all variables.

Proof : As explained at the begining of the section, we only need to do the proof for V+. Since ` and g
are bounded, so is V+. Since, from Lemma 3.6, V+ is Lipschitz continuous in space uniformly with respect
to the time, it is enough to show that V+ is Lipschitz continuous in time uniformly with respect to the
space variable. Recall that ` is bounded by some constant M and that according to Lemma 3.6, V+ is
C ′−Lipschitz continuous in the space variable for some C ′.

Let x0 ∈ RN be fixed and 0 ≤ t0 < t1 ≤ T . From the dynamic programming property applied to
h = t1 − t0, we have

V+(t0, x0) = inf
α∈Ad(t0)

sup
v∈V(t0)

{∫ t1

t0

`(s,Xt0,x0,α(v),v
s , αs, vs)ds+ V+(t1, X

t0,x0,α(v),v
t1 )

}
.

We note that, for any α ∈ Ad(t0) and v ∈ V(t0) we have∣∣∣∣∫ t1

t0

`(s,Xt0,x0,α(v),v
s , αs, vs)ds

∣∣∣∣ ≤M(t1 − t0)

while, from the growth condition on f we also have

|Xt0,x0,α(v),v
t1 − x0| ≤ ‖f‖∞(t1 − t0) .

Since V+ is C ′−Lipschitz continuous in the space variable, we get

|V+(t1, X
t0,x0,α(v),v
t1 )−V+(t1, x0)| ≤ C ′‖f‖∞(t1 − t0) .

Hence

V+(t1, x0)− (M + C ′‖f‖∞)(t1 − t0)

≤
∫ t1

t0

`(s,Xt0,x0,α(v),v
s , αs, vs)ds+ V+(t1, X

t0,x0,α(v),v
t1 ) ≤ V+(t1, x0) + (M + C ′‖f‖∞)(t1 − t0) .

Taking the supremum over v ∈ V(t0) and the infimum over α ∈ Ad(t0) in the previous inequalities it then
implies, thanks to the dynamic programming property, that

|V+(t0, x0)−V+(t1, x0)| ≤ (M + C ′‖f‖∞)(t1 − t0) .

�
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3.1.3 Isaacs’ equation and viscosity solutions

Heuristic derivation of Isaacs’ equation

Let us first show, in a purely heuristic way, that dynamic programming property is deeply related with a par-
tial differential equation (in short PDE) called Hamilton-Jacobi-Isaacs’ equation (in short Isaacs’ equation).
We still work with V+. Dynamic programming (3.7) can be rewritten as

inf
α∈Ad(t0)

sup
v∈V(t0)

{
1

h

∫ t0+h

t0

`(s,Xα,v
s , α(v)s, vs)ds+

V+(t0 + h,Xα,v
t0+h)−V+(t0, x0)

h

}
= 0(3.13)

where we have used the notationXα,v
t = Xt0,x0,α,v

t . Letting h tend to 0+,
Xα,vt0+h−Xt0

h behaves as f(t0, x0, α(v)t0 , vt0).

Hence
V+(t0+h,Xα,vt0+h)−V+(t0,x0)

h is close to

∂tV
+(t0, x0) + 〈DV+, f(t0, x0, α(v)t0 , vt0)〉 .

Finally 1
h

∫ t0+h

t0
`(s,Xα,v

s , α(v)s, vs)ds behaves as `(t0, x0, α(v)t0 , vt0). Since α is a delay strategy, α(v)t0 does

not depend on v. Therefore equality (3.13) becomes

inf
u∈U

sup
v∈V

{
`(t0, x0, u, v) + ∂tV

+(t0, x0) + 〈DV+, f(t0, x0, u, v)〉
}

= 0

If we set

H+(t, x, p) = inf
u∈U

sup
v∈V
{〈p, f(t, x, u, v)〉+ `(t, x, u, v)} for (t, x, p) ∈ [0, T ]× RN × RN ,

the map V+ should satisfy the Hamilton-Jacobi-Isaacs’ equation{
∂tW (t, x) +H+(t, x,DW (t, x)) = 0 in (0, T )× RN
W (T, x) = g(x) in RN(3.14)

Applying the similar arguments for V− we obtain that V− should satisfy the symmetric equation{
∂tW (t, x) +H−(t, x,DW (t, x)) = 0 in (0, T )× RN
W (T, x) = g(x) in RN(3.15)

where
H−(x, p) = sup

v∈V
inf
u∈U
{〈p, f(t, x, u, v)〉+ `(t, x, u, v)} .

Now if Isaacs’ condition holds, i.e., if H+ = H−, then V+ and V− satisfy the same equation and one can
hope that this implies the equality V+ = V−. This is indeed the case, but we have to be careful with the
sense we give to equations (3.14) and (3.15).

Let us recall that, since V+ is Lipschitz continuous, Rademacher’s Theorem states that V+ is differen-
tiable almost everywhere. In fact one can show (see Exercise 3.4) that V+ indeed satisfies equation (3.14)
at each point of differentiability. Unfortunately this is not enough to characterize the value functions. For
instance, we show in Exercise 3.2 that one can find infinitely many Lipschitz continuous functions satisfying
almost everywhere an equation of the form (3.14).

The idea of “viscosity solutions”, introduced by Crandall-Lions [82], is that one should look closely even
at points where the function is not differentiable.

A first glimpse at viscosity solutions

We now explain the proper meaning to equations of the form:

∂tV(t, x) +H(t, x,DV(t, x)) = 0 in (0, T )× RN(3.16)

where H : [0, T ]× RN × RN → R is continuous.

Definition 3.9 (Viscosity solution)
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• A map V : [0, T ] × RN → R is a viscosity supersolution of (3.16) if V is lower semi-continuous
(l.s.c.) in (0, T ) × RN and if, for any test function φ ∈ C1([0, T ] × RN ) such that V − φ has a local
minimum at some point (t, x) ∈ (0, T )× RN , one has

∂tφ(t, x) +H(t, x,Dφ(t, x)) ≤ 0 .

• A map V : [0, T ] × RN → R is a viscosity subsolution of (3.16) if V is upper semi-continuous
(u.s.c.) and if, for any test function φ ∈ C1([0, T ]×RN ) such that V−φ has a local maximum at some
point (t, x) ∈ (0, T )× RN , one has

∂tφ(t, x) +H(t, x,Dφ(t, x)) ≥ 0 .

• A viscosity solution to (3.16) if a map V which is a viscosity sub- and supersolution to (3.16).

Remarks 3.10 1. Note that, with this definition, a solution is a continuous map.

2. One can easy check that, if V ∈ C1([0, T ]×RN ), then V is a supersolution (resp. subsolution) of (3.16)
if and only if, for any (t, x) ∈ (0, T )× RN ,

∂tV(t, x) +H(t, x,DV(t, x)) ≤ 0 (resp. ≥ 0) .

Lemma 3.11 If V is a subsolution (respectively supersolution) of equation (3.16), then −V is a supersolu-
tion (resp. subsolution) of

∂tV (t, x) + H̃(t, x,DV (t, x)) = 0 in (0, T )× RN

where
H̃(t, x, p) = −H(t, x,−p) ∀(t, x, p) ∈ [0, T ]× RN × RN .

Proof : We do the proof for instance in the case of subsolutions. Let V be a subsolution of (3.16).
Then (−V) is lower semi-continuous because V is upper semi-continuous. Let φ ∈ C1((0, T )×RN ) be a test
function such that (−V)−φ has a local minimum at some point (t, x) ∈ (0, T )×RN . Then V+φ = V−(−φ)
has a local maximum at (t, x), so that, by definition of viscosity subsolutions, one has

−∂tφ(t, x) +H(t, x,−Dφ(t, x)) ≥ 0 .

Hence
∂tφ(t, x) + H̃(t, x,Dφ(t, x)) = ∂tφ(t, x)−H(t, x,−Dφ(t, x)) ≤ 0 .

�

The main point in considering viscosity solution is the following comparison principle, which implies that
equation (3.16), supplemented with a terminal condition, has at most one solution. For this we need to
assume that H satisfies the following conditions :

|H(t1, x1, p)−H(t2, x2, p)| ≤ C(1 + |p|)|(t1, x1)− (t2, x2)|(3.17)

and
|H(t, x, p1)−H(t, x, p2)| ≤ C|p1 − p2|(3.18)

for some constant C.

Theorem 3.12 (Comparison principle) Under assumption (3.17) and (3.18), let V1 be a subsolution of
(3.16) which is u.s.c. on [0, T ]×RN and V2 be a supersolution of (3.16) which is l.s.c. on [0, T ]×RN . Let
us assume that V1(T, x) ≤ V2(T, x) for any x ∈ RN . Then

V1(t, x) ≤ V2(t, x) ∀(t, x) ∈ [0, T ]× RN .

The proof of Theorem 3.12 is a little intricate and postponed to section 3.2.7. From this result one easily
deduces:

Corollary 3.13 Let g : RN → R be continuous. Then equation (3.16) has at most one continuous viscosity
solution which satisfies the terminal condition V(T, x) = g(x) for any x ∈ RN .

Proof of Corollary 3.13: Let V1 and V2 be two bounded and Lipschitz continuous viscosity solution of
(3.16) such that V1(T, x) = V2(T, x) = g(x) for any x ∈ RN . Since, in particular, V1 is a subsolution and
V2 a supersolution and V1(T, ·) = V2(T, ·), we have by comparison V1 ≤ V2 in [0, T ]× RN . Reversing the
roles of V1 and V2, one gets the opposite inequality, whence the equality. �
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3.1.4 Existence and characterization of the value

We have seen that one can associate with our game two Hamilton-Jacobi equations:{
∂tV(t, x) +H+(t, x,DV(t, x)) = 0 in (0, T )× RN
V(T, x) = g(x) in RN(3.19)

where H+ is defined by

H+(t, x, p) = inf
u∈U

sup
v∈V
{〈p, f(t, x, u, v)〉+ `(t, x, u, v)} ,(3.20)

and {
∂tV(t, x) +H−(t, x,DV(t, x)) = 0 in (0, T )× RN
V(T, x) = g(x) in RN(3.21)

where H− is defined by

H−(t, x, p) = sup
v∈V

inf
u∈U
{〈p, f(t, x, u, v)〉+ `(t, x, u, v)} .(3.22)

Theorem 3.14 Under conditions (3.2) and (3.3) on f , ` and g, and if Isaacs’ assumption holds:

H+(t, x, p) = H−(t, x, p) ∀(t, x, p) ∈ [0, T ]× RN × RN ,(3.23)

the game has a value:

V+(t, x) = V−(t, x) ∀(t, x) ∈ [0, T ]× RN .

Moreover V+ = V− is the unique viscosity solution of Isaacs’ equation (3.19)=(3.21).

The key point of the proof of Theorem 3.14 is the following (half-)characterization of the value functions:

Lemma 3.15 The upper value function V+ is a subsolution of equation (3.19) where H+ is defined by
(3.20) while the lower value function V− is a viscosity supersolution to (3.21).

Remark 3.16 The map V+ is actually a viscosity solution of equation (3.19) V− is a viscosity solution to
(3.21): see Exercice 3.5.

Proof of the Theorem 3.14: According to Corollary 3.8, V+ and V− are both Lipschitz continuous and
bounded. Since H− = H+, V− is a supersolution of (3.19) while V+ is a subsolution of that same equation.
Under assumptions (3.2) and (3.3) on f , ` and g, the Hamiltonian H+ = H− satisfies (3.17) and (3.18).
Since V+(T, ·) = V−(T, ·) = g, the comparison principle then implies that V+ ≤ V−. Since the reverse
inequality always holds, one gets the equality. �

Proof of Lemma 3.15 : As before, it is enough prove the result for V+: indeed, if we do so, then
(−V−)—being the upper value function of the game with running payoff −` and terminal payoff −g and
where the first Player maximizes—is a subsolution of{

∂tV(t, x) + H̃+(t, x,DV(t, x)) = 0 in (0, T )× RN
V(T, x) = −g(x) in RN

where

H̃+(t, x, p) = inf
v∈V

sup
u∈U
{−〈p, f(t, x, u, v)〉 − `(t, x, u, v)} ,

Then Lemma 3.11 states that V− is a supersolution of (3.21).

Let us now show that V+ is a subsolution of (3.19). Since V+ is Lipschitz continuous and satisfies
V+(T, x) = g(x), we only have to show that, if φ is a C1 test function such that V+−φ has a local maximum
at (t0, x0) ∈ (0, T )× RN , then ∂tφ(t0, x0) +H+(t0, x0, Dφ(t0, x0)) ≥ 0.

Since V+ − φ has a local maximum at (t0, x0), there is some r > 0 such that

V+(t, x) ≤ φ(t, x) + V+(t0, x0)− φ(t0, x0) ∀(t, x) ∈ B((t0, x0), r) .
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From the dynamic programming property, we have

V+(t0, x0) = inf
α∈Ad(t0)

sup
v∈V(t0)

{∫ t0+h

t0

`(s,Xt0,x0,α(v),v
s , αs, vs)ds+ V+(t0 + h,X

t0,x0,α(v),v
t0+h )

}
.

Let us set h0 = r/(‖f‖∞ + 1). Then, for any h ∈ (0, h0) and any (α, v) ∈ Ad(t0) × V(t0), we have

(t0 + h,X
t0,x0,α(v),v
t0+h ) ∈ B((t0, x0), r), so that

0 ≤ inf
α∈Ad(t0)

sup
v∈V(t0)

{∫ t0+h

t0

`(s,Xt0,x0,α(v),v
s , αs, vs)ds+ φ(t0 + h,X

t0,x0,α(v),v
t0+h )− φ(t0, x0)

}
.(3.24)

Let us now fix any (time independent) control u ∈ U . From (3.24) for any ε > 0 and any h > 0 small, there
is some (time dependant) control vh ∈ V(t0) such that

−εh ≤
∫ t0+h

t0

`(s,Xt0,x0,u,vh
s , u, vh,s)ds+ φ(t0 + h,Xt0,x0,u,vh

t0+h )− φ(t0, x0) .(3.25)

Since ` is Lipschitz continuous and f is bounded, we have∣∣∣∣∣
∫ t0+h

t0

`(s,Xt0,x0,u,vh
s , u, vh,s)ds−

∫ t0+h

t0

`(t0, x0, u, vh,s)ds

∣∣∣∣∣
≤
∫ t0+h

t0

|`(s,Xt0,x0,u,vh
s , u, vh,s)ds− `(t0, x0, u, vh,s)| ds

≤ Lip(`)

∫ t0+h

t0

(|s− t0|+ |Xt0,x0,u,vh
s − x0|) ds

≤ Lip(`)

∫ t0+h

t0

(1 + ‖f‖∞)(s− t0) ds ≤ o(h) .

Since φ is of class C1, we have

φ(t0 + h,Xt0,x0,u,vh
t0+h )− φ(t0, x0) =

∫ t0+h

t0

∂tφ(s,Xt0,x0,u,vh
s ) + 〈Dφ(s,Xt0,x0,u,vh

s ), f(s,Xt0,x0,u,vh
s , u, vh,s)〉ds

where, by uniform continuity of ∂tφ, Dφ and f with respect to the (t, x) variables,∣∣∣∣∣
∫ t0+h

t0

∂tφ(s,Xt0,x0,u,vh
s )ds− h∂tφ(t0, x0)

∣∣∣∣∣ ≤ o(h)

and∣∣∣∣∣
∫ t0+h

t0

〈Dφ(s,Xt0,x0,u,vh
s ), f(s,Xt0,x0,u,vh

s , u, vh,s)〉ds−
∫ t0+h

t0

〈Dφ(t0, x0), f(t0, x0, u, vh,s)〉ds

∣∣∣∣∣ ≤ o(h) .

Plugging the above estimates into (3.25) gives

−εh− o(h) ≤ h∂tφ(t0, x0) +

∫ t0+h

t0

`(t0, x0, u, vh,s) + 〈Dφ(t0, x0), f(t0, x0, u, vh,s)〉 ds .

Since ∫ t0+h

t0

`(t0, x0, u, vh,s) + 〈Dφ(t0, x0), f(t0, x0, u, vh,s)〉 ds

≤
∫ t0+h

t0

max
v∈V
{`(t0, x0, u, v) + 〈Dφ(t0, x0), f(t0, x0, u, v)〉} ds

= hmax
v∈V
{`(t0, x0, u, v) + 〈Dφ(t0, x0), f(t0, x0, u, v)〉} ,

we get

−εh− o(h) ≤ h
{
∂tφ(t0, x0) + max

v∈V
{`(t0, x0, u, v) + 〈Dφ(t0, x0), f(t0, x0, u, v)〉}

}
.

Dividing the above expression by h, letting h→ 0+ and then ε→ 0+ gives:

0 ≤ ∂tφ(t0, x0) + max
v∈V
{`(t0, x0, u, v) + 〈Dφ(t0, x0), f(t0, x0, u, v)〉} .

Taking the infimum with respect to u ∈ U then completes the proof. �
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3.2 A closer look at viscosity solutions

Since Hamilton-Jacobi equations play a crucial role in the analysis of two-player zero-sum differential games,
it is now time to develop a deeper analysis of the notion of viscosity solutions for these equations.

3.2.1 Definition of viscosity solutions: stationary problems

In order to introduce the notion of viscosity solutions in some generality it is convenient (and probably more
convincing) to work with second order Hamilton-Jacobi equations.

Let us denote by SN be the set of N × N symmetric matrices. For X,Y ∈ SN , we write X ≤ Y when
Y −X is a positive semidefinite matrix.

Let O be an open subset of RN . We consider the Hamilton-Jacobi equation

H(x,V(x), DV(x), D2V(x)) = 0 in O ,(3.26)

where the real-valued Hamiltonian H = H(x, r, p,X) is defined on O × R× RN × SN and continuous. Our
standing assumption, in order to give a meaning to the notion of viscosity solution, is that H is elliptic,
meaning that it is nondecreasing with respect to the Hessian matrix:

H(x, r, p,X) ≤ H(x, r, p, Y ) whenever X ≤ Y .(3.27)

For instance, this is the case for the Laplace equation

∆V(x) = 0, where ∆V(x) =

N∑
i=1

∂2V

∂x2
i

(x) .

Definition 3.17 (Viscosity solution)

• A map V : O → R is a viscosity supersolution of (3.26) if V is lower semi-continuous (l.s.c.) and
if, for any test function φ ∈ C2(O) such that V−φ has a local minimum at some point x ∈ O, one has

H(x,V(x), Dφ(x), D2φ(x)) ≤ 0 .

• A map V : O → R is a viscosity subsolution of (3.26) if V is upper semi-continuous (u.s.c.) and
if, for any test function φ ∈ C2(O) such that V−φ has a local maximum at some point x ∈ O, one has

H(x,V(x), Dφ(t, x), D2φ(x)) ≥ 0 .

• A viscosity solution to (3.26) if a map V which is a viscosity sub- and supersolution to (3.26).

Remark 3.18 1. With this definition, a solution is a continuous map.

2. On the sign convention: Note carefully that, being a viscosity solution of equation (3.26) is not
equivalent to being a viscosity solution of

−H(x,V(x), DV(x), D2V(x)) = 0 in O ,

We have fixed here a sign convention which is adapted to the framework of differential games. Most
often the opposite sign convention is used in the literature (with, of course, the opposite definition of
ellipticity).

Proposition 3.19 Let V ∈ C2(O). Then V is a supersolution (resp. subsolution) of (3.26) if and only if
V is a classical supersolution (resp. subsolution) of (3.26), i.e., for any x ∈ O,

H(x,V(x), DV(x), D2V(x)) ≤ 0 (resp. ≥ 0).

Proof : Exercice. �

Proposition 3.20 Let V be a subsolution of (3.26). Then −V is a supersolution of

H̃(x,W (x), DW (x), D2W (x)) = 0 x ∈ O

where
H̃(x, r, p,X) = −H(x,−r,−p,−X) ∀(x, r, p,X) ∈ O × R× RN × SN .
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Remark 3.21 Note that H̃ also satisfies the ellipticity condition (3.27).

Proof : See the proof of Lemma 3.11. �

Here is a very useful equivalent definition of viscosity solutions:

Lemma 3.22 If the Hamiltonian H is continuous, one can replace “local maximum” (resp. “local min-
imum”) by “strict local maximum” (resp. “strict local minimum”) in the definition of subsolution (resp.
supersolution).

Proof : Let us assume for instance that V is u.s.c. and that, for any test function φ ∈ C2 such that
u − φ has a strict local maximum at some point x0 ∈ O, we have H(x0,V(x0), Dφ(x0), D2φ(x0)) ≥ 0.
In order to show that V is a subsolution, let us assume that u − φ has a local maximum at some point
x0 ∈ O. Let us set φ1(x) = φ(x) + |x − x0|4. Then V − φ1 has a strict local maximum at x0, and so
H(x0,V(x0), Dφ1(x0), D2φ1(x0)) ≥ 0 by assumption. But Dφ1(x0) = Dφ(x0) and D2φ1(x0) = D2φ(x0).
So H(x0, u(x0), Dφ(x0), D2φ(x0)) ≥ 0. �

3.2.2 Definition of viscosity solution: evolution problems

The definition of viscosity solution introduced above can be directly applied to Hamilton-Jacobi equations
of evolution type:

∂tV(t, x) +H(t, x,V(x), DV(x), D2V(x)) = 0 in O ,(3.28)

where O is an open subset of R × RN and the real-valued Hamiltonian H = H(t, x, r, p,X) is defined on
O × R× RN × SN . We again assume that H is elliptic:

H(t, x, r, p,X) ≤ H(t, x, r, p, Y ) whenever X ≤ Y .

A typical example is the (backward) heat equation:

∂tV(t, x) + ∆V(x) = 0, where ∆V(x) =

N∑
i=1

∂2V

∂x2
i

(x) .

For sake of completeness let us explicitely explain what is a viscosity solution in this framework:

Definition 3.23 (Viscosity solution)

• A map V : O → R is a viscosity supersolution of (3.28) if V is lower semi-continuous and if, for
any test function φ ∈ C2(O) such that V − φ has a local minimum at some point (t, x) ∈ O, one has

∂tφ(t, x) +H(x,V(x), Dφ(x), D2φ(x)) ≤ 0 .

