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1 Introduction

In this paper, we investigate the notion of Nash equilibrium payoff for nonzero-sum stochastic two
players differential games. Our main result is an existence theorem for such equilibrium payoffs.
We also give a characterization of these payoffs.

Let us denote by Xt,x,u,v
s the solution of the following equation:

dXs = f(s,Xs, us, vs)ds + σ(s,Xs, us, vs)dBs, t ≤ s .

with initial condition
Xt = x

Here B. is a d−dimensional standard Brownian motion, u. and v. are stochastic processes taking
values in some compact subsets U and V of some finite dimensional spaces. Precise assumptions
on f : [0, T ] × IRn × U × V → IRn and on σ : [0, T ] × IRn × U × V → IRn×d are given in the next
section.

The payoff of the players is a terminal payoff, given by J1(t, x, u, v) = E[g1(X
t,x,u,v
T )] for Player

I and by J2(t, x, u, v) = E[g2(X
t,x,u,v
T )] for Player II. Loosely speaking, Player I aims at maximizing

J1(t, x, u, v) while the goal of Player II is to maximize J2(t, x, u, v). As usual in differential game
theory, the players do not play time-measurable controls but strategies. In order to avoid for the
moment the technical details, we postpone the definition of the strategies to the next section. Here
we only need to assume that for any strategy α of Player I and any strategy β of Player II one can
define a payoff J1(t, x, α, β) for Player I and a payoff J2(t, x, α, β) for Player II.

A particularly important notion for investigating nonzero-sum games is given by Nash equilibria.
In our framework, a Nash equilibrium is a pair (ᾱ, β̄) of strategies such that, for any other pair
(α, β) of strategies, we have

J1(t, x, ᾱ, β̄) ≥ J1(t, x, α, β̄) and J2(t, x, ᾱ, β̄) ≥ J2(t, x, ᾱ, β) .(1)
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The couple (J1(t, x, ᾱ, β̄), J2(t, x, ᾱ, β̄)) is called a Nash equilibrium payoff. In general, we do not
expect Nash equilibria to exist, but only Nash equilibrium payoffs (e1, e2) which can be approxi-
mated by the payoffs of strategies (ᾱε, β̄ε) for which the inequalities (1) only hold true up to some
ε > 0 for any (α, β). (Remark also that, in general, Nash equilibrium payoffs are not unique.)

The main result of this paper (Theorem 2.9) states that Nash equilibrium payoffs exist for any
initial position. Moreover we characterize these Nash equilibrium payoffs. In order to explain this
characterization, we have to introduce the zero-sum games associated with the payoffs J1 and J2.
Under Isaacs’ condition (see (3) below), Fleming and Souganidis [2] (see also [7]) have proved that
the zero-sum game, where Player I wants to maximize J1 and Player II wants to minimize J1, has
a value, which will be denoted here by W1:

W1(t, x) = inf
β

sup
α

J1(t, x, α, β) = sup
α

inf
β

J1(t, x, α, β) .

In the same way, the zero-sum game, in which Player I aims at minimizing the payoff J2 and Player
II aims at maximizing it, has also a value, denoted W2:

W2(t, x) = sup
β

inf
α

J2(t, x, α, β) = inf
α

sup
β

J2(t, x, α, β) .

Our characterization result Theorem 2.10 loosely states (up to technical details) that a pair (e1, e2) ∈
IR2 is a Nash equilibrium payoff for the initial position (t, x) if and only if there is some pair
(u., v.) : [t, T ] → U × V of adapted controls such that

i) for j = 1, 2, E[gj(X
t,x,u,v
T )|Ft,s] ≥ Wj(s,Xt,x,u,v

s ) a.s. for any s ∈ [t, T ], where Ft,s is the σ−
algebra generated by {Bu −Bt, u ∈ [t, s]},

ii) for j = 1, 2, ej = Jj(t, x, u, v).

(In practice, the existence of such (u., v.) is out of reach, and we only prove the existence, for
any ε > 0, of some adapted controls (uε

. , v
ε
. ) for which (i) holds true up to ε with a probability

larger than 1− ε, and (ii) holds true up to ε. However, this is enough for characterizing the Nash
equilibrium payoffs.)

The controls u. and v. can be interpreted as follows: The Players agree at the beginning of the
game to play respectively u. and v. . Condition (ii) then guaranties that their payoff is (e1, e2) if
they indeed play u. and v. up to the terminal time T . If on the contrary one of the players (say
Player II) deviates at some time t′ ∈ (t, T ), i.e., does not play v. on [t′, T ], then Player I punishes
Player II by playing some strategy which minimizes the expected payoff of Player II. Condition (i)
guaranties that such a strategy exists, and that the resulting payoff of Player II is not larger than
e2. So Player II gains nothing at deviating.

In the deterministic case, the results presented in this paper have already been established by
Kononenko in [6] and by Kleimenov in [5] in the framework of positional strategies, by Tolwinski,
Haurie and Leitmann in [9] in the framework of Friedman strategies. Let us point out that the
generalization to the stochastic case is far from being straightforward for at least two reasons: Firstly
because of measurability issues, already encountered by Fleming and Souganidis when generalizing
the existence of a value (and the dynamic programming) from deterministic zero-sum differential
games to zero-sum stochastic differential games. Secondly, because the method used by Kononenko
and Kleimenov - which makes an extensive use of the extremal aiming and of the existence of
quasi-optimal positional strategies for some associated zero-sum differential games - does not apply
to stochastic diffential games.

Let us finally recall another approach for the existence problem of Nash equilibrium payoffs:
The dynamic programming approach. The idea is to find the Nash equilibrium payoff (e1, e2) as a

2



function of the initial position (t, x): (e1, e2) = (e1(t, x), e2(t, x)). This function can be constructed
as a solution of some system of parabolic p.d.e (as in [1] for instance), or by using backward or
backward-forward stochastic differential equations (as in [3], [4]). Both methods rely heavily on a
non degeneracy assumption on σ. In fact it can be proved (see [8]) that a payoff (e1(t, x), e2(t, x))
given by such a method is a Nash equilibrium payoff in our sense.

The paper is organized as follows: We first state the assumptions, notations and the main results
of the paper. After we prove the characterization theorem, from which we derive the existence result.
We complete the paper with some remarks on the notions of strategies.