• A map V : O → R is a viscosity subsolution of (3.28) if V is upper semi-continuous and if, for any
test function φ ∈ C2(O) such that V − φ has a local maximum at some point (t, x) ∈ O, one has

∂tφ(t, x) +H(t, x,V(x), Dφ(t, x), D2φ(x)) ≥ 0 .

• A viscosity solution to (3.28) if a map V which is a viscosity sub- and a supersolution to (3.28).

Remark 3.24 According to Lemma 3.22, if H is continuous, then one can replace the assumption that
V − φ has a local maximum by the assumption that V − φ has a strict local maximum in the definition of
subsolution (and symmetrically for supersolution).

When, as it is often the case, the domain O is of the form (0, T ) × Ω, where Ω is some open subset of
RN , then viscosity solutions in (0, T )× Ω are solutions “up to t = 0”:

Lemma 3.25 If H is continuous in [0, T )×Ω and if W is a subsolution (resp. supersolution) of (3.28) on
(0, T ) × Ω, then W is still a subsolution (resp. supersolution) at t = 0, i.e., if a C1 test function φ is such
that W − φ has a local maximum (resp. minimum) on [0, T )× Ω at some point (0, x), then

∂tφ(0, x) +H(0, x,Dφ(0, x), D2φ(0, x)) ≥ 0 (resp. ≤ 0) .
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Proof of Lemma 3.25: Thanks to Proposition 3.20 it is enough to do the proof for subsolutions. Let W
be a subsolution of (3.28) and let us assume that W − φ has a strict local maximum on [0, T ]× Ω at (0, x)
for some C1 test-function φ and some x ∈ RN . Then there is some r > 0 such that Br(x) ⊂ Ω and

(W − φ)(s, y) < (W − φ)(0, x) ∀(s, y) ∈ ([0, T ]× RN )\{(0, x)}, |(s, y)− (0, x)| ≤ r .(3.29)

Let us denote by D = Br((0, x)) ∩ ((0,+∞)×RN ) the half ball and by S = (∂Br((0, x))) ∩ ((0,+∞)×RN )
the half sphere. Let us fix σ > 0 and consider the map Ψσ(s, y) = W (s, y) − φ(s, y) − σ/s. Let (sσ, yσ) be
a maximum point on D of Ψσ. We claim that (sσ, yσ) converges to (0, x) as σ → 0+. Indeed let (s̄, ȳ) be a
cluster point of (sσ, yσ) as σ → 0+. Since, for any (s, y) ∈ D we have

Ψσ(s, y) = W (s, y)− φ(s, y)− σ/s ≤ Ψσ(sσ, yσ) ≤W (sσ, yσ)− φ(sσ, yσ) ,

letting σ → 0+ gives

W (s, y)− φ(s, y) ≤W (s̄, ȳ)− φ(s̄, ȳ) ,

so that (s̄, ȳ) is a maximum point of W − φ on D. Then (3.29) implies that (s̄, ȳ) = (0, x).
Since, for σ sufficiently small, (sσ, yσ) is a local maximum of Ψσ and since W is a subsolution, we have

φt(sσ, yσ)− σ

s2
σ

+H(sσ, yσ, Dφ(sσ, yσ), D2φ(sσ, yσ)) ≥ 0 .

Therefore

φt(sσ, yσ) +H(sσ, yσ, Dφ(sσ, yσ), D2φ(sσ, yσ)) ≥ 0 .

Letting σ → 0+ gives the result. �

3.2.3 Stability

We now describe one of the most striking properties of viscosity solutions, which is their robustness with
respect to passage to the limit. We work in the framework of stationary equations of the form (3.26). Let O
be an open subset of RN and let Hn, H : O × R× RN × SN → R be continuous Hamiltonians.

Theorem 3.26 (Stability) Let us assume that (Vn) is a sequence of continuous subsolutions of equation

Hn(x,W (x), DW (x), D2W (x)) = 0 x ∈ O(3.30)

which locally uniformly converges to a map V : O → R and that (Hn) locally uniformly converges to some
Hamiltonian H : O × R× RN × SN → R. Then V is still a subsolution of (3.26).

Remarks 3.27 1. Thanks to Proposition 3.20 a symmetric result also holds for supersolutions and for
solutions. Note that this result is somewhat surprising since it states that one can pass to the limit in
a second order equation with only uniform convergence.

2. A straightforward consequence of the Theorem is the following: let us consider a sequence of Bolza
problems, with dynamics fn, running payoffs `n and terminal payoffs gn such that conditions (3.2) and
(3.3) hold uniformly with respect to n. Assume that (fn), (`n) and (gn) locally uniformly converge to
some f , ` and g. Then, under Isaacs’ condition on the (fn), (`n) and (gn), the value function associated
to (fn), (`n) and (gn) locally uniformly converges to the value function for f , ` and g.

The proof of Theorem 3.26 uses the following Lemma:

Lemma 3.28 If a continuous map f : O → R has a strict local maximum at some point x0 and if a sequence
of continuous functions (fn) locally uniformly converges to f , then there is a sequence (xn) of local maxima
of fn which converges to x0.

Proof : Since the continuous function f has a strict local maximum at x0, there is some r > 0 such that
Br(x0) ⊂ O and f(x) < f(x0) for x ∈ Br(x0)\{x0}. In particular

f(x0) = max
Br(x0)

f > max
∂Br(x0)

f .
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Since (fn) uniformly converges to f in Br(x0), there is some n0 such that

fn(x0) > max
∂Br(x0)

fn ∀n ≥ n0 .(3.31)

Let xn be a maximum point of fn on Br(x0). Then by (3.31) xn belongs to the interior of Br(x0), i.e., xn is
a local maximum of fn. Let us now show that (xn) converges to x0. Let y be a cluster point of the sequence
(xn). Since, for any z ∈ Br(x0), fn(xn) ≥ fn(z) and since fn uniformly converges to f , we have f(y) ≥ f(z).
So y is a maximum point of f in Br(x0), which implies that y = x0 since x0 is the unique maximum point
on Br(x0). The bounded sequence (xn) has a unique cluster point, x0, therefore it converges to x0. �

Proof of Theorem 3.26 : Let φ ∈ C2 be such that V−φ has a strict local maximum at some point x0 ∈ O.
Since Vn−φ locally uniformly converges to V−φ, there is a sequence (xn) of local mixima of Vn−φ which
converges to x0. Since Vn is a subsolution of (3.30) one has Hn(xn,Vn(xn), Dφ(xn), D2φ(xn)) ≥ 0. The se-
quence (Hn) converging locally uniformly toH, we get, by letting n→ +∞, H(x0,V(x0), Dφ(x0), D2φ(x0)) ≥
0. �

The assumption of uniform convergence in Theorem 3.26 is actually unnecessarily strong. A uniform
bound on the solution is enough provided that one uses Barles-Perthame notion of half-relaxed limit: let
(Vn) be a uniformly bounded sequence of maps in O. The upper half relaxed limit V∗ and lower half relaxed
limit V∗ of the sequence (Vn) are defined by

V∗(x) = lim sup
xn→x, n→+∞

Vn(xn) and V∗(x) = lim inf
xn→x, n→+∞

Vn(xn) ∀x ∈ O .

One easily checks that V∗ is u.s.c. while V∗ is l.s.c.. The stability Theorem 3.26 can be generalized to this
kind of convergence.

Theorem 3.29 (Stability by half-relaxed limit) Let (Vn) be a locally uniformly bounded sequence of
subsolutions of (3.30). Assume that (Hn) locally uniformly converges to H. Then V∗ is also a subsolution
of (3.26).

The proof is almost the same as for Theorem 3.26, provided that one replaces Lemma 3.28 by the following
result, the proof of which is left as an exercise.

Lemma 3.30 Let f : O → R be a u.s.c. map which has a strict local maximum at some point x0 and
let (fn) be a sequence of u.s.c. maps such that f(x0) = lim sup

zn→x0, n→+∞
fn(zn). Then there is a subsequence

nk → +∞ and a sequence (xk), such that xk is a local maximum of fnk , the sequence (xk) converges to x0

and the sequence (fnk(xk)) converges to f(x0).

3.2.4 Some basic properties of viscosity solution

Proposition 3.31 Let V1 and V2 be two subsolutions of (3.26). Then max{V1,V2} is still a subsolution
of (3.26).

Remark 3.32 In a symmetric way, the minimum of two supersolutions is still a supersolution.

Proof : Let V = max{V1,V2}. Then V is u.s.c., as the maximum of two u.s.c. maps. Let φ ∈ C1(O)
be a test function such that V − φ has a local maximum at a point x. Let us assume to fix the ideas that
V(x) = V1(x). Then V1 − φ has also a local maximum at x because, for any y in a neighbourhood of x,

V1(y)− φ(y) ≤ V(y)− φ(y) ≤ V(x)− φ(x) = V1(x)− φ(x) .

Since V1 is a subsolution and V1(x) = V(x), we get: H(x,V(x), Dφ(t, x), D2φ(x)) ≥ 0 , which is the desired
inequality. �

Proposition 3.31 can be generalized to the supremum of an arbitrary number of subsolutions:

Proposition 3.33 Let (Vα)α∈A be a family of subsolutions of equation (3.26). Let us assume that the Vα

are locally uniformly bounded from above and let V be the upper semicontinuous envelope of supα∈A Vα.
Then V is still a subsolution of (3.26).
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Proof : Let φ ∈ C1(O) be a test function such that V−φ has a local maximum at a point x. By definition
of the upper semicontinuous envelope, there are αn ∈ A and xn → x such that lim Vαn(xn) = V(x). Let
V∗ be the half-relaxed upper limit of the Vαn . Then, since Vαn ≤ V and V is u.s.c., one has V∗ ≤ V. In
particular, V∗(x) = V(x). From Theorem 3.29, V∗ is still a subsolution of (3.26). Note that V∗ − φ has a
local maximum at x: indeed, for any y in a neighbourhood of x, we have

V∗(y)− φ(y) ≤ V(y)− φ(y) ≤ V(x)− φ(x) = V∗(x)− φ(x) .

Since V∗ is a subsolution and V∗(x) = V(x), we get: H(x,V(x), Dφ(t, x), D2φ(x)) ≥ 0 , which is the desired
inequality. �

3.2.5 Comparison principle for first order stationnary equations in bounded
domains

As we have already seen in the analysis of the Bolza problem, comparison principle is one of the basic tools
for proving the existence of a value for zero-sum differential games. Unfortunately there is no “universal”
comparison principle and one has to adapt it to the equation at hand. This is the reason why we shall
analyse three different types of problems: stationary equation in bounded domains, stationary equations in
RN , evolution equations in RN . Of course there are many other kinds of equations, but we shall not need
them in this chapter: we refer to the monographs on viscosity solution quoted in section 3.6 for complements.
Moreover, we restrict the analysis to first order Hamilton-Jacobi equations: second order ones require deeper
arguments, which are not needed here.

Let us now start with the comparison principle for first order stationary Hamilton-Jacobi equations of
the form:

H(x,W (x), DW (x)) = 0 in O(3.32)

where O is an open bounded subset of RN and where H : O×R×RN → R satisfies the following assumption:
There are constants γ > 0 and C ≥ 0 such that

H(x, s1, p)−H(x, s2, p) ≤ −γ(s1 − s2) if s1 ≥ s2(3.33)

and
|H(x, s, p)−H(y, s, p)| ≤ C(1 + |p|)|y − x|(3.34)

Theorem 3.34 Let V1 and V2 be a sub- and a supersolution of (3.32), with V1 u.s.c in O, V2 l.s.c. in O
and V1 ≤ V2 in ∂O. Then V1 ≤ V2 in O.

Let us first note that, if V1 and V2 are smooth (say of class C1 in O), then the proof of the Theorem is
straightforward. Indeed, since V1 −V2 is u.s.c. in the compact set O, it has a maximum point x0. In order
to show that supO(V1 − V2) ≤ 0, we argue by contradiction by assuming the (V1 − V2)(x0) > 0. Then
x0 /∈ ∂O because V1 ≤ V2 on O. Hence x0 ∈ O which implies, by the necessary conditions of optimality,
that DV1(x0) = DV2(x0). Since V1 and V2 are respectively sub- and supersolutions of (3.32), we have, by
setting p = DV1(x0) = DV2(x0),

H(x0,V1(x0), p) ≥ 0 and H(x0,V2(x0), p) ≤ 0 ,

so that, using assumption (3.33),

0 ≤ H(x0,V1(x0), p)−H(x0,V2(x0), p) ≤ −γ(V1(x0)−V2(x0)) < 0 .

This is impossible. So all the difficulty in the proof of Theorem 3.34 lies in the nonsmoothness of the functions.

Proof of Theorem 3.34 : As in the formal proof we argue by contradiction by assuming that

M := sup
x∈O

(V1 −V2)(x) > 0 .

In order to overcome the issue of the nonsmoothness of the functions V1 and V2 we introduce the doubling
variable technique. This technique appears in almost all proofs of comparison principles. It goes back to
Kruzkov in his work on the conservation laws [140].
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For any ε > 0 let

Wε(x, y) = V1(x)−V2(y)− 1

2ε
|x− y|2 (x, y) ∈ O ×O .

Note that Wε is u.s.c. in O ×O and in particular it has a maximum point (xε, yε). Let us set

Mε = max
(x,y)∈O×O

Wε(x, y) = Wε(xε, yε) .

In the following Lemma we collect some estimates on (xε, yε):

Lemma 3.35 (i) limε→0+ Mε = M ,

(ii) limε→0+
1
ε |xε − yε|

2 = 0

(iii) For ε > 0 sufficiently small, (xε, yε) ∈ O ×O.

Postponing the proof of Lemma 3.35, let us complete the proof of Theorem 3.34. Let us fix ε > 0
sufficiently small so that (iii) holds and Mε > M/2. Let us note that

V1(xε) ≥ V2(yε) ≥Wε(xε, yε) ≥M/2 > 0 .(3.35)

Since Wε has a maximum at (xε, yε) ∈ O ×O, the map x→ V1(x)− [V2(yε) + 1
2ε |x− yε|

2] has a maximum
point at xε with xε ∈ O. Using the test function φ(x) = V2(yε) + 1

2ε |x − yε|
2 and the fact that V1 is a

subsolution of (3.32), we get

H (xε,V1(xε), Dφ(xε)) = H

(
xε,V1(xε),

xε − yε
ε

)
≥ 0 .(3.36)

In the same way, the map y → V2(y) − [V1(xε) − 1
2ε |y − xε|

2] has a minimum at yε, with yε ∈ O, and
therefore, since V2 is a supersolution,

H

(
yε,V2(yε),

xε − yε
ε

)
≤ 0 .(3.37)

Computing the difference between (3.36) and (3.37) and using assumption (3.33) (since V1(xε) ≥ V2(yε) by
(3.35)) and then assumption (3.34) we obtain

0 ≤ H

(
xε,V1(xε),

xε − yε
ε

)
−H

(
yε,V2(yε),

xε − yε
ε

)
≤ −γ(V1(xε)−V2(yε)) +H

(
xε,V2(yε),

xε − yε
ε

)
−H

(
yε,V2(yε),

xε − yε
ε

)
≤ −γMε + C

(
1 +
|xε − yε|

ε

)
|xε − yε|

As ε→ 0+ we get 0 ≤ −γM thanks to the Lemma. This is impossible since M > 0. �

Proof of Lemma 3.35 : From the definition of Wε, Mε is nondecreasing with ε and Mε ≥ M . Since O
is bounded and V1 is u.s.c. in O while V2 is l.s.c. in this set, there is a constant K such that u ≤ K and
v ≥ −K in O. So

M ≤Mε = V1(xε)−V2(yε)−
1

2ε
|xε − yε|2 ≤ 2K − 1

2ε
|xε − yε|2 .

This proves that 1
ε |xε − yε|2 is bounded, and therefore that xε − yε → 0 as ε → 0+. Let us now argue

by contradiction and assume that (i) or (ii) or (iii) does not hold. Since the sequences (xε) and (yε) are
bounded, one can then find a sequence εn → 0+ and x ∈ O such that (i) or (ii) or (iii) does not hold along
this sequence and such that xεn → x and yεn → x. We have

M ≤ limMεn ≤ lim inf[V1(xεn)−V2(yεn)] ≤ lim sup[V1(xεn)−V2(yεn)] ≤ V1(x)−V2(x) ≤M(3.38)

since V1 is u.s.c. and V2 is l.s.c.. Hence Mεn converges to M and x is a maximum point of V1 −V2. In
particular, x ∈ O because V1 ≤ V2 on ∂O while (V1 − V2)(x) = M > 0. So (xεn , yεn) ∈ O × O for n
sufficiently large. Moreover (3.38) also implies that V1(xεn) −V2(yεn) converges to V1(x) −V2(x) = M ,
so that 1

εn
|xεn − yεn |2 = V1(xεn)−V2(yεn)−Mεn converges to 0. Therefore we have found a contradiction

and (i), (ii) and (iii) holds. �
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3.2.6 Comparison principle for stationary equations in unbounded domains

Next we investigate the comparison principle for first order Hamilton-Jacobi equations of the form:

H(x,W (x), DW (x)) = 0 in RN(3.39)

where H : O × R× RN → R satisfies assumptions (3.33), (3.34) and

|H(x, r, p)−H(x, r, q)| ≤ C|p− q|(3.40)

for some constant C > 0.

Theorem 3.36 Let V1 be a bounded subsolution of (3.39) and V2 a bounded supersolution of (3.39). Then
V1 ≤ V2 dans RN .

Proof : The main difficulty now comes from the unboundness of RN . To overcome this problem, we are
going to introduce a penalization term at infinity. As before we argue by contradiction by assuming that

M := sup
x∈RN

(V1(x)−V2(x)) > 0 .

For α > 0 let us set

Mα = sup
x∈RN

(V1(x)−V2(x)− α|x|2) .

Note that Mα →M as α→ 0+ (see Exercice 3.1). Let ε > 0 and

Wα,ε(x, y) := V1(x)−V2(y)− |x− y|
2

ε
− α

2
(|x|2 + |y|2) .

Since V1 and −V2 are u.s.c. and bounded, Wα,ε is u.s.c. and coercive, i.e., lim
|(x,y)|→+∞

Wα,ε(x, y) = −∞. So

Wα,ε has a maximum point (xα,ε, yα,ε) and we set

Mα,ε := max
(x,y)∈R2N

Wα,ε(x, y) = Wα,ε(xα,ε, yα,ε) .

Let us collect some estimates on (xα,ε, yα,ε):

Lemma 3.37 (i) limε→0+ Mα,ε = Mα,

(ii) for any α > 0, limε→0+
1
ε |xα,ε − yα,ε|

2 = 0

(iii) There is a constant C > 0 such that α(|xα,ε|+ |yα,ε|) ≤ C
√
α

We now complete the proof of Theorem 3.36. Since Wα,ε has a maximum at (xα,ε, yα,ε), the map
x→Wα,ε(x, yα,ε) has a maximum point at xα,ε. Hence, for any x ∈ RN we have

V1(x) ≤ V1(xα,ε) +
1

ε

[
|x− yα,ε|2 − |xα,ε − yα,ε|2

]
+
α

2

[
|x|2 − |xα,ε|2

]
Hence, if we denote by φ(x) the right-hand side of the above inequality, we have that φ is smooth and V1−φ
has a maximum at xα,ε because φ(xα,ε) = V1(xα,ε). Since V1 is a subsolution of (3.39) this implies that

H (xα,ε,V1(xα,ε), Dφ(xα,ε)) = H

(
xα,ε,V1(xα,ε),

xα,ε − yα,ε
ε

+ αxα,ε

)
≥ 0 .(3.41)

In the same way, the map y →Wα,ε(xα,ε, y) has a maximum at yα,ε, and therefore, since V2 is a supersolution,

H

(
yα,ε,V2(yα,ε),

xα,ε − yα,ε
ε

− αyα,ε
)
≤ 0 .(3.42)
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Computing the difference between (3.41) and (3.42) and using first assumption (3.40), and then assumption
(3.33) with V1(xε) ≥ V2(yε) and finally assumption (3.34), we obtain

0 ≤ H

(
xα,ε,V1(xα,ε),

xα,ε − yα,ε
ε

+ αxα,ε

)
−H

(
yα,ε,V2(yα,ε),

xα,ε − yα,ε
ε

− αyα,ε
)

≤ H

(
xα,ε,V1(xα,ε),

xα,ε − yα,ε
ε

)
−H

(
yα,ε,V2(yα,ε),

xα,ε − yα,ε
ε

)
+ Cα(|xα,ε|+ |yα,ε|)

≤ −γ(V1(xα,ε)−V2(yα,ε)) +H

(
xα,ε,V2(yα,ε),

xα,ε − yα,ε
ε

)
−H

(
yα,ε,V2(yα,ε),

xα,ε − yα,ε
ε

)
+Cα(|xα,ε|+ |yα,ε|)

≤ −γMα,ε − C
(

1 +
|xα,ε − yα,ε|

ε

)
|xα,ε − yα,ε|+ Cα(|xα,ε|+ |yα,ε|)

When we let ε→ 0+ and then α→ 0+ we get 0 ≤ −γM thanks to the Lemma. This is impossible. �

Proof of Lemma 3.37 : We already know that Mα,ε ≥ Mα. Let K be a bound for V1 and V2. Then,
since Mα →M > 0, for α > 0 small enough we have

0 ≤ Mα ≤ Mα,ε = V1(xα,ε)−V2(yα,ε)−
1

2ε
|xα,ε − yα,ε|2 −

α

2
(|xα,ε|2 + |yα,ε|2)

≤ 2K − 1

2ε
|xα,ε − yα,ε|2 −

α

2
(|xα,ε|2 + |yα,ε|2) .

This proves that (iii) holds and that 1
ε |xα,ε − yα,ε|

2 is bounded independently of α. So xα,ε − yα,ε tends to
0 as ε → 0+. Let us fix α and note that (xα,ε) and (yα,ε) are bounded thanks to (iii). Let xα be a cluster
point of xα,ε and yα,ε as ε→ 0 and let εn → 0+ be such that xα,εn → xα and yα,εn → yα.

We have

Mα ≤ limMα,εn ≤ lim inf[V1(xα,εn)−V2(yα,εn)− α

2
(|xα,εn |2 + |yα,εn |2)]

≤ lim sup[V1(xα,εn)−V2(yα,εn)− α

2
(|xα,εn |2 + |yα,εn |2)]

≤ V1(xα)−V2(xα)− α|xα|2 ≤Mα .