2 Statements of the main results.

Let T > 0 be a fixed finite time horizon. For t ∈ [0, T ], we consider the following doubly controlled
stochastic system :

dXs = f(s,Xs, us, vs)ds + σ(s,Xs, us, vs)dBs, s ∈ [t, T ],
Xt = x;

(2)

where B is a d-dimensional standard Brownian motion on the canonical Wiener space (Ω,F , P ),
i.e. Ω is the set of continuous functions from [0, T ] to IRd issued from 0, F the completed Borell
σ−algebra over Ω, P the Wiener measure and B the canonical process: Bs(ω) = ω(s), s ∈ [0, T ].
The processes u and v are assumed to take their values in some compact metric spaces U and V re-
spectively. We suppose that the functions f : [0, T ]×IRn×U×V → IRn and σ : [0, T ]×IRn×U×V →
IRn×d are measurable and satisfy the assumption (H):

(H) f and σ are bounded and Lipschitz continuous with respect to (t, x), uniformly in (u, v) ∈
U × V .

We should also assume that Isaacs’ condition, i.e., that for all (t, x) ∈ [0, T ]× IRn, p ∈ IRn, and
all A ∈ Sn (where Sn is the set of symmetric n× n matrices) holds:

infu supv{< f(t, x, u, v), p > +1
2Tr(Aσ(t, x, u, v)σ∗(t, x, u, v))} =

supv infu{< f(t, x, u, v), p > +1
2Tr(Aσ(t, x, u, v)σ∗(t, x, u, v))}(3)

We define the sets of admissible controls:

Definition 2.1 An admissible control process u for player I (resp. II) on [t, T ] is a process taking
values in U (resp. V ), progressively measurable with respect to the filtration (Ft,s, s ≥ t), where

Ft,s = σ{Br −Bt, r ∈ [t, s]}, s ∈ [t, T ],

augmented by all null-sets of P .
The set of admissible controls for player I (resp. II) on [t, T ] is denoted by U(t) (resp. V(t)).

We identify two processes u and ū in U(t) and write u ≡ ū, if P{u = ū a.e. in [t, s]} = 1.

Under assumption (H), for all (t, x) ∈ [0, T ]× IRn and (u, v) ∈ U(t)×V(t), there exists a unique
solution to (2) that we denote by Xt,x,u,v

. .

Now we have to define strategies. Let us first recall the definition of nonanticipative strategies.

Definition 2.2 A nonanticipative strategy for Player I on [t, T ] is a mapping α : V(t) → U(t) such
that, for any s ∈ [t, T ] and for any v1, v2 ∈ V(t), if v1 ≡ v2 on [t, s], then α(v1) ≡ α(v2) on [t, s].
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Nonanticipative strategies for Player II are defined symmetrically.

For several reasons explained below, nonanticipative strategies are not the proper ones for
nonzero-sum differential games. We merely use the notion of admissible strategies, whose defini-
tion needs some preliminary remarks:

For all t, t ∈ [0, T ] with t ≤ t, let Ωt,t be the set of continuous functions from [t, t] to IRd, issued
from 0 and Pt,t the Wiener-measure on Ωt,t (in particular Ω0,T = Ω and P0,T = P ). If, for fixed
0 ≤ t ≤ t ≤ T , and ω ∈ Ωt,T , we define π(ω) = (ω1, ω2) by

ω1 = ω|[t,t]
ω2 = (ω − ω(t))|[t,T ],

we can identify Ωt,T with Ωt,t × Ωt,T , and we have Pt,T = Pt,t ⊗ Pt,T .
Furthermore, to every random variable Y on Ωt,T and all ω1 ∈ Ωt,t, we can associate a random
variable (Y (ω1))(·) on Ωt,T , by setting (Y (ω1))(ω2) = Y (ω).
We also remark that, for all (Ft̄,s, s ≥ t̄)-progressively measurable process (Ys, s ≥ t̄) and almost
every ω1 ∈ Ωt,t, the process (Y (ω1)s, s ≥ t) is (Ft,s, s ≥ t)-progressively measurable. This allows us
to apply a nonanticipative strategy α defined on [t, T ] to controls living on the larger time interval
[t, T ]: for v ∈ V(t), we define α(v|[t,T ]) by

α(v|[t,T ])(ω)s = (α(v(ω1)))(ω2)s, s ∈ [t, T ](4)

(with a symmetric notation for strategies β for player II).

Definition 2.3 An admissible strategy for Player I on [t, T ] is a mapping α : V(t) → U(t) such
that

i) α is a strongly nonanticipative strategy: Namely, for any (Ft,s)s∈[t,T ]−stopping time S and
any v, ṽ ∈ V(t), if v ≡ ṽ on [[t, S]], then α(v) ≡ α(ṽ) on [[t, S]]
(with the notation [[t, S]] = {(s, ω) ∈ [0, T ]× Ω, t ≤ s ≤ S(ω)})

ii) α is a nonanticipative strategy with delay: Namely, there is some partition t = t0 < t1 <
. . . < tm = T such that for all v, ṽ ∈ V(t), α(v) = α(ṽ) on [t, t1] and for any i < n, if v ≡ ṽ on
[t, ti], then α(v) ≡ α(ṽ) on [t, ti+1]

iii) α is an r-strategy: Namely, for every 0 ≤ t̄ < t and v ∈ V(t̄) the process α(v|[t,T ]) is
(Ft̄,s, s ≥ t)-progressively measurable.

The set of all admissible strategies for Player I on [t, T ] is denoted by A(t). The set of admissible
strategies β : U(t) → V(t) for Player II, which are defined symmetrically, is denoted by B(t).

The r-strategies were introduced in [2], motivated by technical problems related to measurability
issues. Not surprizingly, we have encountered the same kind of difficulties, hence the requirement
for the admissible strategies to be r-strategies.

To the best of our knowledge, the notion of strongly nonanticipative strategies has never been
introduced before. However it is, in our opinion, much more natural for stochastic differential
games than that of standard nonanticipative strategies. Indeed strongly nonanticipative strategies
formalize the fact that a player is only allowed to take into account the control of his opponent
he observes in the present state of the world. In other words, if we want to make rigourous the
following requirement: “if for some ω, there exists a time s ≥ 0 such that v1(ω) = v2(ω) before
s, then α(v1(ω)) = α(v2(ω)) before s”, it becomes clear that s depends from ω, thus that the
nonanticipativity has to involve random times.

The main reason for introducing nonanticipative strategies with delay is the following lemma:
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Lemma 2.4 Let α ∈ A(t) be an admissible strategy and β : U(t) → V(t) be nonanticipative. There
is a unique control-pair (u, v) ∈ U(t)× V(t) such that

α(v) = u and β(u) = v .(5)

Of course, a symmetric result holds if α is nonanticipative and β is admissible, or if both α and β
are admissible. Let us point out that one cannot omit one of the strategies to be with delay.

Proof of the lemma: Let t = t0 < t1 < . . . < tm = T be a partition associated with the
admissible strategy α. We construct the controls (u., v.) by induction on the interval [tk, tk+1).

For k = 0, we know that, for any v′ ∈ V(t), the restriction of u = α(v′) to the interval [t, t1)
is independent of v′ since α admissible. Let us set v = β(u) on [t, t1), which only depends on the
values of u on [t, t1) since β is nonanticipative. Let us point out that this procedure uniquely defines
(u, v) on [t, t1).

Let us now assume that u and v are uniquely defined on [t, tk). Then the restriction of u = α(v′)
to the interval [tk, tk+1] does not depend on the values of v′ on [tk, tk+1) provided that v′ = v on
[t, tk), because α is admissible. This defines u on [t, tk+1). Then v is uniquely defined on [t, tk+1)
by v = β(u) since β is nonanticipative.

This completes the proof by induction.

QED

We give several remarks and comments on strategies later on in Appendix. Here is an example
of admissible strategy. This example is borrowed from [2].

Example 2.5 Let t0 = t < t1 < . . . < tm = T be a fixed partition of [t, T ], and, for 1 ≤ j ≤ m,
(Oij)i∈IN be a Borel partition of IRn and uij ∈ U , for i ∈ IN , be fixed. For any control v ∈ V(t), we
define α(v) by induction on [t, tj) by setting:

α(v)(s) = u10 on [t, t1) ,

and, if α(v) is built on [t, tj), we set

α(v)(s) =
∑

i

uij1{Xt,x,α(v),v
tj

∈Oij}
on [tj , tj+1) .

Then α is an admissible strategy.

The main result of [2] is that zero-sum stochastic games have a value when the players play
nonanticipative strategies. A careful examination of the proof of [2] shows the following result:

Theorem 2.6 Let g : IRn → IR be bounded and Lipschitz continuous and set

∀(u, v) ∈ U(t)× V(t), J(t, x, u, v) = E[g(Xt,x,u,v
T )] .

Let f and σ satisfy the assumption (H) and Isaacs’ condition (3). Then

inf
β∈B(t)

sup
u∈U(t)

J(t, x, u, β(u)) = sup
α∈A(t)

inf
v∈V(t)

J(t, x, α(v), v) .

We have to explain briefly this result, which is a straightforward consequence of several results
of [2]:

Proof of Theorem 2.6: Let us set

W ] = sup
α∈A(t)

inf
v∈V(t)

J(t, x, α(v), v) and W [ = inf
β∈B(t)

sup
u∈U(t)

J(t, x, u, β(u)) .
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For any ε > 0, let us choose some admissible strategies α and β such that

W ] ≤ inf
v∈V(t)

J(t, x, α(v), v) + ε and W [ ≥ sup
u∈U(t)

J(t, x, u, β(u))− ε .

Using Lemma 2.4, there is some control-pair (u, v) ∈ U(t)×V(t) such that α(v) = u and β(u) = v .
Hence

W ] ≤ J(t, x, α(v), v) + ε = J(t, x, u, v) + ε = J(t, x, u, β(u)) + ε ≤ W [ + 2ε .

Therefore we have proved that W ] ≤ W [.
For proving the reverse inequality, let us set

V [ = inf
β : U(t) → V(t)
nonanticipative

sup
u∈U(t)

J(t, x, u, β(u)) .

Combining formula (2.4), Proposition 2.5 and Theorem 2.6 of [2] yields the existence of some
nonanticipative strategy α such that

V [ ≤ inf
v∈V(t)

J(t, x, α(v), v) + ε .

A carefull examination of the proof of (2.4) also shows that the strategy α can be chosen from A(t).
Indeed it is actually of the form of Example 2.5. This proves that V [ ≤ W ]. Using symmetric
argument, one can prove that V ] ≥ W [, where

V ] = sup
α : V(t) → U(t)
nonanticipative

inf
v∈V(t)

J(t, x, α(v), v) .

Hence we have already proved that

V [ ≤ W ] ≤ W [ ≤ V ] .

Since, under Isaacs’ condition (3), the game has a value, i.e., V ] = V [ (Theorem 2.6 of [2]), equality
W ] = W [ holds.

QED

Now let g1 : IRn → IR and g2 : IRn → IR be two Lipschitz continuous functions bounded by
some C > 0. For (t, x) ∈ [0, T ]× IRn, (u, v) ∈ U(t)× V(t), set

J1(t, x, u, v) = E[g1(X
t,x,u,v
T )] and J2(t, x, u, v) = E[g2(X

t,x,u,v
T )] .

In the sequel, for all couples of a nonanticipative and an admissible strategy (α, β), we will also use
the following notation :

Jj(t, x, α, β) = Jj(t, x, u, v) (for j = 1 or j = 2)

where (u, v) are associated to (α, β) by (5).
Recall that Player I wants to maximize J1(t, x, α, β), while Player II wants to maximize J2(t, x, α, β).

Definition 2.7 We say that a couple (e1, e2) ∈ IR2 is a Nash equilibrium payoff at the point (t, x)
if, for any ε > 0, there exist (αε, βε) ∈ A(t)× B(t) such that

for all (α, β) ∈ A(t)× B(t), it holds that
J1(t, x, αε, βε) ≥ J1(t, x, α, βε)− ε and J2(t, x, αε, βε) ≥ J2(t, x, αε, β)− ε

(6)

and
for j = 1, 2, |Jj(t, x, αε, βε)− ej | ≤ ε .(7)
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Remarks :

1. Condition (6) means that if one of the Players deviates from his strategy (αε or βε), then he
cannot expect to get much more (less than ε) than what he would have had by keeping his
strategy.

2. The definition still makes sense if one uses the notion of nonanticipative strategies with delay
instead of admissible strategies.

In the sequel, we shall often use an equivalent formulation of Condition (6) given by the following
lemma.:

Lemma 2.8 Let ε > 0 and (αε, βε) ∈ A(t)× B(t). Condition (6) holds if and only if

for any (u, v) ∈ U(t)× V(t),
J1(t, x, αε, βε) ≥ J1(t, x, u, βε(u))− ε and J2(t, x, αε, βε) ≥ J2(t, x, αε(v), v)− ε .

(8)

Proof of the lemma: Suppose that (8) holds and let α ∈ A(t). By Lemma 2.4, there exists
(u, v) ∈ U(t)× V(t) such that α(v) = u and βε(u) = v. By (8) applied to this couple (u, v), we get

J1(t, x, αε, βε) ≥ J1(t, x, u, βε(u))− ε = J1(t, x, α, βε)− ε.