In particular Mα,εn converges to Mα as ε→ 0. Moreover these inequalities also show that

lim V1(xα,εn)−V2(yα,εn)− α

2
(|xα,εn |2 + |yα,εn |2) = V1(xα)−V2(xα)− α|xα|2 = Mα ,

so that

lim
1

ε
|xα,εn − yα,εn |2 = lim V1(xα,εn)−V2(yα,εn)− α

2
(|xα,εn |2 + |yα,εn |2)−Mα,εn = 0 .

Since this holds true for any subsequence εn → 0 such that the bounded sequences (xεn) and (yεn) converge,
a compactness argument allows to conclude that (i) and (ii) hold. �

3.2.7 Comparison principle for evolution equations in unbounded domains

Finally we turn to first order Hamilton-Jacobi evolution equations of the form:

∂tW (t, x) +H(t, x,DW (t, x)) = 0 in [0, T )× RN(3.43)

where T > 0 is a fixed horizon and H : [0, T ]× RN × RN → R satisfies the following conditions :

|H(t1, x1, p)−H(t2, x2, p)| ≤ C(1 + |p|)|(t1, x1)− (t2, x2)|(3.44)

and
|H(t, x, p1)−H(t, x, p2)| ≤ C|p1 − p2|(3.45)

for some constant C.

Theorem 3.38 (Comparison principle) Let V1 be a subsolution of (3.43) which is u.s.c. on [0, T ]×RN
and V2 be a supersolution of (3.43) which is l.s.c. on [0, T ]× RN . Let us assume that V1(T, x) ≤ V2(T, x)
for any x ∈ RN . Then

V1(t, x) ≤ V2(t, x) ∀(t, x) ∈ [0, T ]× RN .
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Remark 3.39 Note that there is no growth assumption on V1 nor on V2. The key point is that, thanks to
condition (3.45) one can actually restrict V1 and V2 to bounded domains and still preserve the property of
being sub- and supersolutions. This is the aim of the next Lemma.

Lemma 3.40 Assume that H is continuous and satisfies (3.45). If W is u.s.c. on [0, T ] × RN and a
subsolution of (3.43) on (0, T ) × RN (resp. is l.s.c. on [0, T ] × RN and a supersolution of (3.43) on
(0, T )×RN ), then, for any (t0, x0) ∈ [0, T )×RN , W is still a subsolution (resp. supersolution) in the cone

Ct0,x0 = {(t, x) ∈ [t0, T ]× RN , |x− x0| ≤ C(t− t0)} ,(3.46)

i.e., if a C1 test function φ is such that W − φ has a local maximum (resp. minimum) on Ct0,x0
at some

point (t, x) with t < T , then

∂tφ(t, x) +H(t, x,Dφ(t, x)) ≥ 0 (resp. ≤ 0) .

Postponing the proof of Lemma 3.40, let us start the proof of Theorem 3.38. Note that it is enough to
show that, for any σ > 0, we have

V1(t, x)−V2(t, x)− σ(T − t) ≤ 0 ∀(t, x) ∈ [0, T ]× RN .

Let us argue by contradiction and assume that this does not hold. Then there is some σ > 0 and (t0, x0)
such that

M := sup
(t,x)∈Ct0,x0

V1(t, x)−V2(t, x)− σ(T − t) > 0 ,

where Ct0,x0
is defined by (3.46). From now on we fix such a σ and (t0, x0). We now use the doubling

variable technique: for ε > 0 we set

Φε((t, x), (s, y)) = V1(t, x)−V2(s, y)− 1

2ε
|(s, y)− (t, x)|2 − σ(T − s) ∀(t, x), (s, y) ∈ Ct0,x0

and consider the problem
Mε := sup

(t,x),(s,y)∈Ct0,x0

Φε((t, x), (s, y)) .

Note that Mε ≥ M . Since V1 and −V2 are u.s.c. in Ct0,x0 , so is the map Φε. Since the set Ct0,x0 is
compact, the above problem has a maximum point ((tε, xε), (sε, yε)). Next we collect some estimates on
(tε, xε), (sε, yε).

Lemma 3.41 (i) limε→0+ Mε = M ,

(ii) limε→0+
1
ε |(tε, xε)− (sε, yε)|2 = 0

(iii) for ε > 0 small enough, tε < T and sε < T .

We are now ready to complete the proof of Theorem 3.38. Since the map (t, x)→ Φε((t, x), (sε, yε)) has
a maximum at the point (tε, xε) on Ct0,x0 , we have, for any (t, x) ∈ Ct0,x0 ,

V1(t, x) ≤ V1(tε, xε) +
1

2ε

[
|(sε, yε)− (t, x)|2 − |(sε, yε)− (tε, xε)|2

]
.

Let us denote by φ(t, x) the right-hand side of the above inequality. Then φ is a smooth function which
coincides with V1 at (tε, xε). Therefore V1 − φ has a maximum at the point (tε, xε) on Ct0,x0

. Since V1 is
a subsolution of (3.43) and tε < T , Lemma 3.40 implies that

∂tφ(tε, xε) +H(tε, xε, Dφ(tε, xε)) ≥ 0 ,

i.e.,
tε − sε
ε

+H

(
tε, xε,

xε − yε
ε

)
≥ 0 .(3.47)

In a symmetric way, since the map (s, y)→ Φε((tε, xε), (s, y)) has a maximum at (sε, yε) on Ct0,x0 , one has,
for any (s, y) ∈ Ct0,x0

,

V2(s, y) ≥ V2(sε, yε)−
1

2ε

[
|(s, y)− (tε, xε)|2 − |(sε, yε)− (tε, xε)|2

]
+ σ(s− sε)
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and, since V2 is a supersolution of (3.43) we obtain, again thanks to Lemma 3.40,

tε − sε
ε

+ σ +H

(
sε, yε,

xε − yε
ε

)
≤ 0 .(3.48)

Computing the difference between (3.47) and (3.48) gives

−σ +H

(
tε, xε,

xε − yε
ε

)
−H

(
sε, yε,

xε − yε
ε

)
≥ 0 .

We now use assumption (3.44) on H:

−σ + C

[
1 +
|xε − yε|

ε

]
|xε − yε| ≥ 0 .

Letting finally ε→ 0+ and using Lemma 3.41 we get a contradiction since σ is positive. �

Proof of Lemma 3.41: We already know that Mε ≥M . Let K be an upper bound for V1−V2 on Ct0,x0 .
Then

0 ≤ M ≤ Mε = V1(tε, xε)−V2(sε, yε)−
1

2ε
|(tε, xε)− (sε, yε)|2 − σ(T − sε)

≤ K − 1

2ε
|(tε, xε)− (sε, yε)|2 .

This proves that 1
ε |(tε, xε)− (sε, yε)|2 is bounded and therefore that the difference (tε, xε)− (sε, yε) tends to 0

as ε→ 0+. Let (t, x) be a cluster point of the bounded sequences (tε, xε) and (sε, yε) as ε→ 0 and εn → 0+

with (tεn , xεn)→ (t, x) and (tεn , xεn)→ (t, x). We have

M ≤ limMεn ≤ lim inf[V1(tεn , xεn)−V2(sεn , yεn)− σ(T − sεn)]
≤ lim sup[V1(tεn , xεn)−V2(sεn , yεn)− σ(T − sεn)]
≤ V1(t, x)−V2(t, x)− σ(T − t) ≤M .

Hence Mεn →M holds and

lim
ε→0+

V1(tεn , xεn)−V2(sεn , yεn)− σ(T − sεn) = V1(t, x)−V2(t, x)− σ(T − t) = M ,

so that

lim
ε→0+

1

2ε
|(tεn , xεn)− (sεn , yεn)|2 = lim

ε→0+
V1(tεn , xεn)−V2(sεn , yεn)− σ(T − sεn)−Mεn = 0 .

Let us finally point out that t < T . Indeed, if we had t = T , then

M ≤ V1(T, x)−V2(T, x) ≤ 0 ,

which is impossible since M > 0. So tεn < T and sn < T for any n large enough. We can then complete the
proof by a compactness argument. �

Proof of Lemma 3.40 : Thanks to Proposition 3.20 it is enough to do the proof for subsolutions. Let φ
be such that W − φ has a strict local maximum on Ct0,x0

at some point (t, x). For σ > 0 let us consider a
maximum point (sσ, yσ) of the map

(s, y)→ Φσ(s, y) := W (s, y)− φ(s, y) +
σ

2
ln
(
C2(t− t0)2 − |x− x0|2

)
on Ct0,x0 . Note that this maximum point exists because Ct0,x0 is compact and Φσ(s, y) → −∞ as (s, y)
converges to some point at the boundary of Ct0,x0 .

Standard arguments then show that (sσ, yσ) converges to (t, x). In particular we have sσ < T for σ small
enough because t < T . Since W is a subsolution of (3.43), we have

∂tφ(t, x)− σC2(sσ − t0)

Aσ
+H

(
sσ, yσ, Dφ(sσ, yσ) +

σ(yσ − x0)

Aσ

)
≥ 0 ,

where we have set Aσ = C2(tσ − t0)2 − |xσ − x0|2. Using condition (3.45) on H we get

∂tφ(t, x)− σC

Aσ
[C(sσ − t0)− |yσ − x0|] +H (sσ, yσ, Dφ(sσ, yσ)) ≥ 0 .

Since Aσ > 0 and C(sσ − t0)− |yσ − x0| > 0, this implies that

∂tφ(t, x) +H (sσ, yσ, Dφ(sσ, yσ)) ≥ 0 ,

and we obtain the desired inequality by letting σ → 0+. �
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3.3 Further properties of the value function of Bolza problem

3.3.1 Explicit solutions

In this section we aim at giving a representation formula for the value of our game when g is convex and
when ` and f are independent of (t, x). In this case the Hamiltonian H = H(p) only depends on the gradient
variable.

Let us recall that the value function V is the unique viscosity solution of the Hamilton-Jacobi-Isaacs’
equation {

∂tV(t, x) +H(DV(t, x)) = 0 in (0, T )× RN
W (T, x) = g(x) in RN(3.49)

In particular, if the terminal condition g is linear: g(x) = 〈a, x〉 where a ∈ RN , then there is an obvious
solution to (3.49): V(t, x) = (T − t)H(a) + 〈a, x〉. Hopf-Lax formula provides a surprising generalization of
that remark.

Proposition 3.42 (Hopf-Lax representation formula) If g is convex and super-linear, i.e.,

lim
‖x‖→+∞

g(x)

‖x‖
= +∞ ,

and H : RN → R satisfies condition (3.45), then the solution to (3.49) is given by the formula

V(t, x) = (g∗(q)− (T − t)H(q))
∗

(x)

where φ∗ is the Fenchel conjugate of the function φ:

φ∗(x) = sup
q∈RN

〈q, x〉 − φ(q) ∀x ∈ RN .

Remark 3.43 In particular the solution V is convex, which is not obvious a priori.

Proof of the Proposition: Let us set V(t, x) = (g∗(q)− (T − t)H(q))
∗

(x) and let us check that V is a
continuous solution of Isaacs’ equation (3.49) and that V(T, x) = g(x) for all x ∈ RN . The continuity of V
is just a consequence of the super-linearity of g and is left to the reader. Since g is convex and l.s.c. we have

V(T, x) = g∗∗(x) = g(x) ,

so that V satisfies the terminal condition.
Let us now show that V is a subsolution (this is the easy part). For any q ∈ RN , let us set

Vq(t, x) = 〈q, x〉 − g∗(q) + (T − t)H(q) ∀(t, x) ∈ [0, T ]× RN .

One easily checks that, for any q ∈ RN , Vq is a C1 solution of Isaacs’ equation (3.49). Since V = supq Vq

by definition and since the supremum of subsolutions is still a subsolution (from Proposition 3.33), V is also
a subsolution.

The fact that V is also a supersolution is a small miracle. Indeed there is no reason in general that the
supremum of solutions is a solution (and this is in fact generally false). Here again convexity plays a key role.

Let φ be a C1 test function such that V − φ has a local minimum at some point (t0, x0) ∈ (0, T ) × RN .
We have to show that ∂tφ(0, x0) + H(φx(t0, x0)) ≤ 0. Let us fix τ ≥ 0 and v ∈ RN . For h > 0, we set
(th, xh) = (t0, x0) + h(τ, v). By definition of V there is some qh ∈ RN such that V(th, xh) = Vqh(th, xh).
Moreover, since g is super-linear, the family qh is bounded as h tends to 0+. So there is a subsequence hn → 0+

such that qhn converges to some q ∈ RN . From standard arguments we have V(t0, x0) = Vq(t0, x0). Let us
now set to simplify the notations: qhn = qn, etc...

Since V − φ has a local minimum at (t0, x0), we have, for n large enough,

V(tn, xn)− φ(tn, xn) ≥ V(t0, x0)− φ(t0, x0) .
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By definition of V, we have V(t0, x0) ≥ Vqn(t0, x0) and by definition of qn, we also have V(tn, xn) =
Vqn(tn, xn). Hence

Vqn(tn, xn)−Vqn(t0, x0) ≥ φ(tn, xn)− φ(t0, x0) ,

which can be rewritten as

hn(〈qn, v〉 − τH(qn)) ≥ φ(t0 + hnτ, x0 + hnv)− φ(t0, x0)

Dividing this inequality by hn > 0 and letting n tend to +∞ gives

〈q, v〉 − τH(q) ≥ ∂tφ(t0, x0)τ + 〈φx(t0, x0), v〉 .

Let Q be the set of vectors q ∈ RN such that V(t0, x0) = Vq(t0, x0). Let us recall that Q is compact. We
have just proved that

min
τ∈[0,1], v∈B(0,1)

max
q∈Q

(〈q, v〉 − τH(q)− (∂tφτ + 〈φx, v〉)) ≥ 0 at (t0, x0) .(3.50)

Let us assume for a while that one can exchange the min and the max in the above expression. Then the
resulting inequality states that there is some q ∈ RN such that, for any τ ∈ [0, 1] and v ∈ B(0, 1),

〈q, v〉 − τH(q) ≥ ∂tφ(t0, x0)τ + 〈φx(t0, x0), v〉 .

Therefore
∂tφ(t0, x0) ≤ −H(q) and φx(t0, x0) = q .

Hence ∂tφ + H(φx) ≤ 0 and the proof is complete. The main problem is that the exchange of the min and
the max is not allowed, first because Q is not convex and, second, because H is not concave.

Here is the miracle. Let q0 ∈ Q. Since q0 is optimal, we have Vq(t0, x0) ≤ Vq0(t0, x0) for any q ∈ RN ,
i.e.,

〈q, x0〉 − g∗(q) + (T − t0)H(q) ≤ 〈q0, x0〉 − g∗(q0) + (T − t0)H(q0) .

Hence

H(q) ≤ 1

T − t0
(〈q0 − q, x0〉+ g∗(q)− g∗(q0) + (T − t0)H(q0))

Let r(q) denote the right-hand side of the above inequality. The map r is convex. Moreover the above
inequality holds for any q ∈ Q (by inverting the roles of q0 and q). So

∀q ∈ Q, r(q) = H(q) .

Rewriting inequality (3.50) by replacing H by r we get:

min
τ∈[0,1], v∈B(0,1)

max
q∈Q

(〈q, v〉 − τr(q)− (∂tφτ + 〈φx, v〉)) ≥ 0 .

Let co(Q) be the convex envelope of Q. Since Q is compact, so is co(Q). Since Q ⊂ co(Q) the previous
inequality implies that

min
τ∈[0,1], v∈B(0,1)

max
q∈co(Q)

(〈q, v〉 − τr(q)− (∂tφτ + 〈φx, v〉)) ≥ 0 .

Now the map r is convex, so that the above expression is concave with respect to q and convex with respect
to (τ, v). From the min-max we get:

max
q∈co(Q)

min
τ∈[0,1], v∈B(0,1)

(〈q, v〉 − τr(q)− (∂tφτ + 〈φx, v〉)) ≥ 0 .

So there is some q ∈ co(Q) such that, for any τ ∈ [0, 1] and any v ∈ B(0, 1),

〈q, v〉 − τr(q) ≥ ∂tφ(t0, x0)τ + 〈φx(t0, x0), v〉 .

This inequality implies that
∂tφ(t0, x0) ≤ −r(q) and φx(t0, x0) = q .

But we already know that −H(q) ≥ −r(q). Hence

∂tφ+H(φx) ≤ −H(q) +H(q) = 0 .

This proves that V is a supersolution and completes the proof by uniqueness of the solution. �
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3.3.2 Long time average

3.4 The infinite horizon problem

In this section we study a two-player zerosum differential game in which the payoff is given by a discounted
integral.
Dynamics: For a fixed initial position x0 ∈ RN we consider the differential equation{

X ′t = f(Xt, ut, vt) t ∈ [0,+∞)
X0 = x0

(3.51)

Throughout the section, we assume that
(i) U and V are compact metric spaces,

(ii) the map f : RN × U × V is bounded and continuous in all its variables
(iii) f is uniformly Lipschitz continuous with respect to the space variable:

|f(x, u, v)− f(y, u, v)| ≤ Lip(f)|x− y| ∀(x, y, u, v) ∈ RN × RN × U × V

(3.52)

The controls of Player 1 and Player 2 are now Lebesgue measurable maps u : [0,+∞)→ U and v : [0,+∞)→
V . The set of such controls are simply denoted by U and V, since the starting time is always t0 = 0. For
any pair (u, v) ∈ U × V, equation (3.1) has a unique solution, denoted Xx0,u,v.

Payoffs: The payoff of the players depends on a discount rate λ > 0 and on a running payoff ` : RN ×U ×
V → R. Namely, if the players play the controls (u, v) ∈ U × V, then the cost the first Player is trying to
minimize is given by

J (x0, u, v) =

∫ +∞

0

e−λs`(Xx0,u,v
s , us, vs)ds .

Throughout this section we assume that

` is bounded and Lipschitz continuous.(3.53)

We denote by Lip(`) the Lipschitz constant of `.

Strategies: A delay strategy for the first Player is a now map α : V → U for which there is a delay τ > 0
such that for any two controls v1, v2 ∈ V and for any t ≥ 0, if v1 = v2 a.e. in [0, t], then α(v1) = α(v2) a.e. in
[0, t+ τ ]. The set of delay strategies for the first Player are denoted by Ad, while the set of delay strategies
for the second Player is denoted by Bd. As before, we systematically use the fact that if (α, β) ∈ Ad ×Bd is
a pair of strategies, then there is a unique pair of controls (u, v) ∈ U × V such that

α(v) = u and β(u) = v a.e. in [0,+∞) .(3.54)

In particular we always use the notation (αs, βs) for (us, vs) and Xx0,α,β
t for Xx0,u,v

t , where (us, vs) is defined
by (3.54). The payoff associated to the two strategies (α, β) ∈ Ad × Bd is given by

J (x0, α, β) =

∫ +∞

0

e−λs`(Xx0,α,β
s , αs, βs)ds .

Definition 3.44 (Value functions) The upper value function is given by

V+(x0) := inf
α∈Ad

sup
β∈Bd

J (x0, α, β)(3.55)

while the lower value function is

V−(x0) := sup
β∈Bd

inf
α∈Ad

J (x0, α, β) .(3.56)

Remarks 3.45 1. Note that now the value function only depends on the space variable. Obviously, the
following inequality always holds:

V−(x0) ≤ V+(x0) ∀x0 ∈ RN .

So the key point is to prove the reverse one and to characterize the value V+ = V−.
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2. As in Lemma 3.3, we have

V+(x0) := inf
α∈Ad

sup
v∈V
J (x0, α(v), v)

and

V−(x0) := sup
β∈Bd

inf
u∈U
J (x0, u, β(u))

3.4.1 Regularity of the value functions

Lemma 3.46 The value functions V+ and V− are bounded.

Proof : Indeed, since ` is bounded,

|J (x0, u, v)| ≤
∫ +∞

0

e−λs|`(Xx0,α,β
s , αs, βs)| ds ≤

∫ +∞

0

e−λs‖`‖∞ds =
‖`‖∞
λ

,

so that V+ and V− are also bounded by ‖`‖∞/λ. �

Lemma 3.47 The value functions V+ and V− are Hölder continuous in RN .

Proof : Let us denote by L the Lipschitz constant for ` and f (with respect to the x variable) and let M
be a bound for `. Without loss of generality we can assume that L > λ. Let x0, x1 ∈ RN , α ∈ Ad and v ∈ V.
We have, thanks to Gronwall Lemma

|Xx0,α,v
t −Xx1,α,v| ≤ |x0 − x1|eLt ∀t ≥ 0 .

Let us fix T > 0 to be chosen later. We now compare J (x0, α, v) and J (x1, α, v). Since ` is L−Lipschitz
continuous with respect to the x variable and bounded by M we have

|J (x0, α, v)− J (x0, α, v)| ≤
∫ +∞

0
e−λs|`(Xx0,α,v

s , α, v)− `(Xx1,α,v
s , α, v)|ds

≤ L
∫ T

0
e−λse−λs|Xx0,α,v

s −Xx1,α,v
s |ds+

∫ +∞
T

e−λs2Mds

≤ L
∫ T

0
e−λs|x0 − x1|eLsds+ 2Me−λT /M

≤ |x0 − x1| L
L−λ (e(L−λ)T − 1) + 2Me−λT

We now optimize the above expression with respect to T . The choice T = (1/L) ln (2M/(L|x0 − x1|)) is the
best one, provided that |x0 − x1| is not too large. With this choice we get

|J (x0, α, v)− J (x1, α, v)| ≤ C|x0 − x1|λ/L ,

for some constant C independent of x0, x1 and of α and v. Since the above inequality holds true for any α
and v, we get, thanks to Lemma 3.5,

|V+(x0)−V+(x1)| ≤ C|x0 − x1|λ/L .

�

In the proof of the dynamic programming property we shall need the fact that a nearly optimal strategy
at a point remains nearly optimal in a neighbourhood.