Repeating the same argument for some β ∈ B(t), we get Condition (6).
Conversely, for any fixed u ∈ U(t), we can define a strategy α ∈ A(t) by setting α(v) = u for

all v ∈ V(t). In particular, for v = βε(u), we have again u = α(v) and v = βε(u). It is then easy to
deduce (8) from (6).

QED

From now on, we denote by W1 and W2 the value functions of the zero-sum games where Player I
(resp. Player II) aims at maximizing g1 (resp. g2). According to Theorem 2.6, this means that

W1(t, x) = inf
β∈B(t)

sup
u∈U(t)

J1(t, x, u, β(u)) = sup
α∈A(t)

inf
v∈V(t)

J1(t, x, α(v), v) .

and
W2(t, x) = sup

β∈B(t)
inf

u∈U(t)
J2(t, x, u, β(u)) = inf

α∈A(t)
sup

v∈V(t)
J2(t, x, α(v), v) .

Now, once all notations and assumptions stated, we are able to announce the two results of this
paper:

Theorem 2.9 (Existence) Under Isaacs’ condition (3), for any initial position (t, x) ∈ [0, T ]×IRn,
there is some Nash equilibrium payoff at (t, x).

Theorem 2.10 (Characterization) Assume Isaacs’ condition holds. Then a couple (e1, e2) ∈ IR2

is a Nash equilibrium payoff at a point (t, x) if and only if for any ε > 0, there exists (uε, vε) ∈
U(t)× V(t) such that

i) for any s ∈ [t, T ] and j = 1, 2,

P {E[gj(Xε
T )|Ft,s] ≥ Wj(s,Xε

s)− ε} ≥ 1− ε

where Xε
. = Xt,x,uε,vε

. ,
ii) and

for j = 1, 2, |E[gj(Xε
T )]− ej | ≤ ε .
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Remarks :

1. For proving that the conditions in Theorem 2.10 are necessary, we do not need the notion of
admissible strategies: In fact, we only need that the strategies defining the Nash equilibrium
payoff are nonanticipative with delay and satisfy some condition (C) introduced in Appendix ;
the fact that the strategy is a strongly nonanticipative r-strategy is not needed. However,
although the notion of Nash equilibrium payoff could still be defined by using the bigger
class of nonanticipative strategies with delay, we do not know wether the characterization
result remains true if one removes the requirement that the strategies satisfy condition (C).
In other words, we do not know if this characterization holds if one allows the players to use
the knowledge of the full control of his/her opponent (in any state of the world).

2. The generalization to the case of more than 2 players is not difficult (the idea is that each
player can act as if he would be confrontated to one only opponent which activates the set of
all the other controls). But since we could not avoid to reintroduce the hole definitions and
notations and several preliminary results, we won’t formulate it.

The sketch of the proof of the two previous results is the following: We first show the equivalence
in Theorem 2.10, and, using this equivalence, we finally prove Theorem 2.9.

3 Proof of the characterization: sufficient condition.

The object of this section is the proof of the sufficient condition of Theorem 2.10.
We first point out a technical lemma, that will also be used in the proof of the other results.

Lemma 3.1 Fix (t, x) ∈ [0, T ]× IRn and u ∈ U(t).
a) For all θ ∈ [t, T ] and ε > 0, there exists a strongly nonanticipative r-strategy α : V(t) → U(t),
such that, for any v ∈ V(t),

α(v) ≡ u on [t, θ];

E[g2(X
t,x,α(v),v
T )|Ft,θ] ≤ W2(θ, X

t,x,α(v),v
θ ) + ε, P -a.s. .

(9)

b) Let B be a compact subset of IRn. For all θ ∈ [t, T ] and ε > 0, there exists an admissible strategy
α ∈ A(t), such that, for any v ∈ V(t),

α(v) ≡ u on [t, θ];

E[g2(X
t,x,α(v),v
T )|Ft,θ] ≤ W2(θ, X

t,x,α(v),v
θ ) + ε P−a.s. on {Xt,x,α(v),v

θ ∈ B} .

(10)

Remark : It can be proved similarly that, for all θ ∈ [t, T ] and ε > 0, there exists a strongly
nonanticipative r-strategy α : V(t) → U(t), such that, for any v ∈ V(t),

α(v) ≡ u on [t, θ];

E[g1(X
t,x,α(v),v
T )|Ft,θ] ≥ W1(θ, X

t,x,α(v),v
θ )− ε, P -a.s. .

Proof of the lemma: a) From the definition of the value function W2, for any y ∈ IRn, there is
some admissible strategy αy ∈ A(θ) such that,

sup
v∈V(θ)

E[g2(X
θ,y,αy(v),v
T )] ≤ W2(θ, y) + ε/2 .
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Since z → W2(θ, z) and z → supv∈V(θ) E[g2(X
θ,z,αy(v),v
T )] are continuous, one can find a Borelian

partition (Oi, i = 1, 2, . . .) of IRn such that, for any i, there is some yi ∈ Oi with

∀z ∈ Oi, sup
v∈V(θ)

E[g2(X
θ,z,αyi (v),v
T )] ≤ W2(θ, z) + ε.(11)

Now we define the following strategy α:

∀v ∈ V(t), α(v)s =

{
us for s ∈ [t, θ],
αyi(v|[θ,T ])s for s ∈ (θ, T ], on {Xt,x,u,v

θ ∈ Oi}.
(12)

where the notation αyi(v|[θ,T ])s is defined by (4). By a tiresome but straightforward proof, we get
that α is a nonanticipative r-strategy. The fact that it is strongly nonanticipative is proved in
appendix, Lemma 6.1. It is clear that α(v) ≡ u on [t, θ].
Further, we obviously have (see also Lemma 1.11 in [2]), if we set X = Xt,x,α(v),v,

E[g2(XT )|Ft,θ](ω1, ·) = Eθ,T [g2(X
θ,Xθ(ω1),α(v(ω1)),v(ω1)
T )]

=
∑

i∈IN 1{Xθ(ω1)∈Oi}Eθ,T [g2(X
θ,Xθ(ω1),αyi (v(ω1)),v(ω1)
T )] , Pt,θ(dω1)− a.s. .

(13)
Now (9) follows from (11).

b) Let (Oi)i∈{0,...,m} be a finite Borelian partition of IRn and yi ∈ Oi, i ∈ {0, . . . k} be such that
O0 = Bc and, for i ∈ {1, . . . ,m},(11) holds (indeed, since B is compact, a finite partition of B is
sufficient to get (11)). Remark that there is no condition on y0 ∈ Bc.
Now let α be built like in (12). We already know that α(v) ≡ u on [t, θ] and that α is a strongly
nonanticipative r-strategy. Let us prove that α is nonanticipative with delay. It is easy to see
that α has delays corresponding to a partition that, from θ on, is a partition for all strategy
αyi , i ∈ {0, . . . ,m}. Since the number of strategies αyi involved in the construction of α is finite,
this partition is also finite. It follows from the construction and from Proposition 6.3 that α ∈ A(t).
Using again (11) and (13) and the choice of O1, . . . , Om, one has that

1{Xθ∈B}E[g2(XT )|Ft,θ] ≤ 1{Xθ∈B}(W2(θ, Xθ) + ε) ,

for any v ∈ V(t), and relation (10) follows evidently.

QED

Now let us assume that (e1, e2) satisfies conditions (i) and (ii) of Theorem 2.10: For any ε > 0,
there is some control pair (uε, vε) ∈ U(t)× V(t) such that

i) for any s ∈ [t, T ] and j = 1, 2,

P {E[gj(Xε
T )|Ft,s] ≥ Wj(s,Xε

s)− ε} ≥ 1− ε(14)

where Xε
. = Xt,x,uε,vε

. , and
ii)

for j = 1, 2, |E[gj(Xε
T )]− ej | ≤ ε .(15)

We have to prove that (e1, e2) is a Nash equilibrium payoff for the initial position (t, x).
For doing this, we are going to define, for any ε > 0, some strategies (αε, βε) ∈ A(t)×B(t) satis-

fying (6) and (7). We only explain the construction of αε, the construction of βε being symmetric.

In order to simplify the notations, we assume throughout the proof that gj ≥ 0 for j = 1, 2. Let
us point out that we can make this assumption without loss of generality since this only amounts to
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add some constant to the functions gj . In particular, this assumption entails that Wj ≥ 0. Recall
that there exists also some C > 0 such that |gj | ≤ C.

Since the dynamic is bounded, it is easy to prove that, for all (u, v), (u′, v′) ∈ U(t) × V(t), for
all (Ft,s, s ≥ t)-stopping time S with P [S ≤ T ] = 1 and such that Xt,x,u,v

S = Xt,x,u′,v′

S , P -a.s., and
for all τ ≥ 0,

E[ sup
0≤s≤τ

|Xt,x,u,v
(S+s)∧T −Xt,x,u′,v′

(S+s)∧T |
2] ≤ C0τ,

where the constant C0 > 0 only depends on the dynamic. Thus, since W2(s, ·) is Lipschitz, uniformly
in s, we can choose τ > 0 such that, for all (u, v), (u′, v′) ∈ U(t)×V(t), for all (Ft,s, s ≥ t)-stopping
time S with P [S ≤ T ] = 1 and such that Xt,x,u,v

S = Xt,x,u′,v′

S , P -a.s.,

E[ sup
0≤s≤τ

|W2((S + s) ∧ T,Xt,x,u,v
(S+s)∧T )−W2((S + s) ∧ T,Xt,x,u′,v′

(S+s)∧T )|2] ≤ (ε/4)2 .(16)

Let us fix some partition t0 = t < t1 < . . . < tm = T which satisfies supi |ti+1 − ti| ≤ τ .

We also fix some M large enough such that

sup
u∈U(t)

sup
v∈V(t)

P ( sup
t≤s≤T

|Xt,x,u,v
s | > M) ≤ ε/(4C) .(17)

Let us set
ε0 =

ε

4(2 + mC)
(18)

and let (ū, v̄) = (uε0 , vε0) satisfy (14) and (15) for ε = ε0.

By Lemma 3.1b) applied to the closed ball B in IRn with center 0 and radius M , to the control
ū and to θ = t1, . . . , tm, we get m admissible strategies α1 ∈ A(t), . . . , αm ∈ A(t) such that, for any
v ∈ V(t), for any l ∈ {1, . . . ,m}, αj(v) ≡ ū on [t, tj ] and

1{Xαj
tj
∈B}E[g2(X

αj

T )|Ft,tj ] ≤ 1{Xαj
tj
∈B}W2(tj , X

αj

tj ) + ε/4 ,(19)

where we have set Xαj
. = Xt,x,αj(v),v

. .
For all v ∈ V(t), we introduce the stopping times

Sv = inf{s ≥ t, vs 6= v̄s} and tv = inf{ti > Sv, i ≥ 1},

with the convention tv = T if vs = v̄s on [t, T ].

We are now ready to define the admissible strategy αε by setting

∀v ∈ V(t), αε(v) =

{
ū on [[t, tv]],
αj(v) on (tj , T ]× {tv = tj}.

(20)

It is easy to check that αε is an admissible strategy.

Let v ∈ V(t) be fixed and let us set X. = Xt,x,αε(v),v
. . Let us notice that αε(v) ≡ ū on [[t, tv]]

and that

X =

{
Xt,x,ū,v on [[t, tv]] P−a.s.∑

j Xt,x,αj(v),v1tv=tj on [[tv, T ]] P−a.s.

Then using (19) we get:

1{Xtv∈B}E[g2(XT )|Ft,tv ] ≤ 1{Xtv∈B}W2(tv, Xtv) + ε/4 .(21)
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We now claim that

∀v ∈ V(t), J2(t, x, αε(v), v) ≤ e2 + ε and αε(v̄) = ū .(22)

Indeed, it follows from (21) that, for any v ∈ V(t), if we set X. = Xt,x,αε(v),v
. , we have

J2(t, x, αε(v), v) ≤ E[g2(XT )1{|Xtv |>M}] + E[W2(tv, Xtv)1{|Xtv |≤M}] + ε/4

≤ E[W2(tv, Xtv)] + ε/2,
(23)

where the last inequality comes from the choice of M in (17).
Now set X = Xt,x,ū,v̄. Recall that, by the definition of Sv and the fact that αε(v) = ū on [[t, tv]],
we have Xs = Xs on {s ≤ Sv}.
Further we have Sv ≤ tv ≤ Sv + τ , thus, by (16), we get

‖W2(tv, Xtv)−W2(tv, Xtv)‖2 ≤ ε/4.