Lemma 3.48 For any ε > 0 there is some η > 0 with the following property: for any x0 ∈ RN , any
ε−optimal strategy ᾱ ∈ Ad for V+(x0), i.e., such that

sup
v∈V
J (x0, ᾱ(v), v) ≤ V+(x0) + ε ,

remains (2ε)−optimal for V+(y0) for any y0 ∈ B(x0, η):

sup
v∈V
J (y0, ᾱ(v), v) ≤ V+(y0) + 2ε ∀y0 ∈ B(x0, η) .
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Proof : Let C be a Lipschitz constant of V+ with respect to x. As in the proof of Lemma 3.47, there is
also a constant C ′ such that, for any y0 ∈ RN , for any pair of controls (u, v) ∈ U × V,

|J (t0, x0, u, v)− J (t0, y0, u, v)| ≤ C ′|x0 − y0|λ/L ,

where L is a Lipschitz constant for f and `. Hence

sup
v∈V(t0)

J (y0, ᾱ(v), v) ≤ sup
v∈V(t0)

J (x0, ᾱ(v), v) + C ′|x0 − y0|λ/L

≤ V+(x0) + ε+ C ′|x0 − y0|λ/L
≤ V+(y0) + ε+ (C ′ + C)|x0 − y0|λ/L

This proves that ᾱ is (2ε)−optimal for V+(t0, y0) as soon as |y0 − x0| ≤ η := (ε/(C + C ′))L/λ. �

3.4.2 Dynamic programming property

Theorem 3.49 (Dynamic programming property) Let x0 ∈ RN and h > 0. Then

V+(x0) = inf
α∈Ad

sup
v∈V

{∫ h

0

e−λs`(Xx0,α(v),v
s , α(v)s, vs)ds+ e−λhV+(X

x0,α(v),v
h )

}
.

Proof of Theorem 3.49 : Let us set

W (h, x0) = inf
α∈Ad

sup
v∈V

{∫ h

0

`(Xx0,α(v),v
s , α(v)s, vs)ds+ e−λhV+(X

x0,α(v),v
h )

}

We first show inequality V+ ≤W .
Let us fix some ε > 0 and let α0 be ε−optimal for W (h, x0):

sup
v∈V

{∫ h

0

`(Xx0,α
0(v),v

s , α0
s, vs)ds+ e−λhV+(X

x0,α
0(v),v

h )

}
≤W (h, x0) + ε .(3.57)

For any x ∈ RN , let αx be ε−optimal for the game V+(x). From Lemma 3.48, there is some η > 0 such that
αx is (2ε)−optimal for V+(y) for any y ∈ B(x, η). Since RN is locally compact, we can find a countable
family (xi)i∈N∗ such that the family of balls (B(xi, η/2))i∈N∗ is a locally finite covering of RN : any point x
belongs to some ball B(xi, η/2) and to at most a finite number of such balls. Let us set O1 = B(x1, η/2)
and Oi = B(xi, η/2)\

⋃
j<iB(xj , η/2) for i ≥ 2.

Let τ ∈ (0, η/(2‖f‖∞) ∧ h). We are now ready to define a new strategy by setting, for any t ∈ [0,+∞)
and v ∈ V,

α(v)t =

{
α0(v)t if t ∈ [0, h)

αxi
(
vh
)
t−h if t ∈ [h,+∞) and X

x0,α
0(v),v

h−τ ∈ Oi

where vht = vt−h for t ≥ h. As in the proof of Lemma 3.4 one can show that α is a delay strategy because

X
x0,α

0(v),v
h−τ remains in a bounded set, and therefore in

⋃k
i=1Oi for some integer k. Next we claim that

J (x0, α(v), v) ≤W (h, x0) + 3ε ∀v ∈ V .

Let us fix v ∈ V and set Xs = X
x0,α(v),v
s . We note that

Xs =

{
X
x0,α

0(v),v
s if s ∈ [0, h]

X
Xh,α

xi (vh),vh

s−h if s ∈ [h,+∞) and Xh−τ ∈ Oi

where vht = vt−h for t ≥ h. Then

J (x0, α(v), v) =

∫ h

0

e−λs`(Xx0,α
0(v),v

s , α0(v)s, vs)ds

+

k∑
i=1

1Oi(Xh−τ )

{∫ +∞

h

e−λs`(X
Xh,α

xi (vh),vh

s−h , αxi(vh)s−h, v
h
s−h)ds

}
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where∫ +∞

h

e−λs`(X
Xh,α

xi (vh),vh

s−h , αxi(vh)s−h, v
h
s−h) ds = e−λh

∫ +∞

0

e−λs`(XXh,α
xi (vh),vh

s , αxi(vh)s, v
h
s ) ds .

Let us assume that Xh−τ belongs to Oi. Then, from the definition of Oi and of τ , Xh belongs to the ball
B(xi, η). Since αxi is (2ε)−optimal for V+(·) on Oi, we have therefore∫ +∞

0

e−λs`(XXh,α
xi (vh),vh

s , αxi(vh)s, v
h
s ) ds ≤ V+(Xh) + 2ε .

Hence

J (x0, α(v), v) ≤
∫ h

0

e−λs`(Xx0,α
0(v),v

s , α0(v)s, vs)ds+ e−λh
(
V+(Xx0,α

0,v
h ) + 2ε

)
We now use the ε−optimality of α0 in W (t0, t0 + h, x0) (i.e., (3.57)) to get

J (x0, α(v), v) ≤ W (h, x0) + 3ε .

This inequality holds for any v ∈ V(t0), so that

V+(x0) ≤ sup
v∈V
J (x0, α(v), v) ≤ W (h, x0) + 3ε .

Since ε is arbitrary, inequality V+ ≤W is proved.

Let us now show the reverse inequality: W ≤ V+.
Let ε > 0 be fixed and let ᾱ ∈ Ad be ε−optimal for V+(x0). Let us fix some v̄ ∈ V and define a new delay
strategy αv̄ ∈ Ad by setting:

αv̄(v)t = ᾱ(ṽ)t+h where ṽs =

{
v̄s if s ∈ [0, h]
vs otherwise

∀t ≥ 0, v ∈ V .

Then, if we set Xt = X
x0,ᾱ(v̄),v̄
t , we have

V+(Xh) ≤ sup
v∈V
J (Xh, α

v̄(v), v) .(3.58)

Let V(h, v̄) be the set of controls v ∈ V such that v = v̄ on [0, h]. Then, by definition of αv̄, we have

J (x0, ᾱ(v), v) =

∫ h

0

`(Xs, ᾱ(v̄)s, v̄s)ds+ e−λhJ (Xh, α
v̄(v·−h), v·−h) ∀v ∈ V(t0, t0 + h, v̄) .

Hence

sup
v∈V(h,v̄)

J (x0, ᾱ(v), v) =

∫ h

0

`(Xs, ᾱ(v̄)s, v̄s)ds+ sup
v∈V
J (Xt0+h, α

v̄(v), v) .

Combining (3.58) with the above inequality then leads to

∫ h

0

`(Xs, ᾱ(v̄)s, v̄s)ds+ V+(Xh) ≤ sup
v∈V(h,v̄)

J (x0, ᾱ(v), v)

≤ sup
v∈V
J (x0, ᾱ(v), v) ≤ V+(x0) + ε

since ᾱ is ε−optimal for V+(x0). Taking the supremum over v̄ and using the definition of W then implies
that W (h, x0) ≤ V+(x0) + ε. This gives the desired result since ε is arbitrary. �
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3.4.3 Existence and characterization of the value

Together with our value functions let us associate two Hamilton-Jacobi equations:

−λV(t, x) +H+(x,DV(t, x)) = 0 in RN(3.59)

where H+ is defined by
H+(t, x, p) = inf

u∈U
sup
v∈V
{〈p, f(x, u, v)〉+ `(x, u, v)} ,(3.60)

and
−λV(t, x) +H−(x,DV(t, x)) = 0 in RN(3.61)

where H− is defined by
H−(x, p) = sup

v∈V
inf
u∈U
{〈p, f(x, u, v)〉+ `(x, u, v)} .(3.62)

Theorem 3.50 Under conditions (3.52) and (3.53) on f and `, and if Isaacs’ assumption holds:

H+(x, p) = H−(x, p) ∀(x, p) ∈ RN × RN ,(3.63)

then the game has a value:
V+(x) = V−(x) ∀x ∈ RN .

Moreover V+ = V− is the unique viscosity solution of Isaacs’ equation (3.59)=(3.61).

The proof of Theorem 3.50 relies on a (half-)characterization of the value functions and on the comparison
principle (Theorem 3.36).

Lemma 3.51 The upper value function V+ is a subsolution of equation (3.59) where H+ is defined by
(3.60) while the lower value function V− is a viscosity supersolution to (3.61).

Proof of Theorem 3.50: According to Lemma 3.46 and Lemma 3.47, V+ and V− are both bounded
and Hölder continuous. Since H− = H+, V− is a supersolution of (3.59) while V+ is a subsolution of that
equation. Under assumptions (3.52) and (3.53) on f and `, the Hamiltonian H+ = H− satisfies (3.33),
(3.34) and (3.40). The comparison principle (Theorem 3.36) then implies that V+ ≤ V−. Since the reverse
inequality always holds, one gets the equality and the characterization of the value. �

Proof of Lemma 3.51 : As usual it is enough to prove the result for V+. We have to show that, if φ is a
C1 test function such that V+−φ has a local maximum at x0 ∈ RN , then −λV+(x0)+H+(x0, Dφ(x0)) ≥ 0.

Since V+ − φ has a local maximum at x0, there is some r > 0 such that

V+(x) ≤ φ(x) + V+(x0)− φ(x0) ∀x ∈ B(x0, r) .

From the dynamic programming property, we have

V+(x0) = inf
α∈Ad

sup
v∈V

{∫ h

0

e−λs`(Xx0,α(v),v
s , α(v)s, vs)ds+ e−λhV+(X

x0,α(v),v
h )

}
.

Let us set h0 = r/(‖f‖∞+1). Then, for any h ∈ (0, h0) and any (α, v) ∈ Ad×V, we haveX
x0,α(v),v
h ∈ B(x0, r),

so that

0 ≤ inf
α∈Ad

sup
v∈V

{∫ h

0

e−λs`(Xx0,α(v),v
s , α(v)s, vs) ds+ e−λhφ(X

x0,α(v),v
h )− φ(x0)

}
.(3.64)

Let us now fix any (time independent) control u ∈ U . From (3.64) for any ε > 0 and any h > 0 small, there
is some (time dependant) control vh ∈ V such that

−εh ≤
∫ h

0

e−λs`(Xx0,α(v),v
s , α(v)s, vs) ds+ e−λhφ(X

x0,α(v),v
h )− φ(x0) .(3.65)

Since ` is Lipschitz continuous and f is bounded, we have (as in the proof of Lemma 3.15)∣∣∣∣∣
∫ h

0

e−λs`(Xx0,α(v),v
s , α(v)s, vs) ds−

∫ h

0

e−λs`(x0, α(v)s, vs) ds

∣∣∣∣∣ ≤ o(h) .
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To estimate the last two terms in (3.65) we note that

e−λhφ(X
x0,α(v),v
h )− φ(x0) = e−λh(φ(X

x0,α(v),v
h )− φ(x0)) + (e−λh − 1)φ(x0)

where
(e−λh − 1)φ(x0) = −λφ(x0)h+ o(h) .

Since φ is of class C1, we have

φ(X
x0,α(v),v
h )− φ(x0) =

∫ h

0

〈Dφ(Xx0,u,vh
s ), f(Xx0,u,vh

s , u, vh,s)〉ds

where, by uniform continuity of Dφ and f ,∣∣∣∣∣
∫ h

0

〈Dφ(Xx0,u,vh
s ), f(Xx0,u,vh

s , u, vh,s)〉ds−
∫ h

0

〈Dφ(x0), f(x0, u, vh,s)〉ds

∣∣∣∣∣ ≤ o(h) .

Plugging the above estimates into (3.65) gives

−εh− o(h) ≤ −λφ(x0)h+

∫ h

0

`(x0, u, vh,s) + 〈Dφ(x0), f(x0, u, vh,s)〉 ds .

Since ∫ h

0

`(x0, u, vh,s) + 〈Dφ(x0), f(x0, u, vh,s)〉 ds

≤
∫ h

0

max
v∈V
{`(x0, u, v) + 〈Dφ(x0), f(x0, u, v)〉} ds

= hmax
v∈V
{`(x0, u, v) + 〈Dφ(x0), f(x0, u, v)〉} ,

we get

−εh− o(h) ≤ h
{
−λφ(x0)h+ max

v∈V
{`(x0, u, v) + 〈Dφ(x0), f(x0, u, v)〉}

}
.

Dividing the above expression by h, letting h→ 0+ and then ε→ 0+ gives:

0 ≤ −λφ(x0) + max
v∈V
{`(x0, u, v) + 〈Dφ(x0), f(x0, u, v)〉} .

Taking the infimum with respect to u ∈ U then completes the proof. �

3.5 Exercices

Exercice 3.1 Let O be an open subset of RN and fn : O → R which converges pointwise to some map
f : O → R with fn ≤ f for all n.

1. Show that
lim

n→+∞
sup
x∈O

fn(x) = sup
x∈O

f(x) .

2. Show that the equality does not hold in general if one removes the assumption fn ≤ f .

Exercice 3.2 Show that the map V : [0, T ]× R→ R

V(t, x) =

{
0 si |x| ≥ T − t
(T − t)− |x| sinon

is Lipschitz continuous and satisfies the Hamilton-Jacobi equation ∂tV(t, x) + |DV(t, x)| = 0 at any point
of differentiability of V. Deduce from this that there are infinitely many solutions to that equation with
terminal condition V(T, x) = 0.

What is the viscosity solution of this equation with terminal condition V (T, ·) = 0 ?
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Exercice 3.3 Let O be an open subset of RN and let us consider a partition O = O1∪O2∪Γ of O (i.e., O1,
O2 and Γ are disjoint). We assume that O1 and O2 are open, that Γ is a closed, smooth, connected surface.
For x ∈ Γ we denote by n(x) the unit vector normal to Γ at x pointing towards O2, so that n(x) is an
outward normal to O1 at x and an inward normal to O2 at x. Let v1 : O1 → R and v2 : O2 → R be of class
C1 in their respective domain and be solutions of some Hamilton-Jacobi equation H(x, u(x), Du(x)) = 0 in
O1 and O2 respectively. We assume that v1 = v2 on Γ and define the continuous map v : O → R by v = v1

in O1, v = v2 in O2 and v = v1 = v2 on Γ. Finally we suppose that Dv1(x) 6= Dv2(x) for x ∈ Γ.

1. Show that there is a continuous map λ : Γ→ R∗ such that Dv2(x)−Dv1(x) = λ(x)n(x) for any x ∈ Γ.
To fix the ideas, we assume that λ(x) > 0 for all x ∈ Γ.

2. Show that v is a viscosity subsolution of H(x, u,Du) = 0 in O (Hint: prove that there is no test
function φ such that v − φ has a local maximum at x ∈ Γ).

3. Let us assume further that H(x, v1(x), Dv1(x) + sn(x)) ≤ 0 for all s ∈ [0, λ(x)] and all x ∈ Γ. Show
that v is a solution of H(x, u,Du) = 0 in O.

Exercice 3.4 Let V be a viscosity subsolution of equation

∂tV(t, x) +H(t, x,DV(t, x)) = 0 in (0, T )× RN .

Let (t0, x0) be a point of differentiability of V. The aim of this exercise is to show that

∂tV(t0, x0) +H(t0, x0, DV(t0, x0)) ≥ 0 .

Let

σ(r) = max
|(t,x)−(t0,x0)|≤r

V(t, x)−V(t0, x0)− ∂tV(t0, x0)(t− t0)− 〈DV(t0, x0), x− x0〉
|(t, x)− (t0, x0)|

and

ρ(r) =

∫ r

0

σ(τ)dτ .

1. Show that the map φ(t, x) = V(t0, x0)−∂tV(t0, x0)(t− t0)−〈DV(t0, x0), x−x0〉+ρ(|(t, x)− (t0, x0)|)
is of class C1 with φ(t0, x0) = V(t0, x0), ∂tφ(t0, x0) = ∂tV(t0, x0) and Dφ(t0, x0) = DV(t0, x0).

2. Show that V ≤ φ.

3. Conclude.

Exercice 3.5 Let V+ be the upper value function of the Bolza problem defined by (3.6). Under assumptions
(3.2) and (3.3) on the dynamics and payoffs of the game, but without assuming Isaacs’ condition, show that
V+ is a viscosity solution of Isaacs’ equation (3.19).

Exercice 3.6 (Value in nonanticipative strategies) We consider Bolza problem under the assumptions
of Theorem 3.14 and denote by V the value for the game played in delay strategies. Let us recall that, for
any nonanticipative strategy α ∈ A(t0) and any delay strategy β ∈ Bd(t0) there is a unique pair of controls
(u, v) ∈ U(t0)× V(t0) such that

α(v) = u and β(u) = v a.e. on [t0, T ],

and that the symmetric result holds for any α ∈ Ad(t0) and β ∈ B(t0).

Show that

V(t0, x0) = inf
α∈A(t0)

sup
v∈V(t0)

J (t0, x0, α(v), v) = sup
β∈B(t0)

inf
u∈U(t0)

J (t0, x0, u, β(u))

for any (t0, x0) ∈ [0, T ]× RN .
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3.6 Comments

This Chapter is largely inspired by the seminal work Evans-Souganidis [96] which is the first paper in which
viscosity solution techniques are used to prove the existence of a value function. There is by now a large
litterature on that approach and we refer the reader to the monographs by Bardi-Capuzzo Dolcetta [27]
and by Elliott [94] for further references. The unique difference with our presentation is that these papers
consider differential games in the framework of nonanticipative strategies, while we have chosen to work here
with delay strategies.

Viscosity solutions of Hamilton-Jacobi equations where introduced by Crandall and Lions [82] in the
early 80’s for first order Hamilton-Jacobi equations and later generalized to second order equations: see the
monographs by Bardi-Capuzzo Dolcetta [27], Barles [31], Fleming-Soner [104], Lions [152].

The first existence result of a value for differential games goes back to the 60’s and the early 70’s, with
works by Fleming [101], Varaiya [208], Varaiya-Lin [209], Roxin [184], Friedman [108, 109, 110], Elliot-Kalton
[92, 93], Berkovitz [38]. Another very interesting approach was developed by Krasovskii-Subbotin [139], who
introduced the notion of positional strategies, and proved the existence of a value for qualitative, and then
quantitative, games.

deal



Chapter 4

Nash equilibrium payoffs for
nonzero-sum differential games

In this chapter, we consider a differential game played by I Players (where I ≥ 2) and with dynamics

X ′t = f(t,Xt, u
1
t , . . . , u

I
t ) .

In order to simplify the notations, we restrict the analysis to games with a terminal payoff. The extension to
games with integral and terminal payoff is straightforward. In this game, Player i plays with the control ui

which takes its values in some compact set U i. He aims at maximizing his terminal payoff gi(XT ). Our aim
is to define the notion of Nash equilibrium payoffs for such a game and characterize it. Moreover, if Isaacs’
condition holds, we also prove the existence of such payoffs.

4.1 Definition of Nash equilibrium payoffs

We assume the following conditions on the data:
i) The sets U i (i = 1, . . . , I) are compact subsets of some finite dimentional spaces
ii) f : [0, T ]× RN × U1 × . . .× U I → RN is continuous and bounded,

and globally Lipschitz continuous with respect to x
iii) The maps gi : RN → R are Lipschitz continuous and bounded for i = 1 . . . , I.

(4.1)

Let us set
U−i = U1 × . . .× U−i−1 × U−i+1 × . . .× U I .

As usual, for i ∈ {1, . . . , I}, we denote by U i(t0) the set of measurable controls ui : [t0, T ]→ U i. We set

U−i(t0) = U1(t0)× . . .× U i−1(t0)× U i+1(t0)× . . .× UI(t0) .

We denote by (u−i) a generic element of U−i(t0). For any I−tuple of controls (ui) = (u1, . . . , uI) ∈ U1(t0)×
. . .× UI(t0), we denote by Xt0,x0,(u

i) the unique solution to{
X ′t = f(t,Xt, u

1(t), . . . , uI(t))
Xt0 = x0

For i ∈ {1, . . . , I} a map α : U−i(t0)→ U i(t0) is a delay strategy for Player i if there is a delay τ > 0 such
that, for any t ∈ (t0, T ], for any (I−1)−tuple of controls (u−i) ∈ U−i(t0) and (v−i) ∈ U−i(t0) which coincide
almost everywhere on a subinterval [t0, t], the images α((u−i)) and α((v−i)) coincide almost everywhere on
[t0, (t+ τ) ∧ T ]. As usual we denote by Aid(t0) the set of delay strategies of Player i.

Following (a slight extension of) Lemma 2.3 we shall systematically use the fact that if (α1, . . . , αI) ∈
A1
d(t0)× . . .×AId(t0), then there is a unique I−tuple of controls (ui) ∈ U1(t0)× . . .× UI(t0) such that

αi((u−i)) = ui a.e. in [t0, T ], ∀i ∈ {1, . . . , I} .(4.2)

In particular we always use the notationX
t0,x0,(α

i)
t forX

t0,x0,(u
i)

t . For any I−tuple (αi) ∈ A1
d(t0)×. . .×AId(t0)

of delay strategies, we set

Ji(t0, x0, (α
i)) = gi(X

t0,x0,(α
i)

T ) .

53
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Definition 4.1 (Equilibrium payoffs) Let (t0, x0) ∈ [0, T )× RN be fixed. A I−tuple (e1, . . . , eI) ∈ RI is
a Nash equilibrium payoff at the point (t0, x0) if, for any ε > 0, there is a I−tuple (ᾱ1, . . . , ᾱi) ∈ Aid(t0) ×
. . .×AId(t0) of delay strategies such that, for i ∈ {1, . . . , I},

|ei − Ji(t0, x0, (ᾱ
i))| ≤ ε(4.3)

and
Ji(t0, x0, ᾱ−i, ᾱi) ≥ J1(t0, x0, ᾱ

−i, αi)− ε ∀αi ∈ Aid(t0) .(4.4)

Remark 4.2 One can replace conditions (4.4) by

Ji(t0, x0, ᾱ
−i, ᾱi) ≥ J1(t0, x0, ᾱ

−i, ui)− ε ∀ui ∈ U i(t0)

Let E(t0, x0) be the set of Nash equilibrium payoffs of the game at the point (t0, x0). Our aim is to prove
that the set E(t0, x0) is non empty and to characterize it.