Accordingly,
E[W2(tv, Xtv)] ≤ E[W2(tv, Xtv)] + ε/4 .(24)

Let us now denote by Ωs (for s ∈ [t, T ]), the set

Ωs =
{
E[g2(XT )|Ft,s] ≥ W2(s,Xs)− ε0

}
,

We recall that P (Ωs) ≥ 1− ε0 thanks to (14). Thus

E[W2(tv, Xtv)] =
∑m

i=1 E[W2(ti, Xti)1tv=ti1Ωti
] +

∑m
i=1 E[W2(ti, Xti)1tv=ti1Ωc

ti
]

≤
∑m

i=1 E[(E[g2(XT )|Ft,ti ] + ε0)1tv=ti1Ωti
] +

∑m
i=1 CP (Ωc

ti ∩ {t
v = ti})

≤ E[g2(XT )] + ε0 +
∑m

i=1 CP (Ωc
ti)

≤ (e2 + 2ε0) + mCε0

(25)

where we have used in the last inequality on the one hand the fact that g2 ≥ 0 and (15), and, on
the other hand, the fact that P (Ωc

ti) ≤ ε0 for any i.

Putting (23), (24) and (25) together yields to:

J2(t, x, αε(v), v) ≤ (e2 + 2ε0) + mCε0 + ε/4 + ε/2 ≤ e2 + ε

from the choice of ε0. The last assertion of (22) being obvious, (22) is proved.

In the same way one can build an admissible strategy βε ∈ B(t) such that

∀u ∈ U(t), J1(t, x, u, βε(u)) ≤ e1 + ε and βε(ū) = v̄ .

Combining (22), the previous assertion and Lemma 2.8 implies that (αε, βε) satisfies the two
inequalities of the definition of a Nash equilibrium payoff.

QED
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4 Proof of the characterization: necessary condition

Suppose that there is a Nash equilibrium payoff (e1, e2) ∈ IR2 at a point (t, x). For some fixed
ε > 0, let (αε, βε) ∈ A(t)×B(t) be such that for any (α, β) ∈ A(t)×B(t), the following inequalities
hold:

J1(t, x, αε, βε) ≥ J1(t, x, α, βε)− ε2/2 and J2(t, x, αε, βε) ≥ J2(t, x, αε, β)− ε2/2(26)

and
for j = 1, 2, |Jj(t, x, αε, βε)− ej | ≤ ε2/2 .

Thanks to Lemma 2.4, there exists a unique couple of controls (uε, vε) ∈ U(t)× V(t) such that

αε(vε) = uε and βε(uε) = vε .

Let us set Xε
. = Xt,x,uε,vε

. .

We argue by contradiction and assume that there is some time θ ∈ [t, T ) and some j = 1, 2 (say
j = 1 to fix the idea) such that

P {E[g1(Xε
T )|Ft,θ] < W1(θ, Xε

θ)− ε} > ε .

We set
A = {E[g1(Xε

T )|Ft,θ] < W1(θ, Xε
θ)− ε} .(27)

By Lemma 3.1 (and the remark following the lemma) applied to θ and to the control uε, there
exists a nonanticipative strategy α̃ : V(t) → U(t) such that, for any v ∈ V(t), α̃(v) = uε on [t, θ]
and P -a.s.,

E[g1(X
t,x,α̃(v),v
T )|Ft,θ] ≥ W1(θ, X

t,x,α̃(v),v
θ )− ε/2 .(28)

Let (u, v) be the unique couple associated with (α̃, βε). Let us notice that u ≡ uε on [t, θ]. We
define a control ū in the following way:

ū = uε on ([t, θ)× Ω) ∪ ([θ, T ]×Ac), ū = u on [θ, T ]×A .

Since βε is strongly nonanticipative, Corollary 6.4 in the Appendix states that

βε(ū) ≡ vε on [t, θ) and βε(ū)s =

{
vs on A
vε
s on Ac for s ∈ [θ, T ] .

Hence, we have:

Xt,x,ū,βε(ū) ≡ Xε on [t, θ] and Xt,x,ū,βε(ū)
s =

{
X

t,x,α̃(v),v
s on A

Xε
s on Ac for s ∈ [θ, T ] .

Accordingly, by (28), we have:

J1(t, x, ū, βε(ū)) = E [g1(Xε
T )1Ac ] + E

[
E[g1(X

t,x,α̃(v),v
T )|Ft,θ]1A

]
≥ E [g1(Xε

T )1Ac ] + E [W1(θ, Xε
θ)1A]− ε

2P [A].
(29)

It follows from the definition (27) of A that

J1(t, x, ū, βε(ū)) > E [g1(Xε
T )] +

ε

2
P (A) ≥ J1(t, x, αε, βε) + ε2/2 .

This is in contradiction with (26) and the proof is complete.

QED
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5 Proof of the existence

For proving Theorem 2.9, it is enough to show that, for any ε > 0, there are some controls uε and
vε satisfying the conditions (i) and (ii) of Theorem 2.10. In fact, we give a slightly stronger result:

Proposition 5.1 Suppose the assumptions of Theorem 2.9 hold. Then, for any ε > 0, there is a
control-pair (uε, vε) ∈ U(t)× V(t) such that, for any t ≤ s1 ≤ s2 ≤ T and j = 1, 2,

P
{
E[Wj(s2, X

ε
s2

)|Ft,s1 ] ≥ Wj(s1, X
ε
s1

)− ε
}
≥ 1− ε

where Xε
. = Xt,x,uε,vε

. .

Proof of Theorem 2.9 : Combining the above Proposition applied to s1 = s and s2 = T
with Theorem 2.10 gives the result for any (e1, e2) which is an accumulation point of the payoff
(J1(t, x, uε, vε), J2(t, x, uε, vε)) as ε → 0+.

QED

The proof of Proposition 5.1 is splitted into several lemmata.

Lemma 5.2 For any ε > 0, there is a couple (uε, vε) ∈ U(t) × V(t) such that, for any t ≤ s ≤ T
and j = 1, 2,

E[Wj(s,Xε
s)] ≥ Wj(t, x)− ε

where Xε
. = Xt,x,uε,vε

. .

Proof : Let us choose αε ∈ A(t) and βε ∈ B(t) such that αε is ε/2-optimal for W1(t, x) while
βε is ε/2-optimal for W2(t, x): Namely

W1(t, x) ≤ inf
v∈V(t)

J1(t, x, αε(v), v) + ε/2 and W2(t, x) ≤ inf
u∈U(t)

J2(t, x, u, βε(u)) + ε/2 .(30)

Let (uε, vε) be the unique pair of controls such that

αε(vε) = uε and βε(uε) = vε .

We intend to prove that the couple (uε, vε) satisfies the conclusion of the lemma. For this, we argue
by contradiction and assume that there is some θ ∈ (t, T ] and some j = 1, 2 (to fix the ideas, we
suppose j = 2) such that

E[W2(θ, Xε
θ)] < W2(t, x)− ε .(31)

By Lemma 3.1 applied to θ and to the control uε, there exists a nonanticipative strategy α :
U(t) → V(t) such that, for any v ∈ V(t), α(v) ≡ uε on [t, θ] and,

E[g2(X
t,x,α(v),v
T )|Ft,θ] ≤ W2(θ, X

t,x,α(v),v
θ ) + ε/2, P a.s.(32)

By Lemma 2.4, there exists a unique couple of controls (u, v) ∈ U(t)× V(t) such that, P -a.s.

α(v) = u and βε(u) = v.

Since α is nonanticipative and βε is admissible, and since α(vε) ≡ uε and βε(uε) ≡ vε on [t, θ], it is
easy to check that

u ≡ uε and v ≡ vε on [t, θ] .

Thus Xt,x,u,v
θ = X

t,x,α(v),v
θ = Xε

θ. It follows then from (31) and (32) that

J2(t, x, u, βε(u)) = J2(t, x, α(v), v) = E[E(g2(X
t,x,α(v),v
T )|Ft,θ)]

≤ E[W2(θ, X
t,x,α(v),v
θ )] + ε/2

< W2(t, x)− ε/2,

which is in contradiction with (30).
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QED

Lemma 5.3 Let us fix ε > 0 and t0 = t < t1 < . . . < tm = T . Then there is some (uε, vε) ∈
U(t)× V(t) such that, for any i = 0, . . . , (m− 1), for j = 1, 2, P -a.s.,

E[Wj(ti+1, X
ε
ti+1

)|Ft,ti ] ≥ Wj(ti, Xε
ti)− ε ,

where Xε
. = Xt,x,uε,vε

. .

Proof : We construct (uε, vε) by induction on the interval [ti, ti+1). Let us first notice that
the result for i = 0 is given by Lemma 5.2.

Let us now assume that (uε, vε) is constructed on [t0, ti) and let us define it on [ti, ti+1). From
Lemma 5.2, for any y ∈ IRn, there is some (uy, vy) ∈ U(ti)× V(ti) such that for any s ∈ [ti, T ] and
for j = 1, 2,

E[Wj(s,Xti,y,uy ,vy

s )] ≥ Wj(ti, y)− ε/2 .

Using the continuity of Wj(ti, ·) and of E[Wj(s,Xti,·,uy ,vy

s )], we can find a Borel partition (Ol i =
1, 2, . . .) of IRn such that, for any l, there is some yl ∈ Ol with, for j = 1, 2,

∀z ∈ Ol, E[Wj(s,Xti,z,uyl ,vyl

s )] ≥ Wj(ti, z)− ε .

Then we define, for any z ∈ IRn, the control pair (ũ(z), ṽ(z)) by

∀s ≥ t, ũ(z)s =
∑

l

1Ol
(z)uyl

s and ṽ(z)s =
∑

l

1Ol
(z)vyl

s ,

and we set
(uε, vε) = (ũ(Xt,x,uε,vε

ti ), ṽ(Xt,x,uε,vε

ti )) on [ti, ti+1) .

We have, for all s ≥ ti, P -a.s.,

E[Wj(s,Xε
s)|Ft,ti ] ≥ Wj(ti, Xε

ti)− ε

where, as usual, Xε
. = Xt,x,uε,vε

. . Using the above inequality for s = ti+1 completes the proof by
induction.

QED

We are now ready to prove Proposition 5.1. Let us choose a partition t0 = t < t1 < . . . < tm = T
and let us set

τ = sup
i
|ti+1 − ti| .

Since Wj(·, y) are uniformly Hölder continuous and Wj(s, ·) are uniformly Lipschitz continuous
and since the dynamic is bounded, we can choose τ sufficiently small in such a way that, for all
k ∈ {0, . . . ,m− 1} and all s ∈ [tk, tk+1),

‖Wj(tk+1, X
t,x,u,v
tk+1

)−Wj(s,Xt,x,u,v
s )‖2 ≤ γ(33)

where γ = ε
3
2 /4.

Let (u, v) ∈ U(t) × V(t) be defined by Lemma 5.3 for ε = ε/(2m): for any i = 0, . . . , (m − 1), for
j = 1, 2, P -a.s.,

E[Wj(ti+1, Xti+1)|Ft,ti ] ≥ Wj(ti, Xti)− ε/(2m)(34)

where X. = Xt,x,u,v
. . Let us now fix t ≤ s1 < s2 ≤ T . Let also ti and tk be such that ti−1 ≤ s1 < ti

and tk < s2 ≤ tk+1. Then we have, thanks to (34), for j = 1, 2, P -a.s.,

E[Wj(tk+1, Xtk+1
)|Ft,ti ] ≥ Wj(ti, Xti)− ε/2 .
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Taking the conditionnal expectation with respect to Ft,s1 gives since ti ≥ s1: P -a.s.,

E[Wj(tk+1, Xtk+1
)|Ft,s1 ] ≥ E[Wj(ti, Xti)|Ft,s1 ]− ε/2 .(35)

Let us set
Z1 = E[Wj(tk+1, Xtk+1

)|Ft,s1 ]− E[Wj(ti, Xti)|Ft,s1 ] + ε/2

and
Z2 = E[Wj(s2, Xs2)|Ft,s1 ]−Wj(s1, Xs1) + ε/2

From (33) and (35), we have Z1 ≥ 0 P -a.s., and ‖Z2 − Z1‖2 ≤ 2γ. Therefore,

P [Z2 < −ε/2] ≤ P [|Z2 − Z1| > ε/2] ≤ 4γ2/(ε/2)2 = ε ,

i.e.,
P {E[Wj(s2, Xs2)|Ft,s1 ] ≥ Wj(s1, Xs1)− ε} ≥ 1− ε .

Therefore the proof of Proposition 5.1 is complete.

QED

6 Appendix: On strategies

In the Appendix we bring together several technical facts on strongly nonanticipative strategies.
Some of them (Lemma 6.1 and Corollary 6.4) are used in the proofs of Theorems 2.9 and 2.10, some
others have seemed to us of general interest for a better understanding of the different notions of
strategies.

In the following lemma we prove that the strategy built in the proof of Lemma 3.1 is strongly
nonanticipative. Let us first recall the construction of the strategy α: Let θ ∈ (t, T ) be a fixed
time, (Oi)i∈IN be a Borel partition of IRn and, for any i ∈ IN , αi ∈ A(θ) be an admissible strategy.
We also fix some control u ∈ U(t). The strategy α is defined by setting

∀v ∈ V(t), α(v)s =

{
us for s ∈ [t, θ],
αi(v|[θ,T ])s for s ∈ (θ, T ], on {Xt,x,u,v

θ ∈ Oi}.

Lemma 6.1 The strategy α is strongly nonanticipative.