For that purpose, let us introduce the upper value functions of the zero-sum differential games associated
to gi:

V+
i (t0, x0) = inf

(α−i)∈A−id (t0)
sup

ui∈Ui(t0)

Ji(t0, x0, (α
−i), ui) .

Let us recall that, under assumptions (4.1), the value function V+
i is Lipschitz continuous and bounded

on [0, T ]× RN . Moreover, under Isaacs’ condition

inf
(u−i)∈U−i

sup
ui∈Ui

〈f(x, (u−i), ui), p〉 = sup
ui∈Ui

inf
(u−i)∈U−i

〈f(x, (u−i), ui), p〉 ∀(x, p) ∈ RN × RN ,(4.5)

we have the following equalities, which mean that V+
i is indeed the value of some games:

V+
i (t0, x0) = sup

ui∈Ui(t0)

inf
(α−i)∈A−id (t0)

Ji(t0, x0, (α
−i), ui) .

4.2 Characterization of Nash equilibrium payoffs

In order to characterize the Nash equilibrium payoffs, let us introduce the notion of reachable and consistent
payoff:

Definition 4.3 Let (t0, x0) ∈ [0, T )× RN be fixed.
We say that a I−tuple (ei) ∈ RI is a reachable and consistent payoff at (t0, x0) if, for any ε > 0, there is

some I−tuple of controls (ui) ∈ U1(t0)× . . .× UI(t0) such that:

1. (Reachable) ∀i ∈ {1, . . . , I}, |ei − gi(Xt0,x0,(u
i)

T )| ≤ ε,

2. (Consistent) ∀i ∈ {1, . . . , I}, ∀t ∈ [t0, T [, ei ≥ V+
i (t,X

t0,x0,(u
i)

t )− ε.

Let us denote by R(t0, x0) the set of reachable and consistent payoffs at (t0, x0).

Theorem 4.4 Let us assume that f and g satisfy assumption (4.1). Then, for any (t0, x0) ∈ [0, T ] × RN ,
a I−tuple (ei) ∈ RI is a Nash equilibrium payoff at (t0, x0) if and only if it is a reachable and consistent
payoff at (t0, x0):

E(t0, x0) = R(t0, x0) ∀(t0, x0) ∈ [0, T )× RN .

Proof of Theorem 4.4: Let us start with the proof of the inclusion E(t0, x0) ⊂ R(t0, x0). Let (ei) belong
to E(t0, x0). For any fixed ε > 0, there is some I−tuple (ᾱI) of delay strategies such that

|ei − Ji(t0, x0, (ᾱ
i))| ≤ ε(4.6)

and
J1(t0, x0, (ᾱ

−i), ᾱi) ≥ J1(t0, x0, u, (ᾱ
−i), ui)− ε

2
∀ui ∈ U i(t0) .(4.7)

Let (ūi) be the unique I−tuple of controls such that ᾱi((ū−i)) = ūi and let us set

Xt = X
t0,x0,(ū

i)
t and e′i = Ji(t0, x0, (ᾱ

i)) for i = 1, . . . , I .
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Note that (4.6) means that the I−tuple (ei) is reachable. We claim that it is consistent:

e′i ≥ V+
i (t,Xt)− ε ∀t ∈ [t0, T ] .(4.8)

Let t1 ∈ [t0, T ] and i ∈ {1, . . . , I}. Let us set x1 = Xt1 and let us define, for j 6= i, the strategy αj ∈ Ajd(t1) by
αj(u)t = ᾱj((û)−j)t for t ∈ [t1, T ], where (û−j) = (ū−j) on [t0, t1] and (û−j) = u on [t1, T ]. Let ui ∈ U i(t1)
be an ε/2-optimal control for V+

i (t1, x1) against (α−i):

Ji(t1, x1, (α
−i), ui) ≥ sup

vi∈Ui(t1)

Ji(t1, x1, (α
−i), vi)− ε

2
≥ V+

i (t1, x1)− ε

2
.(4.9)

Let us finally define the control ũi ∈ U i(t0) by ũit = ūit if t ∈ [t0, t1) and ũit = uit if t ∈ [t1, T ]. Since the

strategies (ᾱ−i) are nonanticipative, we have X
t0,x0,(ᾱ

−i),ũi

t1 = x1 and, by (4.7) and (4.9), we have

e′i = Ji(t0, x0, (ᾱ
i)) ≥ Ji(t0, x0, (ᾱ

−i), ũi)− ε

2
= J1(t1, x1, (α

−i), ui)− ε

2
≥ V+

1 (t1, x1)− ε .

So (4.8) holds.

REPRENDRE REPRENDRE REPRENDRE REPRENDRE REPRENDRE REPRENDRE REPREN-
DRE REPRENDRE REPRENDRE REPRENDRE

Let us now prove inclusion : R(t0, x0) ⊂ E(t0, x0). Let (ei) ∈ R(t0, x0). For any ε > 0, there is some
I−tuple of controls (ūi) ∈ U1(t0)× . . .UI(t0) such that, for i = 1, . . . , I,

|Ji(t0, x0, (ū
i))− ei| ≤ ε and V+

i (t,X
t0,x0,(ū

i)
t ) ≤ e′i + ε/2 ∀t ∈ [t0, T ](4.10)

where e′i = Ji(t0, x0, (ū
i)). In order to show that (ei) is a Nash equilibrium payoff we are going to build

delay strategies (ᾱi) such that
ᾱi((ū−i)) = ūi(4.11)

and such that
Ji(t0, x0, (ᾱ

−i), ui) ≤ e′i + ε ∀ui ∈ U i(t0) .(4.12)

This clearly implies that (ei) belongs to R(t0, x0). Let us set Xt = X
t0,x0,(ū

i)
t . The heuristic idea is that the

Players agree to play the control (ūi). They punish the first Player which deviates (say Player j, deviating
at time τ) by playing its worse strategy (α−j) in the zero-sum game V+(τ,Xτ ). The only issue is to build
delay strategies doing this. For this we will have to discretise in space and time.

Let us fix i ∈ {1, . . . , I}, let n be a large integer to be defined later and set tk = t0 + (T − t0)k/n for
k ∈ {0, . . . , n}. For k ∈ {0, . . . , n}, x ∈ RN and j 6= i, let (α−j,k) ∈ A−jd (t0) be an (ε/4)− optimal strategy
for the game V+

j (tk, Xtk):

sup
uj∈Uj(tk)

Jj(tk, Xtk , (α
−j,k), uj) ≤ V+

j (tk, Xtk) +
ε

4
.

Then, using assumptions (4.1) on f , g1 and g2 and the Lipschitz continuity of V+
2 , one can find some η > 0

such that
sup

uj∈Uj(tk)

Jj(tk, y, (α−j,k), uj) ≤ V+
j (tk, Xtk) +

ε

2
∀y ∈ B(Xtk , η)(4.13)

(see Lemma 3.7 for the proof of a similar statement). We denote by αi,j,k the i−th component of (α−j,k).
We are now ready to define the delay strategy ᾱi. Let (u−i) ∈ U−i(t0). If (u−i) = (ū−i) a.e. on [t0, tn−1],
then we set ᾱi((u−i)) = ūi (in particular, (4.11) holds). Otherwise, let

k̄ = sup
{
k ∈ {1, . . . , n− 1} , (u−i) = (ū−i) a.e. on [t0, tk−1]

}
,

(tk̄ is the first time the deviation is detected)

j̄ = min
{
j 6= i , uj 6≡ ūj a.e. on [tk̄−1, tk̄)

}
(Player j̄ is the deviator with the smallest index) and set

ᾱi((u−i))t =

{
ūit if t ∈ [t0, tk̄]

αi,j̄,k̄((u−i)|[tk̄,T ]
)t if t ∈ [tk̄, T ]
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Note that ᾱi is a delay strategy because the (finite number of strategies) αi,j̄,k only involve a finite number
of delays.

Let us show that the (ᾱi) satisfy (4.12). Let ui ∈ U i(t0) and If ui = ūi a.e. on [t0, tn−1], then, for j 6= i,

ᾱj((u−j,−i, ui)) = ūj and, since Xt = X
t0,x0,(ū

−i),ui

t on [t0, tn−1], we have

|Ji(t0, x0, (ū
−i), ūi)− Ji(t0, x0, (ū

−i), ui)| = |gi(XT )− gi(Xt0,x0,(ū
−i),ui

T )|
≤ Lip(gi)|XT −Xt0,x0,(ū

−i),ui

T | ≤ Lip(gi)‖f‖∞(T − tn−1) = Lip(gi)‖f‖∞(T − t0)/n .

So, if we choose n in such that Lip(gi)‖f‖∞(T − t0)/n ≤ ε, then (4.12) holds. If equality if ui = ūi a.e. on
[t0, tn−1] does not hold, let

k̄ = sup
{
k ∈ {1, . . . , n− 1} , ui = ūi a.e. on [t0, tk−1]

}
,

Then we have Xtk̄−1 = X
t0,x0,(ᾱ

−i),ui

tk̄−1 , so that

|Xt0,x0,(ᾱ
−i),ui

tk̄
−Xtk̄ | ≤ ‖f‖∞(T − t0)/n .

So, if we choose n such that ‖f‖∞(T − t0)/n ≤ η, we get from (4.13) and then from (4.10)

Ji(t0, x0, (ᾱ
−i), ui) = gi

Xtk̄,X
t0,x0,(ū

−i),ui
tk̄

,(αj,i,k̄)j 6=i,u
i
|[tk̄,T ]

T

 ≤ V̄ +
i (tk̄, Xtk̄) +

ε

2
≤ e′i + ε .

This completes the proof of Theorem 4.4. �

4.3 Existence of Nash equilibrium payoffs

Nash equilibrium payoffs exist, at least if Isaacs’ condition holds:

Theorem 4.5 If assumption (4.1) on f and the gi and Isaacs’ condition (4.5) hold, then, for any (t0, x0) ∈
[0, T )× RN , there is at least one Nash equilibrium payoff at (t0, x0).

Before starting the proof, we need two Lemmas.

Lemma 4.6 For any (t0, x0) ∈ [0, T ) × RN and any ε > 0, there is a I−tuple of controls (ūi) ∈ U1(t0) ×
. . .× UI(t0) such that

∀i ∈ {1, . . . , I}, ∀t ∈ [t0, T ], V+
i (t,Xt0,x0,(ū

i)) ≥ V+
i (t0, x0)− ε .(4.14)

Proof : For any i ∈ {1, . . . , I} let ᾱi ∈ Aid(t0) be a delay strategy which is ε-optimal for V+
i (t0, x0):

inf
(u−i)∈U−i(t0)

Ji(t0, x0, (u
−i), ᾱi) ≥ V+

1 (t0, x0)− ε .(4.15)

Let (ūi) the unique I−tuple of controls such that

ᾱi((ū−i)) = ūi ∀i ∈ {1, . . . , I} .

Let us set Xt = X
t0,x0,(ū

i)
t . We claim that (4.14) holds for (ūi). Indeed, let us fix i ∈ {1, . . . , I} and

t1 ∈ (t0, T ) and let us define the new delay strategy αi ∈ Aid(t1) by

αi((u−i)) = ᾱ(ũ−i)|[t1,T ]
where (ũ−i)(t) =

{
(ū−i)(t) if t ∈ [t0, t1)
(u−i)(t) if t ∈ [t1, T ]

∀(u−i) ∈ U−i(t1) .

Then
V+
i (t1, Xt1) ≥ inf

(u−i)∈U−i(t1)
Ji(t1, Xt1 , α

i, (u−i)) ≥ inf
(v−i)∈U−i(t0)

Ji(t0, x0, ᾱ
i, (v−i))

because, if (v−i) = (ū−i) on [t0, t1), then

X
t0,x0,ᾱ

i,(v−i)
T = X

t1,x1,α
i,(v−i)|[t1,T ]

T
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where (v−i)|[t1,T ]
stands for the restriction of v−i to the interval [t1, T ]. From (4.15) we get

V+
1 (t1, Xt1) ≥ inf

(v−i)∈U−i(t0)
J1(t0, x0, ᾱ

i, (v−i)) ≥ V+
1 (t0, x0)− ε

which is the desired result. �

Lemma 4.7 For any (t0, x0) ∈ [0, T ) × RN and any ε > 0, there is a I−tuple of controls (ui) ∈ U1(t0) ×
. . .× UI(t0) such that

V+
i (s,Xt0,x0,(u

i)
s ) ≤ V+

i (t,X
t0,x0,(u

i)
t ) + ε ∀t0 ≤ s ≤ t ≤ T, ∀i ∈ {1, . . . , I} .(4.16)

Proof : Let us fix n > 1 large and let us set tk = t0 + (T−t0)k
n . Thanks to Lemma 4.6, we can construct

by induction on the interval [tk, tk+1) a I−tuple of measurable controls (uin) : [tk, tk+1) → U1 × . . . × U I
such that

V+
i (t,X

t0,x0,(u
i
n)

t ) ≥ V+
i (tk, X

t0,x0,(u
i
n)

tk
)− 1

n2
∀t ∈ [tk, tk+1], ∀i ∈ {1, . . . , I} .

Let us now prove that (4.16) holds for n large enough. Indeed, for any t0 ≤ s ≤ t ≤ T , we can find tk1

and tk2 such that tk1 ≤ s < tk1+1 and tk2 ≤ t < tk2+1. Since f is bounded and the V+
i are C−Lipschitz

continuous for some constant C, we have, for all i,

|V+
i (t,Xn

t )−V+
i (tk2 , X

n
tk2

)| ≤ C(‖f‖∞ + 1)/n

and
|V+

i (s,Xn
s )−V+

i (tk1 , X
n
tk1

)| ≤ C(‖f‖∞ + 1)/n .

So
V+
i (t,Xn

t )−V+
i (s,Xn

s ) ≥ V+
i (tk2 , X

n
tk2

)−V+
i (tk1+1, X

n
tk1+1

)− 2C(‖f‖∞ + 1)/n

≥
∑k2−1
j=k1+1(V+

i (tj+1, X
n
tj+1

)−V+
i (tj , X

n
tj ))− 2C(‖f‖∞ + 1)/n

≥ −1/n− 2C(‖f‖∞ + 1)/n ≥ −ε
for a suitable choice of n. �

We are now ready to prove Theorem 4.5:

Proof of Theorem 4.5 : Let (uin) be the control given by Lemma 4.7 for ε = 1/n and let

Xn = Xt0,x0,(u
i
n). The sequence (Xn)n being uniformly continuous on [t0, T ], we can find a subsequence,

relabelled again (Xn)n, which converges to some continuous trajectory X uniformly on [t0, T ]. Then, from
the continuity of the V+

i and the construction of (uin), we have

V+
i (s,Xs) ≤ V+

i (t,Xt) ∀t0 ≤ s ≤ t ≤ T, ∀i ∈ {1, . . . , I} .(4.17)

Let us set (ei) = (gi(XT )). We now prove that (ei) belongs to R(t0, x0). For this we use the characterization
Theorem 4.4 which states that it is enough to prove that (ei) is a reachable and consistent payoff. From
(4.17), we know that t→ V+

i (t,Xt) is nondecreasing on [t0, T ] for all i. Thus,

V+
i (t,Xt) ≤ V+

i (T,XT ) = ei ∀t ∈ [t0, T ], ∀i ∈ {1, . . . , I} .

Since the Xn = Xt0,x0,(u
i
n) uniformly converge to X and since the V+

i are continuous, we can find for any
positive ε some n such that

|ei − gi(X
t0,x0,(u

i
n)

T )| ≤ ε
and such that

V+
i (t,X

t0,x0,(u
i
n)

t ) ≤ ei + ε ∀t ∈ [t0, T ], ∀i ∈ {1, . . . , I} .
�

4.4 Exercises

Exercice 4.1 Show that the set-valued map which associates to an initial position (t, x) the set of Nash
equilibrium payoff has a closed graph. In other words, if the sequence (tn, xn) converges to (t, x), if (eni ) are
Nash equilibrium payoffs for the initial position (tn, xn) and if (eni ) converges to some (ei) ∈ RI , then (ei) is
a Nash equilibrium payoff for the initial position (t, x).
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4.5 Comments

The results of this section are due to Kononenko [138] (see also Kleimenov [137], Tolwinski-Haurie-Leitmann
[205], Gaitsgory-Nitzan [113], Coulomb-Gaitsgory [81]). It is the counterpart of the so-called Folk Theorem
in repeated game theory [167]. It has been extended to differential games played with random strategies by
Souquière [194] and to stochastic differential games by Buckdhan-Cardaliaguet-Rainer [56] (see also Rainer
[178]).

The main open issue for nonzero-sum differential games is the existence of subgame perfect equilibrium:
these equilibria are (at least heuristically) given by feedback strategies and should be solutions of a system of
Hamilton-Jacobi equations. In this framework, a verification theorem, analogous to the one given in Chapter
1, has been obtained by Case [79] (see also the monograph Friedman [111] and the references therein) and
successfully applied to linear-quadratic differential games (see again Case [79], but also Starr-Ho [196], etc...).
This later class of differential games is probably the class which has been the most investigated, because in
particular the numerous applications (see for instance the monograph [90] and the references therein).

Beside the linear quadratic case, very little is known. Results on the system of Hamilton-Jacobi equations
formally derived for the Nash equilibria are very sparse. Actually recent papers on the subject seem to
indicate that this system is ill-defined and highly unstable. In a series of articles, Bressan and his co-
authors (Bressan-Chen [50], [51], Bressan-Priuli [52], Bressan [54], [55]) show that, in space dimension 1, the
system can be recasted in terms of a system of conservation laws which turns out to be ill-posed in general.
Cardaliaguet-Plaskacz [68], Cardaliaguet [70] also investigate a game in dimension 1 and show that the Nash
equilibria in feedback strategies is highly unstable.

This is in sharp contrast with what happens for stochastic differential games (with non degenerate
viscosity term), which have been investigated either via P.D.E methods by Bensoussan-Frehse [36], [37], or
by the use of backward stochastic differential equations methods by Hamadène [126].

In any case, very little is known about uniqueness of Nash equilibria and the selection of such equilibria
is a challenging issue. One of the ways to overcome this problem is to consider the case with infinitely many
players, and where none of these players has a strong influence on the game. In this situation, one can expect
that the limit system has a unique solution. This approach has very recently been developed in a sequence
of papers by Lasry-Lions [145, 146, 147, 148, 157] under the terminology of mean-field games (see also, in
the framework of backward-stochatic differential equation, Buckdahn and al. [60, 61]).



Chapter 5

Differential games with incomplete
information

In this chapter we investigate a two-player zero-sum differential game of Bolza type in which the players
have a private information on the payoff. More precisely, we assume that the running payoff `ij and terminal
payoff gij depend on some indices i ∈ {1, . . . , I} and j ∈ {1, . . . , J}. At the initial time t0 of the game, the
pair (i, j) is chosen randomly according to some probability law p⊗ q on {1, . . . , I} × {1, . . . , J}. The index
i is told to Player 1, but not to Player 2, while the index j is told to Player 2, and not to Player 1. Then
the game runs as usual, Player 1 trying to minimize its cost given by

Jij(t0, x0, u, v) =

∫ T

t0

`ij(s,Xs, us, vs)ds+ gij(XT )

while Player 2 aims at maximizing that same quantity.

Note that the players do not know which payoff they are actually optimizing, because they only have
a part of the information on the pair (i, j). The interesting point is that, since the players observe their
opponent’s control, they can nevertheless try to guess their missing information by observing what their
opponent is playing.

We will first introduce the definition of the value functions: this definition requires the introduction of
random strategies, because the players need to hide their private information by randomizing their behavior.
Then we will show that the value functions, which depend on the probability p ⊗ q, have some convexity
properties with respect to this probability. This allows us to introduce a new game—the so-called dual
game–, the value function of which enjoys a sub-dynamic property. Thanks to this we will complete the
proof of the existence of a value and characterize this value in terms of viscosity solutions of some “double
obstacle” Hamilton-Jacobi equation.

5.1 Definition of the value functions

Since the players need to hide a part of their information, they have to play random strategies. For this
reason the definition of the value function is a little involved and takes some time.

Let us start with some notations. Since most functions involved in this chapter depend on many variables
(typically on (t, x, p, q)), we keep the notation ∂t for the time derivative, but we specify Dx or D2

xx for the
first or second order derivative with respect to the space variable x, Dp or D2

pp for the first or second order
derivative with respect to the variable p, etc...

The dynamics of the game is as usual given by:{
X ′t = f(t,Xt, ut, vt) , ut ∈ U, vt ∈ V
Xt0 = x0

(5.1)

59
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Throughtout the chapter we assume the following conditions on the dynamics and the payoff:

i) U and V are compact subsets of some finite dimensional spaces,
ii) f : [0, T ]× RN × U × V → RN is bounded, continuous, uniformly

Lipschitz continuous with respect to the x variable,
iii) for i = 1, . . . , I and j = 1, . . . , J , `ij : [0, T ]× RN × U × V → R is continuous, bounded

and uniformly Lipschitz continuous with respect to x
iv) for i = 1, . . . , I and j = 1, . . . , J , gij : RN → R is Lipschitz

continuous and bounded.

(5.2)

Controls : For any t0 < t1 ≤ T , the set of open-loop controls for Player 1 on [t0, t1] is defined by

U(t0, t1) = {u : [t0, t1] 7→ U Lebesgue measurable} .

If t1 = T , we simply set U(t0) := U(t0, T ). Open-loop controls on the interval [t0, t1] for Player 2 are defined
symmetrically and denoted by V(t0, t1) (and by V(t0) if t1 = T ).

If u ∈ U(t0) and t0 ≤ t1 < t2 ≤ T , we denote by u|[t1,t2]
the restriction of u to the interval [t1, t2]. We

note that u|[t1,T ]
belongs to U(t1).

For any (u, v) ∈ U(t0)× V(t0) and any initial position x0 ∈ RN , we denote by t 7→ Xt0,x0,u,v
t the unique

solution to (5.1).

Strategies : Next we introduce the notions of pure and random strategies (see also Chapter 2). The
definition of random strategies involves a set S of (non trivial) probability spaces, which has to be stable
by finite product. For simplicity we will assume that S contains the probability space ([0, 1], B([0, 1]),L1),
where B([0, 1]) is the class of Borel sets on [0, 1] and L1 is the Lebesgue measure on [0, 1]. For instance we
can choose

S = {([0, 1]n, B([0, 1]n),Ln), for some n ∈ N∗} ,

where B([0, 1]n) is the class of Borel sets and Ln is the Lebesgue measure on Rn.
A pure strategy for Player 1 at time t0 is a map α : V(t0) 7→ U(t0) which satisfies the following conditions:

(i) α is a measurable map from V(t0) to U(t0) where U(t0) and V(t0) are endowed with the Borel σ−field
associated with the L1 distance,

(ii) α is nonanticipative with delay, i.e., there is a delay τ > 0 such that, for any v1, v2 ∈ V(t0) and any
t ∈ (t0, T ],

v1 ≡ v2 on [t0, t] ⇒ α(v1) ≡ α(v2) on [t0, (t+ τ) ∧ T ] .

(Note that the only difference with delay strategies introduced in Chapter 2 is that we require here the map
α to be measurable; this will be more convenient later on).

A random strategy for Player 1 is a pair ((Ωα,Fα,Pα), α), where (Ωα,Fα,Pα) belongs to the set of
probability spaces S and α : Ωα × V(t0) 7→ U(t0) satisfies

(i) α is a measurable map from Ωα×V(t0) to U(t0), with Ωα endowed with the σ−field Fα and U(t0) and
V(t0) with the Borel σ−field associated with the L1 topology (see section 2.2),

(ii) there is a delay τ > 0 such that, for any v1, v2 ∈ V(t0), any t ∈ (t0, T ] and any ω ∈ Ωα,

v1 ≡ v2 on [t0, t] ⇒ α(ω, v1) ≡ α(ω, v2) on [t0, (t+ τ) ∧ T ] .

We denote by Ad(t0) the set of pure strategies and by Ar(t0) the set of random delay strategies for
Player 1. By abuse of notations, an element of Ar(t0) is simply noted α (instead of ((Ωα,Fα,Pα), α)),
the underlying probability space being always denoted by (Ωα,Fα,Pα). Let us point out the inclusion
Ad(t0) ⊂ Ar(t0).

To take into account the fact that Player 1 knows the index i, a strategy for Player 1 is actually a I−tuple
α̂ = (α1, . . . , αI) ∈ (Ar(t0))I .

Pure and random strategies for Player 2 are defined symmetrically and the set of pure and random delay
strategies for Player 2 are denoted by Bd(t0) and Br(t0) respectively. Elements of Br(t0) are denoted simply
by β, and the underlying probability space by (Ωβ ,Fβ ,Pβ).
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Since Player 2 knows the index j, a strategy for Player 2 is a J−tuple β̂ = (β1, . . . , βJ) ∈ (Br(t0))J .

One of the main interests of delay strategies is the following property, proved in Chapter 2, Lemma
2.5: For any pair (α, β) ∈ Ar(t0) × Br(t0) and any ω := (ω1, ω2) ∈ Ωα × Ωβ , there is a unique pair
(uω, vω) ∈ U(t0)× V(t0), such that

α(ω1, vω) = uω and β(ω2, uω) = vω .(5.3)

Furthermore the map ω → (uω, vω) is measurable from Ωα × Ωβ endowed with Fα ⊗ Fβ into U(t0)× V(t0)
endowed with the Borel σ−field associated with the L1 distance.

Expectation with respect to the strategies: Given any pair (α, β) ∈ Ar(t0) × Br(t0), we denote by

(Xt0,x0,α,β
t ) the map (t, ω) 7→ Xt0,x0,uω,vω

t defined on [t0, T ] × Ωα × Ωβ , where (uω, vω) satisfies (5.3). We
also define the expectation Eαβ as the integral over Ωα × Ωβ against the probability measure Pα ⊗ Pβ . In
particular, if φ : RN → R is some bounded continuous map and t ∈ (t0, T ], we have

Eαβ
[
φ
(
Xt0,x0,α,β
t

)]
:=

∫
Ωα×Ωβ

φ
(
Xt0,x0,uω,vω
t

)
dPα ⊗ Pβ(ω) ,(5.4)

where (uω, vω) is defined by (5.3). Note that (5.4) makes sense because the map (u, v) 7→ Xt0,x0,u,v
t being

continuous in L1, the map ω 7→ φ
(
Xt0,x0,uω,vω
t

)
is measurable in Ωα × Ωβ and bounded. If either α or β is

a pure strategy, then we simply drop α or β in the expectation Eαβ , which then becomes Eβ or Eα.

Probability measures on {1, . . . , I} and {1, . . . , J}: For a fixed integer I ≥ 1, the set ∆(I) denotes the
set of probability measures on {1, . . . , I}, always identified with the simplex of RI :

p = (p1, . . . , pI) ∈ ∆(I) ⇔
I∑
i=1

pi = 1 and pi ≥ 0 for i = 1, . . . I .

In the same way, for a fixed integer J ≥ 1, the set ∆(J) is the set of probability measures on {1, . . . , J}.

Definition of the payoff: Let (p, q) ∈ ∆(I) ×∆(J), (t0, x0) ∈ [0, T ) × RN , α̂ = (αi)i=1,...,I ∈ (Ar(t0))
I

and β̂ = (βj) ∈ (Br(t0))J . We set

Jij(t0, x0, αi, βj) = Eαiβj

[∫ T

t0

`ij(s,X
t0,x0,αi,βj
s , αi(s), βj(s))ds+ gij

(
X
t0,x0,αi,βj
T

)]
,(5.5)

and

J (t0, x0, α̂, β̂, p, q) =

I∑
i=1

J∑
j=1

piqjJij(t0, x0, αi, βj) ,(5.6)

where Eαiβj is defined by (5.4). Note that α̂ does not depend on j, while β̂ does not depend on i. This
modelizes the fact that Player 1 knows i but not j, while Player 2 knows j and not i.

Definition of the value functions: The upper value function is given by

V+(t0, x0, p, q) = inf
α̂∈(Ar(t0))I

sup
β̂∈(Br(t0))J

J (t0, x0, α̂, β̂, p, q)

while the lower value function is defined by

V−(t0, x0, p, q) = sup
β̂∈(Br(t0))J

inf
α̂∈(Ar(t0))I

J (t0, x0, α̂, β̂, p, q) .

In particular

V−(t0, x0, p, q) ≤ V+(t0, x0, p, q) ∀(t0, x0, p, q) ∈ [0, T ]× RN ×∆(I)×∆(J) .
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Hamiltonian and Isaacs’ condition: Throughout the chapter we assume that the following Isaacs’ con-
dition holds:

H(t, x, ξ, p, q) := inf
u∈U

sup
v∈V

〈f(t, x, u, v), ξ〉+
∑
i,j

piqj`ij(t, x, u, v)


= sup

v∈V
inf
u∈U

〈f(t, x, u, v), ξ〉+
∑
i,j

piqj`ij(t, x, u, v)


(5.7)

for any (t, x, ξ, p, q) ∈ [0, T ]× RN × RN ×∆(I)×∆(J).

5.2 Convexity properties of the value functions

The main result of this section is Lemma 5.2 which states that the value functions V+ and V− are convex
in p and concave in q. We also investigate some regularity properties of the value functions.

Lemma 5.1 (Regularity of V+ and V−) Under assumption (5.2), V+ and V− are Lipschitz continu-
ous.

Proof : We first note that the Lipschitz continuity of V− and V+ with respect to p and q just comes from
the boundedness of the `ij and gij . Using standard arguments, one easily shows that, for any t0 ∈ [0, T ],
(u, v) ∈ U(t0)× V(t0), the maps

x→
∫ T

t0

`ij(s,X
t0,x,u,v
s , u(s), v(s))ds and x→ gij

(
Xt0,x,u,v
T

)
are Lipschitz continuous with a Lipschitz constant independent of t0 ∈ [0, T ]. Hence for any pair of strategies

(α̂, β̂) ∈ (Ar(t0))I × (Br(t0))J the map

x→ Jij(t, x, α̂, β̂, p, q)

is C−Lipschitz continuous for some constant C independent of t ∈ [0, T ], of p ∈ ∆(I) and of q ∈ ∆(J). From
this one easily deduces that V+ and V− are C−Lipschitz continuous with respect to x.

We now consider the time regularity of V− and V+. We only do the proof for V−, since the case of V+ can
be treated similarly. Let x0 ∈ RN , (p, q) ∈ ∆(I)×∆(J) and t0 < t1 < T be fixed. Let β̂ = (βj) ∈ (Br(t0))J

and ū ∈ U be fixed. Let us define a new strategy (β̃j) ∈ (Br(t1))J by setting

β̃j(ω, u) = βj(ω, ũ)|[t1,T ]
where ũ(t) =

{
ū if t ∈ [t0, t1)
u otherwise

for any ω ∈ Ωβ̃j := Ωβj and u ∈ U(t1). For ε > 0 let now (α̃i) ∈ (Ar(t1))I be ε−optimal against (β̃j) at

(t1, x0, p, q):

J (t1, x0, (α̃i), (β̃j), p, q) ≤ V−(t1, x0, p, q) + ε .

We come back to [t0, T ] by defining a new strategy α̂ = (αi) ∈ (Ar(t0))I as

αi(ω, v) =

{
ū if t ∈ [t0, t1)
αi(ω, v|[t1,T ]

) otherwise
∀ω ∈ Ωα′ := Ωα, ∀v ∈ V(t0) .

Then

J (t0, x0, α̂, β̂, p, q) ≤ C(t1 − t0) +
∑
i,j

piqjEαi,βj

[∫ T

t1

`ij(s,X
t0,x0,αi,βj
s α̃i(s), β̃j(s))ds+ gij(X

t0,x0,αi,βj
T )

]
,

where, since

sup
s∈[t1,T ]

∣∣∣Xt0,x0,αi,βj
s −Xt1,x0,α̃i,β̃j

s

∣∣∣ ≤ C(t1 − t0) ,
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we have

∑
i,j

piqjEαi,βj

[∫ T

t1

`ij(s,X
t0,x0,αi,βj
s α̃i(s), β̃j(s))ds+ gij(X

t0,x0,αi,βj
T )

]
≤ C(t1−t0)+J (t1, x0, (α̃i), (β̃j), p, q) .

Using the ε−optimality of (α̃i) this implies that

J (t0, x0, α̂, β̂, p, q) ≤ C(t1 − t0) + V−(t1, x0, p, q) + ε .

Taking the infimum over α̂ ∈ (Ar(t0))I and then the supremum over β̂ ∈ (Br(t0))J we get

V−(t0, x0, p, q) ≤ C(t1 − t0) + V−(t1, x0, p, q) + ε ,

which shows that
V−(t0, x0, p, q) ≤ C(t1 − t0) + V−(t1, x0, p, q)

since ε is arbitrary.
The reverse inequality can be proved in a similar way: we choose some ε−optimal strategy β̂ = (βj) ∈

(Br(t1))J for V−(t1, x0, p, q) and we extend it to a strategy (β̃j) ∈ (Br(t0))J by setting (for some v̄ ∈ V
fixed)

β̃j(ω, u) =

{
v̄ if t ∈ [t0, t1)
βj(ω, u|[t1,T ]

) otherwise
∀ω ∈ Ωβ̃j := Ωβj , ∀u ∈ U(t0) .

Similar estimates as above then show that, for any α̂ ∈ (Ar(t0))I we have

J (t0, x0, α̂, (β̃j), p, q) ≥ V−(t1, x0, p, q)− ε− C|t0 − t1|

from the ε−optimality of β̂ for V−(t1, x0, p, q). Then we get

V−(t0, x0, p, q) ≥ V−(t1, x0, p, q)− C|t0 − t1| .

�

Lemma 5.2 (Convexity properties of V− and V+) For any (t, x) ∈ [0, T ) × RN , the maps V+ =
V+(t, x, p, q) and V− = V−(t, x, p, q) are convex with respect to p and concave with respect to q on ∆(I)
and ∆(J) respectively.

Remark 5.3 This result is well-known for repeated games with lack of information. The procedure we use
in the proof is usually called “splitting”: see [189] for instance.

Proof of Lemma 5.2: We only do the proof for V+, the proof for V− can be achieved by reversing the
roles of the players. One first easily checks that

V+(t0, x0, p, q) = inf
(αi)∈(Ar(t0))I

J∑
j=1

qj sup
β∈Br(t0)

[
I∑
i=1

piJij(t0, x0, αi, βj)

]
.

Hence q → V+(t, x, p, q) is concave for any (t, x, p) as the infimum of concave functions.
We now prove the convexity of V+ with respect to p. Let (t, x, q) ∈ [0, T ) × RN ×∆(J), p0, p1 ∈ ∆(I),

λ ∈ (0, 1). Let us set pλ = (1 − λ)p0 + λp1. We can assume without loss of generality that pλi 6= 0 for
any i because if pλi = 0, then p0

i = p1
i = 0, so that this index i plays no role in our computation. For

ε > 0 let α̂0 = (α0
i ) ∈ (Ar(t))I and α̂1 = (α1

i ) ∈ (Ar(t))I be ε−optimal for V+(t, x, p0, q) and V+(t, x, p1, q)
respectively. We now define the strategy α̂λ = (αλi ) ∈ (Ar(t))I by setting

Ωαλi = [0, 1]× Ωα0
i
× Ωα1

i
, Fαλi = B([0, 1])⊗Fα0

i
⊗Fα1

i
, Pαλi = L1 ⊗ Pα0

i
⊗ Pα1

i
,

and

αλi (ω1, ω2, ω3, v) =

 α0
i (ω2, v) if ω1 ∈ [0,

(1−λ)p0
i

pλi
)

α1
i (ω3, v) if ω1 ∈ [

(1−λ)p0
i

pλi
, 1]
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for any (ω1, ω2, ω3) ∈ Ωαλi and v ∈ V(t). We note that (Ωαλi ,Fαλi ,Pαλi ) belongs to the set of probability

spaces S and that αλi belongs to Ar(t0) for any i = 1, . . . , I.

The interpretation of the strategy α̂λ is the following: if the index i is choosen according to the probability

pλ, then Player 1 chooses α0
i with probability

(1−λ)p0
i

pλi
and α1

i with probability 1− (1−λ)p0
i

pλi
=

λp1
i

pλi
. Hence the

probability for the strategy α0
i to be chosen is pλi

(1−λ)p0
i

pλi
= (1 − λ)p0

i , while the strategy α1
i appears with

probability pλi
λp1
i

pλi
= λp1

i . Therefore

sup
β̂∈(Bd(t0))J

J (t, x, α̂λ, β̂, pλ, q) =

J∑
j=1

qj sup
β∈Bd(t0)

I∑
i=1

pλi Jij(t, x, αλi , β)

=

J∑
j=1

qj sup
β∈Bd(t0)

I∑
i=1

pλi

[
(1− λ)p0

i

pλi
Jij(t, x, α0

i , β) +
λp1

i

pλi
Jij(t, x, α1

i , β)

]
≤ (1− λ)

J∑
j=1

qj sup
β∈Bd(t0)

I∑
i=1

p0
iJij(t, x, α0

i , β) + λ

J∑
j=1

qj sup
β∈Bd(t0)

I∑
i=1

p1
iJij(t, x, α1

i , β)

≤ (1− λ)V+(t, x, p0, q) + λV+(t, x, p1, q) + ε

because α̂0 and α̂1 are ε− optimal for V+(t, x, p0, q) and V+(t, x, p1, q) respectively. Therefore

V+(t, x, pλ, q) ≤ supβ̂ J (t, x, α̂λ, β̂, pλ, q)

≤ (1− λ)V+(t, x, p0) + λV+(t, x, p1) + ε ,

which proves the desired claim because ε is arbitrary. �

Since the value functions are convex with respect to p we are naturally lead to consider their Fenchel
conjugates with respect to p (see for instance [181]). Let w : [0, T ] × RN × ∆(I) × ∆(J) 7→ R be some
function. We denote by w∗ its convex conjugate with respect to variable p:

w∗(t, x, p̂, q) = sup
p∈∆(I)

〈p̂, p〉 − w(t, x, p, q) ∀(t, x, p̂, q) ∈ [0, T ]× RN × RI ×∆(J) .

In particular V−∗ and V+∗ denote the convex conjugate with respect to the p−variable of the functions V−

and V+. Note that, since we take the supremum over ∆(I), this implicitely means that we extend w by +∞
outside of ∆(I).

For a function w = w(t, x, p̂, q) defined on the dual space [0, T ]×RN ×RI ×∆(J) we also denote by w∗

its convex conjugate with respect to p̂ defined on [0, T ]× RN ×∆(I)×∆(J):

w∗(t, x, p, q) = sup
p̂∈RI
〈p, p̂〉 − w(t, x, p, q) ∀(t, x, p, q) ∈ [0, T ]× RN ×∆(I)×∆(J) .

In a symmetric way, we denote by w] = w](t, x, p, q̂) the concave conjugate with respect to q of w:

w](t, x, p, q̂) = inf
q∈∆(J)

〈q̂, q〉 − w(t, x, p, q) ∀(t, x, p, q̂) ∈ [0, T ]× RN ×∆(I)× RJ .

Again, taking the infimum over ∆(J) implicitely means that we extend w by −∞ outside of ∆(J). However
there will never be a contradiction with the convention for w∗ since we will never consider at the same time
the convex and the concave conjugates.

If w : [0, T ]×RN ×∆(I)×∆(J) 7→ R is convex with respect to p and concave with respect to q, we denote
by ∂−p w(t, x, p, q) and ∂+

q w(t, x, p, q) the convex and concave sub- and super-differential of w at (t, x, p, q)
with respect to p and q. Namely

∂−p w(t, x, p, q) =
{
p̂ ∈ RI , w(t, x, p, q) + 〈p̂, p′ − p〉 ≤ w(t, x, p′, q) ∀p′ ∈ ∆(I)

}
and

∂+
q w(t, x, p, q) =

{
q̂ ∈ RJ , w(t, x, p, q) + 〈q̂, q′ − q〉 ≥ w(t, x, p, q′) ∀q′ ∈ ∆(J)

}
.
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5.3 The subdynamic programming

The main result of this section is that V−∗ is a subsolution of some Hamilton-Jacobi equation while V+]

is a supersolution of another Hamilton-Jacobi equation. To fix the ideas, we do the analysis for the lower
value functions, and deduce at the very end of the section the symmetric results for upper value function.
The result is proved in three steps. We first reformulate V−∗. Then we deduce from this reformulation that
V−∗ satisfies a subdynamic programming principle. We finally deduce from this subdynamic programming
that V−∗ satisfies some differential inequality.

Lemma 5.4 (Reformulation of V−∗) We have, for any (t, x, p̂, q) ∈ [0, T ]× RN × RI ×∆(J),

V−∗(t, x, p̂, q) = inf
(βj)∈(Br(t0))J

sup
α∈Ad(t0)

max
i∈{1,...,I}

p̂i −
J∑
j=1

qjJij(t, x, α, βj)

 .(5.8)

Remark 5.5 V−∗ can be viewed as the value function of a dual game. The striking point of this game
is that Player 1 no longer hides his information. This turns out to be extremely useful for establishing a
subdynamic programming.

Proof of Lemma 5.4: Let us recall for later use that

V−(t, x, p, q) = sup
(βj)∈(Br(t0))J

I∑
i=1

pi inf
α∈Ad(t0)

J∑
j=1

qjJij(t, x, α, βj) .(5.9)

Let us denote by z = z(t, x, p̂, q) the right-hand side of equality (5.8). We first claim that

z is convex with respect to p̂.(5.10)

Proof of (5.10): The proof mimics the proof of the convexity of V+. Let (t, x, q) ∈ [0, T )×RN ×∆(J),
p̂0, p̂1 ∈ RI , λ ∈ (0, 1) and (β0

j ) ∈ (Br(t))J and (β1
j ) ∈ (Br(t))J be ε−optimal for z(t, x, p̂0, q) and z(t, x, p̂1, q)

respectively (ε > 0). Let us set p̂λ = (1− λ)p̂0 + λp̂1. We define the strategies βλj ∈ Br(t) by setting

Ωβλj = [0, 1]× Ωβ0
j
× Ωβ1

j
, Fβλj = B([0, 1])⊗Fβ0

j
⊗Fβ1

j
, Pβλj = L1 ⊗ Pβ0

j
⊗ Pβ1

j
,

and

βλj (ω1, ω2, ω3, u) =

{
β0
j (ω2, u) if ω1 ∈ [0, (1− λ))
β1
j (ω3, u) if ω1 ∈ [(1− λ), 1]

for any (ω1, ω2, ω3) ∈ Ωβλj and u ∈ U(t). Then (Ωβλj ,Fβλj ,Pβλj ) belongs to S and (βλj ) ∈ (Br(t0))J . For any

α ∈ Ad(t), we have, by using the convexity of the map (si) 7→ maxi{si}:

max
i=1,...,I

p̂λi −
J∑
j=1

qjJij(t, x, α, βλj )


= max

i=1,...,I

(1− λ)(p̂0
i −

J∑
j=1

qjJij(t, x, α, β0
j )) + λ(p̂1

i −
J∑
j=1

qjJij(t, x, α, β1
j ))


≤ (1− λ) sup

α∈Ad(t0)

max
i=1,...,I

p̂0
i −

J∑
j=1

qjJij(t, x, α, β0
j )


+λ sup

α∈Ad(t0)

max
i=1,...,I

p̂1
i −

J∑
j=1

qjJij(t, x, α, β1
j )


≤ (1− λ)z(t, x, p̂0, q) + λz(t, x, p̂1, q) + ε

because β0 and β1 are ε−optimal for z(t, x, p̂0, q) and z(t, x, p̂1, q) respectively. Hence

z(t, x, p̂λ, q) ≤ sup
α∈Ad(t0)

max
i=1,...,I

p̂λi −
J∑
j=1

qjJij(t, x, α, βλj )


≤ (1− λ)z(t, x, q0) + λz(t, x, q1) + ε ,



66 CHAPTER 5. DIFFERENTIAL GAMES WITH INCOMPLETE INFORMATION

which proves (5.10) because ε is arbitrary.

Next we show that V−∗ = z. Indeed we have by definition of z:

z∗(t, x, p, q) = sup
p̂∈RI

〈p, p̂〉 − inf
(βj)∈(Br(t0))J

max
i=1,...,I

p̂i − inf
α∈Ad(t0)

J∑
j=1

qjJij(t, x, α, βj)




= sup
(βj)∈(Br(t0))J

sup
p̂∈RI

min
i=1,...,I

 〈p, p̂〉 − p̂i + inf
α∈Ad(t0)

J∑
j=1

qjJij(t, x, α, βj)


In this last expression, the sup

p̂
is attained by

p̂i = inf
α∈Ad(t0)

J∑
j=1

qjJij(t, x, α, βj) ,

for which all the arguments of the min
i=1,...,I

are equal. Hence

z∗(t, x, p, q) = sup
(βj)∈(Br(t0))J

I∑
i=1

pi inf
α∈Ad(t0)

J∑
j=1

qjJij(t, x, α, βj) = V−(t, x, p, q)

because of (5.9). Since we have proved that z is convex with respect to p̂, we get by duality

V−∗ = z∗∗ = z .

�

Lemma 5.6 (Sub-dynamic principle for V−∗) We have for any (t0, x0, p̂, q) ∈ [0, T )×RN ×RI ×∆(J)
and any h ∈ (0, T − t0],

V−∗(t0, x0, p̂, q) ≤ inf
β∈Bd(t0)

sup
α∈Ad(t0)

V−∗(t0 + h,Xt0,x0,α,β
t0+h , p̂(t0 + h), q) ,(5.11)

where

(p̂(t0 + h))i = p̂i −
J∑
j=1

qj

∫ t0+h

t0

`ij(s,X
t0,x0,α,β
s , α(s), β(s))ds ∀i ∈ {1, . . . , I} .

Proof : We do the proof in two steps. First we prove the result when `ij = 0 for any (i, j). Then we
complete the proof of the general case by a reduction argument.

Proof of (5.11) when `ij = 0 : Let us denote by V −∗1 (t0, t0 + h, x0, p̂, q) the right-hand side of (5.11) (where
p̂(t0 + h) = p̂). Arguing as in Lemma 5.1 one can prove that V−∗1 is Lipschitz continuous with respect to x.

Let ε > 0 and β0 ∈ Bd(t0) be some pure ε−optimal strategy for V −∗1 (t0, t0 + h, x0, p̂, q). For any x ∈ RN ,

we can find some ε−optimal strategy β̂x = (βxj ) ∈ Br(t0 + h) for Player 2 in the game V−∗(t0 + h, x, p̂, q).
From the Lipschitz continuity of the map

y → sup
α∈Ad(t)

max
i∈{1,...,I}

p̂i −∑
j

qjJij(t0 + h, y, α, βxj )

 ,

and of the map y → V−∗(t0 + h, y, p̂, q), the strategy βx is also (2ε)−optimal for V−∗(t0 + h, y, p̂, q) if
y ∈ B(x, r) for some radius r > 0.

Let M = ‖f‖∞ and let us set R = MT + |x0|. Then we choose (xl)l=1,···,l0 such that
⋃l0
l=1B(xl, r/2) con-

tains the ballB(0, R). Let us set E1 = B(x1, r/2), and, for any l = 2, . . . , l0, El = B(xl, r/2)\
⋃
l′<lB(xl′ , r/2).

Then (El)l=1,...,l0 be a Borel partition of B(0, R) such that, for any l, El ⊂ B(xl, r/2). We set

βlj = βxlj , Ωlj = Ωβlj , F
l
j = Fβlj and Plj = Pβlj
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for j = 1, . . . , J and l = 1, . . . , l0. Let τ be a delay common to β0 and all the βlj . Without loss of generality
we can also assume that τ is smaller than r/(2M) and than h.

Let us now define a new strategy β̂ = (βj) ∈ (Br(t0))J in the following way: set

Ωβj = Πl0
l=1Ωlj , Fβj = F1

j ⊗ . . .⊗F
l0
j and Pβj = P1

j ⊗ . . .⊗ Pj0j

and, for any ω = (ω1, . . . , ωl0) ∈ Ωβj and u ∈ U(t0),

βj(ω, u)(t) =

{
β0(u)(t) if t ∈ [t0, t0 + h)

βlj(ω
l, u|[t0+h,T ]

)(t) if t ∈ [t0 + h, T ] and X
t0,x0,u,β

0(u)
t0+h−τ ∈ El

Note that X
t0,x0,u,β

0(u)
t0+h−τ always belongs to one and only one El thanks to the choice of R. Then (Ωβj ,Fβj ,Pβj )

belongs to S and β̂ = (βj) ∈ (Br(t0))J .
For any pure strategy α ∈ A(t0), we have:

gij(X
t0,x0,α,βj
T ) =

l0∑
l=1

gij

(
X
t0+h,X

t0,x0,α,β
0

t0+h ,α̃,βlj
T

)
1
{Xt0,x0,α,β

0

t0+h−τ ∈El}

where α̃ ∈ A(t0 + h) is a restriction of α to the time interval [t0 + h, T ] defined by

α̃(v) = α(v′)|[t0+h,T ]
∀v ∈ V(t0 + h) where v′(t) =

{
v̄(t) if t ∈ [t0, t0 + h]
v(t) otherwise

the controls (ū, v̄) being the pair associated with (α, β0) as in (5.3). Note that, if Xt0+h−τ belongs to some
El, then, by definition of El and τ , Xt0+h belongs to the ball B(xl, r) and therefore (βlj) is (2ε)−optimal for
V−∗(t0 + h,Xt0+h, p̂, q). Hence

max
i∈{1,...,I}

p̂i −∑
j

qjEβj
[
gij(X

t0,x0,α,βj
T )

] =

max
i∈{1,...,I}

p̂i −∑
j

qj

l0∑
l=1

(∫
Ωlj

gij

(
X
t0+h,X

t0,x0,α,β
0

t0+h ,α̃,βlj
T

)
dPlj(ωl)

)
1Ol


(where we have set Ol = {Xt0,x0,α,β

0

t0+h−τ ∈ El})

≤
l0∑
l=1

sup
α′∈A(t0+h)

max
i∈{1,...,I}

p̂i −∑
j

qj

(∫
Ωlj

gij

(
X
t0+h,X

t0,x0,α,β
0

t0+h ,α′,βlj
T

)
dPlj(ωl)

)1Ol

(because of the convexity of the map s = (si) 7→ max{si})

≤
l0∑
l=1

(
V−∗

(
t0 + h,Xt0,x0,α,β

0

t0+h , p̂, q
)

+ 2ε
)

1Ol

(because, on Ol, (βlj) is (2ε)−optimal for V−∗
(
t0 + h,Xt0,x0,α,β

0

t0+h , p̂, q
)

)

= V−∗
(
t0 + h,Xt0,x0,α,β

0

t0+h , p̂, q
)

+ 2ε

≤ V−∗1 (t0, t0 + h, x0, p̂, q) + 3ε ,

because β0 is ε−optimal for V−∗1 (t0, t0 + h, x0, p̂, q). Therefore

sup
α∈A(t0)

max
i∈{1,...,I}

p̂i −∑
j

qjEβj
[
gij(X

t0,x0,α,βj
T )

] ≤ V−∗1 (t0, t0 + h, x0, p̂, q) + 3ε ,
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which implies that
V−∗(t0, x0, p̂, q) ≤ V−∗1 (t0, t0 + h, x0, p̂, q) .

Proof in the general case : The idea is to reduce the Bolza problem to a Mayer problem thanks to an
extension of the state. Namely, let us consider the extended dynamics (in RN × RI×J)

x′(t) = f(t, x(t), u(t), v(t)) , u(t) ∈ U, v(t) ∈ V
ρ′ij(t) = `ij(t, x(t), u(t), v(t))
x(t0) = x0, ρij(t0) = ρij,0

We denote by X̃t0,ρ0,u,v the solution of the above system for fixed (u, v) ∈ U(t0)× V(t0) and set

J̃ij(t0, x0, ρ0, αi, βj) = Eαiβj
[
g̃ij(X̃

t0,x0,ρ0,αi,βj )
]

where g̃ij(x, ρ) = gij(x) + ρij . We also denote by Ṽ± the upper and lower value functions associated to this
Mayer problem. One easily checks that

Ṽ±(t0, x0, ρ0, p, q) =
∑
ij

piqjρij,0 + V±(t0, x0, p, q) .

Therefore

V−∗(t0, x0, p̂, q) = supp∈∆(I)

{
〈p̂, p〉 − Ṽ−(t0, x0, ρ0, p, q) +

∑
ij piqjρij,0

}
= Ṽ−∗(t0, x0, ρ0, p̂+ (

∑
j qjρij,0)i, q)

(5.12)

Note for later use that, since V−∗(t0, x0, p̂, q) is independent of ρ0, we have

Ṽ−∗(t0, x0, ρ0, p̂+ (
∑
j

qjρij,0)i, q) = Ṽ−∗(t0, x0, ρ1, p̂+ (
∑
j

qjρij,1)i, q)(5.13)

for any ρ0, ρ1 ∈ RIJ . From the subdynamic programming for Mayer problems proved above, we have

Ṽ−∗(t0, x0, ρ0, p̂+ (
∑
j

qjρij,0)i, q) ≤ inf
β∈Bd(t0)

sup
α∈Ad(t0)

Ṽ−∗(t0 + h, X̃t0,x0,ρ0,α,β
t0+h , p̂+ (

∑
j

qjρij,0)i, q) .

For fixed (α, β) ∈ Ad(t0)× Bd(t0), let us set X̃t0,x0,ρ0,α,β
t = (x(t), ρ(t)). Then

ρij(t) = ρij,0 +

∫ t

t0

`ij(s, x(s), α(s), β(s))ds ,

so that, from (5.13),

Ṽ−∗(t0 + h, x(t0 + h), ρ(t0 + h), p̂+ (
∑
j

qjρij,0)i, q)

= Ṽ−∗(t0 + h, x(t0 + h), ρ0, p̂+ (
∑
j

qj(ρij,0 −
∫ t

t0

`ij(s, x(s), α(s), β(s))ds))i, q)

= V−∗(t0 + h, x(t0 + h), p̂(t0 + h), q)

where p̂(t0 + h) = p̂− (
∑
j qj

∫ t
t0
`ij(s, x(s), α(s), β(s))ds)i. Therefore

V−∗(t0, x0, p̂, q) ≤ inf
β∈Bd(t0)

sup
α∈Ad(t0)

V−∗(t0 + h, x(t0 + h), p̂(t0 + h), q) .

�

As usual, the dynamic programming property has very much to do with Hamilton-Jacobi equations. In
order to describe the Hamilton-Jacobi equation associated with the problem, we introduce some notations:
first recall that S(I) denotes the set of I × I real symmetric matrices. For any (X, p) ∈ S(I)×∆(I), we set

λmin(X, p) = min{〈Xz, z〉 ; z ∈ Tp∆(I), |z| = 1}

and
λmax(X, p) = max{〈Xz, z〉 ; z ∈ Tp∆(I), |z| = 1} ,

where Tp∆(I) is the tangent cone to ∆(I) at p: namely

Tp∆(I) = {z = (zi)i∈{1,...,I} ∈ RI ; zi < 0 ⇒ pi > 0 ∀i ∈ {1, . . . , I} and
∑
i

zi = 0} .
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Proposition 5.7 (V− is a supersolution of HJ) For any fixed q̄ ∈ ∆(J), the map (t, x, p)→ V−(t, x, p, q̄)
satisfies:

min
{
λmin

(
D2
ppV (t, x, p, q̄), p

)
; ∂tV (t, x, p, q̄) +H(t, x,DxV (t, x, p, q̄), p, q̄)

}
≤ 0(5.14)

in the viscosity sense with state constraints in (0, T )× RN ×∆(I), where H is defined by (5.7): namely for
any fixed q̄ ∈ ∆(J) and test function φ ∈ C2((0, T )×RN ×RI) such that (t, x, p)→ V−(t, x, p, q̄)− φ(t, x, p)
has a local minimum on (0, T )× RN ×∆(I) at some point (t̄, x̄, p̄), one has

min
{
λmin

(
D2
ppφ(t̄, x̄, p̄), p̄

)
; ∂tφ(t̄, x̄, p̄) +H(t̄, x̄, Dxφ(t̄, x̄, p̄), p̄, q̄)

}
≤ 0 .

Before starting the proof, let us give a Lemma which will be needed repeatedly.

Lemma 5.8 Let V = V (t, x, p) be continuous in (0, T ) × RN × ∆(I) and convex with respect to p, and
φ ∈ C2((0, T )×RN ×RI) be a test function such that V − φ has a local minimum on (0, T )×RN ×∆(I) at
some point (t̄, x̄, p̄). If

λmin

(
D2
ppφ(t̄, x̄, p̄), p̄

)
> 0 ,(5.15)

then there are some δ, η > 0 such that

V (t, x, p) ≥ φ(t, x, p̄) + 〈Dpφ(t, x, p̄), p− p̄〉+
δ

2
|p− p̄|2

for any (t, x) ∈ B((t̄, x̄), η) and p ∈ ∆(I).

Proof of Lemma 5.8 : Because of (5.15), there are some η, γ > 0 such that

〈D2
ppφ(t, x, p)z, z〉 ≥ γ|z|2 ∀z ∈ Tp̄∆(I) and ∀(t, x, p) ∈ B((t̄, x̄, p̄), η) .

Therefore
V (t, x, p) ≥ φ(t, x, p) ≥ φ(t, x, p̄) + 〈Dpφ(t, x, p̄), p− p̄〉+

γ

2
|p− p̄|2(5.16)

for any (t, x, p) ∈ B((t̄, x̄, p̄), η) with p ∈ ∆(I), because p− p̄ ∈ Tp̄∆(I).
We also note that, for any (t, x) ∈ B((t̄, x̄), η) and for any p ∈ ∆(I)\Int(B(p̄, η)), we have

V (t, x, p) ≥ φ(t, x, p̄) + 〈Dpφ(t, x, p̄), p− p̄〉+
γ

2
η2 .(5.17)

Indeed, let us set p1 = p̄+ p−p̄
|p−p̄|η and let p̂′ ∈ ∂−p V (t, x, p1). Then we have

V (t, x, p) ≥ V (t, x, p1) + 〈p̂′, p− p1〉
≥ φ(t, x, p̄) + 〈Dpφ(t, x, p̄), p1 − p̄〉+ γ

2 η
2 + 〈p̂′, p− p1〉

≥ φ(t, x, p̄) + 〈Dpφ(t, x, p̄), p− p̄〉+ 〈p̂′ −Dpφ(t, x, p̄), p− p1〉+ γ
2 η

2

where
〈p̂′ −Dpφ(t, x, p̄), p− p1〉 ≥ 0

because V is convex, p̂′ ∈ ∂−p V (t, x, p1), Dpφ(t, x, p̄) ∈ ∂−p V (t, x, p̄) and p − p1 = σ(p1 − p̄) for some σ > 0.
So (5.17) holds. Let us now choose δ ∈ (0, γ) such that maxp∈∆(I) δ|p − p̄|2 ≤ γη2. Then combining (5.16)
and (5.17) readily gives the desired result. �

Proof of Proposition 5.7: Assume that the test function φ ∈ C2((0, T ) × RN × RI) is such that
(t, x, p) → V−(t, x, p, q̄) − φ(t, x, p) has a local minimum on (0, T ) × RN × ∆(I) at some point (t̄, x̄, p̄).
Without loss of generality we suppose that V−(t̄, x̄, p̄, q̄) = φ(t̄, x̄, p̄) and that p̄i > 0 for any i ∈ {1, . . . , I}:
otherwise we just restrict the functions of the indices i for which p̄i > 0. Let us furthermore suppose that

λmin

(
D2
ppφ(t̄, x̄, p̄), p̄

)
> 0 .

Then we have to prove that

∂tφ(t̄, x̄, p̄) +H(t̄, x̄, Dxφ(t̄, x̄, p̄, q̄), p̄, q̄) ≤ 0 .(5.18)

According to Lemma 5.8, there are some δ, η > 0 such that

V−(t, x, p, q̄) ≥ φ(t, x, p̄) + 〈Dpφ(t, x, p̄), p− p̄〉+
δ

2
|p− p̄|2(5.19)
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for any (t, x) ∈ B((t̄, x̄), η) and p ∈ ∆(I).

Let us set p̂ = Dpφ(t̄, x̄, p̄). From (5.19), we have, for any (t, x, p̂′, p) with (t, x) ∈ B((t̄, x̄), η), p ∈ ∆(I)
and p̂′ ∈ RI ,

〈p, p̂′〉 −V−(t, x, p, q̄) ≤ −φ(t, x, p̄)− 〈Dpφ(t, x, p̄)− p̂′, p− p̄〉+ 〈p̄, p̂′〉 − δ

2
|p− p̄|2 .(5.20)

Maximizing both sides of the inequality with respect to p ∈ ∆(I) we get

V−∗(t, x, p̂′, q̄) ≤ −φ(t, x, p̄) + sup
p∈RI

{
−〈Dpφ(t, x, p̄)− p̂′, p− p̄〉 − δ

2
|p− p̄|2

}
+ 〈p̄, p̂′〉

≤ −φ(t, x, p̄) +
1

2δ
|Dpφ(t, x, p̄)− p̂′|2 + 〈p̄, p̂′〉 .

(5.21)

Note that, since V− is convex with respect to p, inequality (5.19) implies that the vector p̂ belongs to
∂−p V (t̄, x̄, p̄, q̄), so that

〈p̄, p̂〉 −V−∗(t̄, x̄, p̂, q̄) = V−(t̄, x̄, p̄, q̄) = φ(t̄, x̄, p̂) .(5.22)

Let us now choose h > 0 small enough and apply the sub-dynamic property (Lemma 5.6) of V−∗. In view
of (5.21) we have

V−∗(t̄, x̄, p̂, q̄)

≤ inf
β∈Bd(t̄)

sup
α∈Ad(t̄)

V−∗(t̄+ h,X t̄,x̄,α,β
t̄+h , p̂(t̄+ h), q̄)

≤ inf
β∈Bd(t̄)

sup
α∈Ad(t̄)

−φ(t̄+ h,X t̄,x̄,α,β
t̄+h , p̄) +

1

2δ

∣∣∣Dpφ(t̄+ h,X t̄,x̄,α,β
t̄+h , p̄)− p̂(t̄+ h)

∣∣∣2 + 〈p̄, p̂(t̄+ h)〉
(5.23)

where

p̂(t̄+ h)i = p̂i −
J∑
j=1

q̄j

∫ t̄+h

t̄

`ij(s,X
t̄,x̄,α,β
s , α(s), β(s))ds ∀i ∈ {1, . . . , I} .(5.24)

In particular

lim
h→0+

1

h

∣∣∣Dpφ(t̄+ h,X t̄,x̄,α,β
t̄+h , p̄)− p̂(t̄+ h)

∣∣∣2 = 0 .

Putting together (5.23), (5.22) and (5.24) gives

sup
β∈Bd(t̄)

inf
α∈Ad(t̄)

{
φ(t̄+ h,X t̄,x̄,α,β

t̄+h , p̄)− φ(t̄, x̄, p̄)

− 1

2δ

∣∣∣Dpφ(t̄+ h,X t̄,x̄,α,β
t̄+h , p̄)− p̂(t̄+ h)

∣∣∣2 +
∑
i,j

p̄iq̄j

∫ t̄+h

t̄

`ij(s,X
t̄,x̄,α,β
s , α(s), β(s))ds

 ≤ 0 .

Dividing by h > 0 and letting h→ 0 gives (5.18) by the arguments of Chapter 3, Lemma 3.15. �

To state the symmetric results for V+, we only need to note that

(−V+)(t, x, p, q) = sup
α̂∈(Ar(t0))I

inf
β̂∈(Br(t0))J

I∑
i=1

I∑
j=1

piqj(−Jij(t0, x0, αi, βj)) ,

which is of the same form as V− when one switches the roles of the Players and the sign of the payoffs. From
this we easily deduce:

Proposition 5.9 (V+ is a subsolution of some HJ) For any fixed p̄ ∈ ∆(I), the map (t, x, q)→ V+(t, x, p̄, q)
satisfies in (0, T )× RN ×∆(J):

max
{
λmax

(
D2
qqV (t, x, p̄, q), q

)
; ∂tV (t, x, p̄, q) +H(t, x,DxV (t, x, p̄, q), p̄, q)

}
≥ 0 ,(5.25)

in the viscosity sense with state constraints. Namely for any fixed p̄ ∈ ∆(I) and for any test function φ ∈
C2((0, T )×RN×RJ) such that (t, x, q)→ V+(t, x, p̄, q)−φ(t, x, q) has a local maximum on (0, T )×RN×∆(J)
at some point (t̄, x̄, q̄), one has

max
{
λmax

(
D2
qqφ(t̄, x̄, q̄), q̄

)
; ∂tφ(t̄, x̄, q̄) +H(t̄, x̄, Dxφ(t̄, x̄, q̄, p̄, q̄)

}
≥ 0 .
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Remark : We use here Isaacs’ assumption (5.7). Indeed, V− is actually a supersolution of the
Hamilton-Jacobi equation (5.14) with

H−(t, x, ξ, p, q) = inf
u

sup
v

〈f(t, x, u, v), ξ〉+
∑
i,j

piqj`ij(t, x, u, v)

 ,

while V+ is a subsolution of (5.25) with a Hamiltonian H+ defined by

H+(t, x, ξ, p, q) = sup
v

inf
u

〈f(t, x, u, v), ξ〉+
∑
i,j

piqj`ij(t, x, u, v)

 .

5.4 Comparison principle and existence of the value

In this section we prove that our game has a value: V+ = V−. This value can be characterized in terms of
viscosity solutions of some Hamilton-Jacobi equations with a double obstacle.

The key argument for this is a comparison principle, that we state for later use for a general Hamiltonian
H. We assume that H : (0, T )×RN ×RN ×∆(I)×∆(J)→ R is continuous and that there is a constant C
such that, for any (p, q) ∈ ∆(I)×∆(J), any (t1, x1), (t2, x2) ∈ (0, T )× RN and any ξ ∈ RN ,

|H(t1, x1, ξ, p, q)−H(t2, x2, ξ, p, q)| ≤ C|(t1, x1)− (t2, x2)|(1 + |ξ|)(5.26)

while, for any (p, q) ∈ ∆(I)×∆(J), any (t, x) ∈ (0, T )× RN and any ξ1, ξ2 ∈ RN ,

|H(t, x, ξ1, p, q)−H(t, x, ξ2, p, q)| ≤ C|ξ1 − ξ2|(5.27)

Let us point out that the map H defined by (5.7) satisfies the above assumptions under conditions (5.2) on
the dynamics.

We now consider a double obstacle Hamilton-Jacobi equation in (0, T ) × RN × ∆(I) × ∆(J) which is
formally defined as

min
{
λmin(D2

ppz, p) ; max
{
λmax(D2

qqz, q) ; ∂tz +H(t, x,Dxz, p, q)
}}

= 0 ,(5.28)

or, equivalently, for functions which are convex with respect to p and concave with respect to q, as

max
{
λmax(D2

qqz, q) ; min
{
λmin(D2

ppz, p) ; ∂tz +H(t, x,Dxz, p, q)
}}

= 0 .

Definition 5.10 We say that a function w : [0, T ]×RN ×∆(I)×∆(J) 7→ R is a subsolution of (5.28) if w
is Lipschitz continuous, convex with respect to p and concave with respect to q and if, for any test function
φ ∈ C2((0, T )× RN × RJ) such that the map

(t, x, q)→ w(t, x, p̄, q)− φ(t, x, q)

has a local maximum at some point (t̄, x̄, q̄) ∈ (0, T )× RN ×∆(J) for some p̄ ∈ ∆(I), one has

max
{
λmax(D2

qqφ, q̄) ; ∂tφ+H(t̄, x̄, Dxφ, p̄, q̄)
}
≥ 0 at (t̄, x̄, p̄, q̄) .

In a symmetric way, w is a supersolution of the Hamilton-Jacobi equation (5.28) if w is Lipschitz continuous,
convex with respect to p and concave with respect to q and if, for any test function φ ∈ C2((0, T )×RN ×RI)
such that the map

(t, x, p)→ w(t, x, p, q̄)− φ(t, x, p)

has a local minimum at some point (t̄, x̄, p̄) ∈ (0, T )× RN ×∆(I) for some q̄ ∈ ∆(J), one has

min
{
λmin(D2

ppφ, p̄) ; ∂tφ+H(t̄, x̄, Dxφ, p̄, q̄)
}
≤ 0 at (t̄, x̄, p̄, q̄) .

Finally we say that w is a solution of (5.28) if w is at the same time a dual subsolution and a dual superso-
lution of (5.28).
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Remark 5.11 In the case J = 1 (when only Player 1 has a private information), a solution of (5.28) does
not depend on q and the definition of subsolution reduces to the usual inequality

∂tw(t, x, p) +H(t, x,Dxw(t, x, p), p) ≥ 0 in (0, T )× RN .

Theorem 5.12 (Comparison principle) Let w1, w2 : [0, T ] × RN × ∆(I) × ∆(J) 7→ R be respectively a
subsolution and a supersolution of the Hamilton-Jacobi equation (5.28). We assume that for any (x, p, q) ∈
RN ×∆(I)×∆(J), w1(T, x, p, q) ≤ w2(T, x, p, q). Then w1 ≤ w2 in [0, T ]× RN ×∆(I)×∆(J).

The comparison principle is proved at the end of the section. Let us now state the main result of this
chapter:

Theorem 5.13 (Existence and characterization of the value) Assume that conditions (5.2) on f and
on the gi hold and that Isaacs’ assumption (5.7) is satisfied. Then we have

V+(t, x, p, q) = V−(t, x, p, q) ∀(t, x, p, q) ∈ [0, T ]× RN ×∆(I)×∆(J) .

Furthermore the value function V := V+ = V− is the unique solution of the Hamilton-Jacobi equations
(5.28), where H is defined by (5.7), such that V (T, x, p, q) =

∑
ij piqjgij(x).

Proof of Theorem 5.13: From Lemma 5.1 V− and V+ are Lipschitz continuous. From Lemma 5.2, we
know that V+ and V− are convex with respect to p and concave with respect to q. Proposition 5.7 states
that V− is a supersolution of (5.28), where H is defined by (5.7), while Proposition 5.9 states that V+ is a
subsolution of (5.28). Since V+(T, ·, p, q) = V−(T, ·, p, q) =

∑
i,j piqjgij(·), the comparison principle states

that V+ ≤ V−. But the reverse inequality always holds. Hence V− = V+ and the game has a value. �

The proof requires some localization argument which can be established exactly as in Lemma 3.40 of
Chapter 3:

Lemma 5.14 Assume that H satisfies (5.26) and (5.27). If w is a subsolution of (5.28) on (0, T ) × RN
(resp. a supersolution of (5.28) on (0, T )×RN ), then, for any (t0, x0) ∈ [0, T )×RN , w is still a subsolution
(resp. supersolution) in the set C(t0, x0)×∆(I)×∆(J), where

Ct0,x0
= {(t, x) ∈ [t0, T ]× RN , |x− x0| ≤ C(t− t0)} .(5.29)

For the subsolution for instance, this means that, if a C2 test function φ = φ(t, x, q) is such that (t, x, q)→
w(t, x, p̄, q) − φ(t, x, q) has a local maximum on Ct0,x0

× ∆(J) at some point (t̄, x̄, q̄) with t̄ < T for some
p̄ ∈ ∆(I), then

max
{
λmax(D2

qqφ, q̄) ; ∂tφ+H(t̄, x̄, Dxφ, p̄, q̄)
}
≥ 0 at (t̄, x̄, p̄, q̄) .

Proof of Theorem 5.12 : We now start the proof of the inequality w1 ≤ w2 in the usual way, by assuming
that

sup
(t,x,p,q)∈(0,T )×RN×∆(I)×∆(J)

(w1 − w2) > 0 .

Then, for σ, β > 0 sufficiently small, there is some (t0, x0) such that

M := sup
(t,x,p,q)∈Ct0,x0

×∆(I)×∆(J)

w1(t, x, p, q)− w2(t, x, p, q)− σ(T − t) + β(|p|2 + |q|2) > 0 ,

where Ct0,x0 is defined by (5.29). We now use the separation of variables technique: for ε > 0 we set

Φε((t, x), (s, y), p, q) = w1(t, x, p, q)− w2(s, y, p, q)− 1

2ε
|(s, y)− (t, x)|2 − σ(T − s) + β(|p|2 + |q|2)

and consider the problem

Mε := sup
(t,x),(s,y)∈Ct0,x0

, (p,q)∈∆(I)×∆(J)

Φε((t, x), (s, y), p, q) .

Note that Mε ≥M and that the above problem has a maximum point ((tε, xε), (sε, yε)). As in Lemma 3.41
of Chapter 3 we have the following estimates on (tε, xε), (sε, yε), pε, qε.
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Lemma 5.15 (i) limε→0+ Mε = M ,

(ii) limε→0+
1
ε |(tε, xε)− (sε, yε)|2 = 0

(iii) for ε > 0 and β > 0 small enough, tε < T and sε < T .

We now complete the proof of the Theorem: since the map (t, x, q) → Φε((t, x), (sε, yε), pε, qε) has a
maximum at the point (tε, xε, qε) on Ct0,x0

× ∆(J), we have, for any (t, x, q) ∈ Ct0,x0
× ∆(J) and any

q̂ε ∈ ∂+
q w2(sε, yε, pε, qε),

w1(t, x, pε, q) ≤ w1(tε, xε, pε, qε) + w2(sε, yε, pε, q)− w2(sε, yε, pε, qε)

+
1

2ε

[
|(sε, yε)− (t, x)|2 − |(sε, yε)− (tε, xε)|2

]
− β(|q|2 − |qε|2)

≤ w1(tε, xε, pε, qε) + 〈q̂ε, q − qε〉
+

1

2ε

[
|(sε, yε)− (t, x)|2 − |(sε, yε)− (tε, xε)|2

]
− β(|q|2 − |qε|2)

Let us denote by φ(t, x, q) the right-hand side of the above inequality. Then φ is a smooth function such that
w1(tε, xε, pε, qε) = φ(tε, xε, qε). In particular the map (t, x, q)→ w1(t, x, pε, q)− φ(t, x, q) has a maximum at
the point (tε, xε, qε) on Ct0,x0

×∆(J), with tε < T . Since w1 is a subsolution andD2
qqφ(tε, xε, qε) = −2βIJ < 0,

Lemma 5.14 implies that
tε − sε
ε

+H

(
tε, xε,

xε − yε
ε

, pε, qε

)
≥ 0 .(5.30)

In a symmetric way, since the map (s, y, p) → Φε((tε, xε), (s, y), p, qε) has a maximum at (sε, yε, pε) on
Ct0,x0 ×∆(I), one has, for any (s, y, p) ∈ Ct0,x0 ×∆(I) and any p̂ε ∈ ∂−p w1(tε, xε, pε, qε),

w2(s, y, p, qε) ≥ w2(sε, yε, pε, qε)− 〈p̂ε, p− pε〉 −
1

2ε

[
|(s, y)− (tε, xε)|2 − |(sε, yε)− (tε, xε)|2

]
+σ(s− sε) + β(|p|2 − |pε|2)

and, since w2 is a supersolution of (5.28) we obtain, again thanks to Lemma 5.14,

tε − sε
ε

+ σ +H

(
sε, yε,

xε − yε
ε

, pε, qε

)
≤ 0 .(5.31)

Computing the difference between (5.30) and (5.31) gives

−σ +H

(
tε, xε,

xε − yε
ε

, pε, qε

)
−H

(
sε, yε,

xε − yε
ε

, pε, qε

)
≥ 0 .

We now use assumption (5.26) on H:

−σ + C

[
1 +
|xε − yε|

ε

]
|xε − yε| ≥ 0 .

Letting finally ε→ 0+ and using Lemma 5.15 we get a contradiction since σ is positive. �

5.5 Comments

The game studied in this chapter is strongly inspired by repeated games with lack of information introduced
by Aumann and Maschler: see the monographs by Aumann and Maschler [12] and by Sorin [189] for a
general presentation. Repeated games with lack of information on one side (i.e., I = 1 or J = 1) or on both
sides (i.e., I, J ≥ 2) have a value [12], [163], in the sense that the averaged n−stage games converge to a
limit as n→ +∞. This value can be characterized in terms of the value of the “non revealing game” via the
convexification operator (for I = 1 or J = 1) or the Mertens-Zamir operator (when I, J ≥ 2).
There are several proofs of Aumann-Maschler’s result (see [189]). The most convenient for our purpose—the
dual approach—was initiated by De Meyer in [87] and later developped by De Meyer and Rosenberg [88] and
by Laraki [144]. It is this approach which can be extended to differential games.

Now let us turn to the litterature on differential games with incomplete/imperfect information: several
papers analyse differential games where the players do not share the same information on the game. In most
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of these papers one tries to build a strategy for a nonfully informed controller, the other player being seen
as a disturbance: see for instance the monograph by Baçsar and Bernhard [14] and the papers by Bernhard
[42], by Baras and Patel [16], Baras and James [17]. So in terms of game this means that one looks at a
kind of worse case design. In contrast, few works are dedicated to the existence of a value for this class of
games: Rapaport and Bernhard [180], on the one hand, and Petrosjan [171], on the other hand, analyse this
question through some examples. Cardaliguet and Quincampoix [71] consider a general class of differential
games where the players only know that the initial position of the game is distributed according to some
probability.

The first adaptation of the Aumann-Maschler’s theory to differential games goes back to Cardaliaguet
[69], which deals with deterministic differential games with a terminal payoff, and with games where there
is some private information on the initial position of the system. It is generalized to stochastic differential
games and to games with running payoffs in Cardaliaguet-Rainer [74]. The infinite horizon problem is
considered in As Soulaimani [8]. Examples of such games are analysed in Cardaliaguet [72], Cardaliaguet-
Rainer [76] and Souquière [193], while the construction of optimal strategies and approximations are carried
out in Cardaliaguet [75] and Souquière [193].



Appendix A

Complement on ordinary differential
equations

Throughout this chapter T > 0 denotes a fixed horizon. Our aim is to recall some basic properties of
differential equations of the form

X ′t = f(t,Xt)

where f : [0, T ]×RN → RN is measurable, locally Lipschitz continuous with respect to the x variable. To do
so we first recall the notion of absolutely continuous maps. Then we state and prove the Cauchy-Lipschitz
Theorem in this framework.

A.1 Absolutely continuous maps

Let us first recall that a map X : [0, T ]→ RN is absolutely continuous if, for ε > 0, there is some η > 0 such
that, for any collection ([an, bn])n∈N of disjoint subintervals of [0, T ],

∞∑
n=0

(bn − an) < η ⇒
∞∑
n=0

|Xbn −Xan | < ε .

Note that, if X is absolutely continuous, then X is continuous. It is well-known (see for instance [112]) that
X is absolutely continuous if and only if there is some Z ∈ L1([0, T ],RN ) such that

Xt −X0 =

∫ t

0

Zsds ∀t ∈ [0, T ] .(A.1)

Moreover Z is uniquely defined by the above equality.
The following Lemma states that the map Z is the derivative of X at almost every point of (0, T ):

Lemma A.1 If X is absolutely continuous on [0, T ], then there is a set S of full Lebesgue measure on [0, T ]
such that, for any t ∈ S, X has a derivative with X ′t = Zt.

Notation : From now on, we denote by X ′ the unique map Z ∈ L1([0, T ],RN ) such that (A.1) holds.

Remark A.2 If X ′ ∈ L∞([0, T ],RN ), then X is Lipschitz continuous because

|Xt1 −Xt2 | =
∣∣∣∣∫ t2

t1

Z(s)ds

∣∣∣∣ ≤ ∣∣∣∣∫ t2

t1

|Z(s)|ds
∣∣∣∣ ≤ ‖Z‖∞|t2 − t1|

for any t1, t2 ∈ [0, T ]. The converse also holds: if X is Lipschitz continuous, then X is clearly absolutely
continuous with X ′ ∈ L∞([0, 1],RN ).

Proof of Lemma A.1: Let S ⊂ (0, T ) be the set of Lebesgue points of Z: namely t ∈ S if

lim
h→0

1

2h

∫ t+h

t−h
|Zs − Zt|ds = 0 .

75
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It is well-known that S has a full measure in (0, T ). Then∣∣∣∣ 1h (Xt+h −Xt − hZt)
∣∣∣∣ ≤ 1

|h|

∣∣∣∣∣
∫ h

0

|Zs − Zt|ds

∣∣∣∣∣→ 0 as h→ 0 .

�

A.2 Ordinary differential equations

Let f : [0, T ]× RN → RN be a Borel measurable map. In this section we recall some well-known results on
the differential equation

X ′t = f(t,Xt)(A.2)

We assume the following conditions on f : f is locally Lipschitz continuous with respect to the x variable:
for any R > 0 there is a map mR ∈ L1([0, T ],R+) such that

|f(t, x)− f(t, y)| ≤ mR(t)|x− y| ∀x, y ∈ B(0, R), for a.e. t ∈ [0, T ](A.3)

and f has at most a linear growth: there are a, b ∈ L1([0, T ],R+) such that

|f(t, x)| ≤ a(t)|x|+ b(t) ∀x ∈ RN , for a.e. t ∈ [0, T ] .(A.4)

Definition A.3 A solution of equation (A.2) with initial condition (t0, x0) ∈ [0, T ] × RN is an absolutely
continuous map X : [0, T ]→ RN such that Xt0 = x0 and which satisfies

X ′t = f(t,Xt) for almost every t ∈ [0, T ] .

Theorem A.4 Under the above assumptions, for any initial condition (t0, x0) ∈ [0, T ]×RN there is a unique
absolutely continuous solution to (A.2) such that Xt0 = x0.

Moreover this solution satifies the bounds

|Xt| ≤ eA(t)|x0|+
∫ t

t0

eA(t)−A(s)b(s)ds ∀t ∈ [t0, T ] , where A(t) =

∫ t

t0

a(s)ds .

In the proof of the Theorem we shall need the following result:

Lemma A.5 (Gronwall Lemma) Let a, b ∈ L1([0, T ],R+) and ρ : [0, T ] → R+ be continuous and such
that

ρ(t) ≤
∫ t

0

(a(s)ρ(s) + b(s)) ds+ ρ(0) ∀t ∈ [0, T ] .

Then

ρ(t) ≤ eA(t)ρ(0) +

∫ t

0

eA(t)−A(s)b(s)ds ∀t ∈ [0, T ] where A(t) =

∫ t

0

a(s)ds .(A.5)

Proof of Lemma A.5: Let θ(t) denote the right-hand side of inequality (A.5) and θε(t) = θ(t) + εeA(t).
We note that θε satisfies

θε(t) =

∫ t

0

(a(s)θε(s) + b(s)) ds+ ρ(0) + ε ∀t ∈ [0, T ] .

Let us assume for a while that max[0,T ](ρ(t)− θε) ≥ 0 and let

t∗ = inf{t ≥ 0 ; ρ(t) ≥ θε(t)} .

Since ρ and ρε are continuous we have t∗ > 0 and ρ(t∗) = ρε(t
∗). Moreover ρ(t) < θε(t) for any t ∈ [0, t∗).

Therefore

ρ(t∗) ≤
∫ t∗

0

(a(s)ρ(s) + b(s)) ds+ ρ(0) <

∫ t∗

0

(a(s)θε(s) + b(s)) ds+ ρ(0) + ε = θε(t
∗) = ρ(t∗) .
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This is impossible. So ρ ≤ θε on [0, T ], which gives the result by letting ε→ 0. �

Proof of Theorem A.4: To simplify the notations we assume without loss of generality that t0 = 0. Let

A(t) =

∫ t

0

a(s)ds and

ρ(t) = eA(t)|x0|+
∫ t

0

eA(t)−A(s)b(s)ds

and
X =

{
X ∈ C0([0, T ],RN ) , |Xt| ≤ ρ(t) ∀t ∈ [0, T ]

}
.

Note for later use that

ρ′(t) = a(t)ρ(t) + b(t) for almost all t ∈ [0, T ] , ρ(0) = |x0| ,

so that ρ is nondecreasing and

ρ(t) = |x0|+
∫ t

0

(a(s)ρ(s) + b(s))ds ∀t ∈ [0, T ] .

For X ∈ X , let Φ(X) : [0, T ]→ RN be defined by

Φ(X)t = x0 +

∫ t

0

f(s,Xs)ds ∀t ∈ [0, T ] .

We claim that Φ maps X into itself. Indeed let us first note that, if X ∈ X ,

|f(s,Xs)| ≤ α(s)|Xs|+ b(s) ≤ α(s)ρ(T ) + b(s)

where the right-hand side belongs to L1([0, T ]) by assumption. So Φ(X) is well-defined and absolutely
continuous, and thus continuous. Moreover, from assumption (A.4) and the definition of X and ρ, we have

|Φ(X)t| ≤ |x0|+
∫ t

0

|f(s,Xs)|ds ≤ |x0|+
∫ t

0

(a(s)ρ(s) + b(s))ds = ρ(t) .

Therefore Φ(X) ∈ X . Set now R = ρ(T ). Recalling the definition of mR in (A.3), we endow X with the
distance

d(X,Y ) = max
t∈[0,T ]

|Xt − Yt|e−2MR(t) ∀X,Y ∈ X where MR(t) =

∫ t

0

mR(s)ds .

Note that
|Xt − Yt| ≤ d(X,Y )e2MR(t) ∀t ∈ [0, T ] .

Since mR ∈ L1, the above distance is equivalent with the usual L∞ distance, so that (X , d) is a complete
metric space. Let us show that Φ is contracting for this metric. Let X,Y ∈ X and t ∈ [0, T ]. Then

|Φ(X)t − Φ(Y )t| ≤
∫ t

0

|f(s,Xs)− f(s, Ys)|ds ≤
∫ t

0

mR(s)|Xs − Ys|ds

≤
∫ t

0

mR(s)e2MR(s)d(X,Y )ds ≤ 1

2
e2M(t)d(X,Y )

so that

d(Φ(X),Φ(Y )) = max
t∈[0,T ]

|Φ(X)t − Φ(Y )t|e−2M(t) ≤ 1

2
d(X,Y ) .

Hence Φ is contracting. Since (X , d) is complete, Φ has a unique fixed point X, which is clearly a solution
of (A.2) with initial condition X0 = x0.

Let us assume that Y is another solution. Then

|Yt| ≤ |x0|+ |
∫ t

0

f(s, Ys)ds| ≤ |x0|+
∫ t

0

a(s)|Ys|+ b(s)ds

so that, by Gronwall Lemma, |Yt| ≤ ρ(t). Hence Y ∈ X and, since Y is a solution, it is also a fixed point of
Φ. Therefore Y = X, which proves the uniqueness. �
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Lemma A.6 (Lipschitz estimate of the solution map) Let us fix R0 > 0 and let

R = eA(T )R0 +

∫ T

t0

eA(T )−A(s)b(s)ds where A(t) =

∫ t

t0

a(s)ds .

Let x0, y0 ∈ RN with |x0|, |y0| ≤ R0 and X and Y be the solution of (A.2) starting from (t0, x0) and (t0, y0)
respectively. Then

|Xt − Yt| ≤ eM(t)|x0 − y0| ∀t ∈ [t0, T ] where M(t) =

∫ t

t0

mR(s)ds ,

where mR is defined by (A.3).

Proof : From Theorem A.4 we know that |Xt|, |Yt| ≤ R for any t ∈ [0, T ]. Let ρ(t) = |Xt − Yt|. Then,
using assumption (A.3), we have

ρ(t) ≤ |x0 − y0|+
∫ t

t0

|f(s,Xs)− f(s, Ys)|ds ≤ |x0 − y0|+
∫ t

t0

mR(s)ρ(s)ds .

So, by Gronwall Lemma, ρ(t) ≤ ρ(t0)eM(t). �
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Boston, Boston, MA.

[23] Bardi M., Falcone M. & Soravia P. (1993) Fully discrete schemes for the Value function of pursuit-evasion games in T.
Basar e A. Haurie eds., Annals of Dynamic Games, Vol. 1, Birkaüser.
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[122] Guéant O. Mean field games and applications to economics. PhD thesis, Université Paris-Dauphine, 2009.
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