Proof : Let S be an (Ft,s)s∈[t,T ]−stopping time and let v1, v2 ∈ V(t) be such that v1 ≡ v2 on
[[t, S]]. We have to prove that α(v1) ≡ α(v2) on [[t, S]].

Let us notice that the result is obvious on {S ≤ θ}, because we have α(v1) = α(v2) = u on
[t, θ]. Let us now set B = {S > θ} and Bi = B ∩ {Xt,x,u,v

θ ∈ Oi}. We can assume that B is not
neglectable, since otherwise there is nothing to prove. Let us now prove that α(v1) ≡ α(v2) on
[[θ, S]] ∩ ([t, T ]×B).

For this, let us first recall the identifications Ωt,T = Ωt,θ × Ωθ,T and Pt,T = Pt,θ ⊗ Pθ,T . We
know that, for almost all ω1 ∈ Ωt,θ, the controls v1(ω1) and v2(ω1) belong to V(θ). Let us finally
introduce, for any 0 ≤ r ≤ s ≤ T , F0

r,s = σ{Bτ − Br, τ ∈ [r, s]} ; let us underline that Fr,s is
nothing but F0

r,s augmented by all null-sets of P . Using the identification F0
t,T = F0

t,θ ⊗ F0
θ,T and

the fact that the section N(ω1) = {ω2 ∈ Ωθ,T , (ω1, ω2) ∈ N} of a Pt,T−neglectable set N ∈ Ft,T

is Pθ,T−neglectable for almost all ω1 ∈ Ωt,θ, it can also be proved that, for almost all ω1 ∈ Ωt,θ,
S(ω1) is an (Fθ,s)s∈[θ,T ]−stopping time. From the definition of the strategy α, we have, for any
i ∈ IN and for almost all ω1 ∈ Bi: α(v1)(ω1, ·) = αi(v1(ω1)[θ,T ]) and α(v2)(ω1, ·) = αi(v2(ω1)[θ,T ])
on [θ, T ]. Since αi is strongly nonanticipative and since v1(ω1)[θ,T ] ≡ v2(ω1)[θ,T ] on [[θ, S(ω1)]] for
almost all ω1 ∈ Bi, we have for almost all ω1 ∈ Bi,

αi(v1(ω1)[θ,T ]) ≡ αi(v2(ω1)[θ,T ]) on [[θ, S(ω1)]] .
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Therefore α(v1)(ω1, ·) ≡ α(v2)(ω1, ·) on [[θ, S(ω1)]] for almost all ω1 ∈ B. This completes the proof
of the lemma.

QED

Let us now introduce the following notion which appears naturally in the proof of Theorem
2.10.

Definition 6.2 (Condition (C)) Let α : V(t) → U(t) be a nonanticipative strategy. We say that
α satisfies condition (C) if for any (deterministic) θ ∈ [t, T ), for any control v, v̄ ∈ V(t) with v ≡ v̄
on [t, θ] and for any A ∈ Ft,θ, we have

α(v1A + v̄1Ac) ≡ α(v)1A + α(v̄)1Ac ,

where v1A + v̄1Ac denotes for simplicity the control equal to v ≡ v̄ on [t, θ]× Ω, to v on [θ, T ]×A
and to v̄ on [θ, T ]×Ac.

Remark : Although condition (C) is weaker than the assumption of being strongly nonantici-
pative for a strategy (cf Corollary 6.4 below), the main results of this paper, Theorems 2.9 and 2.10,
remain unchanged if condition (i) in the definition of admissible strategies is replaced by condition
(C). However, as we shall also see below, condition (C) does not seem to be the right definition for
modelizing the fact that a player can only take into account the observation of the control played
by his opponent.

Here is an equivalent formulation of condition (C):

Proposition 6.3 Let α : V(t) → U(t) be a nonanticipative strategy. The following assertions are
equivalent:

1. α satisfies condition (C),

2. for all stopping time S taking a finite number of values in [t, T ], if v ≡ ṽ on [[t, S]], then
α(v) ≡ α(ṽ) on [[t, S]].

This result implies that condition (C) is weaker than the notion of strongly nonanticipative
strategies:

Corollary 6.4 A strongly nonanticipative strategy α satisfies condition (C).

Indeed, a strongly nonanticipative strategy α obviously satisfies the second condition of the
Proposition.

Proof of Proposition 6.3 : Let us first assume that α satisfies the second condition. For
proving that α satisfies condition (C), let us fix θ ∈ [t, T ), A ∈ Ft,θ, and v, v̄ in V(t) such that v ≡ v̄
on [t, θ]. We set v1 = v1A + v̄1Ac . We want to prove that α(v1) = α(v)1A + α(v̄)1Ac on [θ, T ].

For this let us introduce the stopping time S defined by

S = θ on Ac and S = T on A .

Then v1 ≡ v on [[t, S]]. Since α satisfies 2, α(v1) ≡ α(v) on [[t, S]]. This implies that α(v1) ≡ α(v) on
[θ, T ]×A. We can prove in the same way (using the stopping time S′ = θ on A and S′ = T on Ac)
that α(v1) ≡ α(v̄) on [θ, T ]×Ac. Therefore α satisfies condition (C).
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Let us now assume that α satisfies condition (C). Let S be a stopping time taking values in
t0 = t < t1 < . . . < tm = T , and v, v̄ be such that v ≡ v̄ on [[t, S]]. We have to prove that
α(v) ≡ α(v̄) on [[t, S]]. For this, let us set, for any j ∈ {0, . . . ,m},

Aj = {S ≤ tj} and vj =

{
v in ([t, tj)× Ω) ∪ ([tj , T ]×Aj)
v̄ in [tj , T ]×Ac

j

We are going to prove by induction that

α(vj) ≡ α(v̄) in [tj , T ]×Ac
j and α(v) ≡ α(v̄) in [[t, S ∧ tj ]](36)

For j = m, this shows the desired result: α(v) = α(v̄) on [[t, S]].

For j = 0, we have A0 = {S = t} ∈ Ft,t = {∅,Ω} P -a.s. and thus either v0 = v a.s. (if A0 = Ω)
or v0 = v̄ a.s. (if A0 = ∅). In both cases, equalities in (36) are clear.

Let us assume that (36) holds for some j. Let us first prove that α(v̄) = α(v) in [[t, S ∧ tj+1]].
For that purpose, let us notice that vj ≡ v on [t, tj+1), because v ≡ v̄ on [tj , tj+1) × Ac

j , since
Ac

j = {S ≥ tj+1} and v ≡ v̄ on [[t, S]]. Since α is nonanticipative, we have therefore that α(vj) ≡
α(v) on [t, tj+1). Using assumption (36), which states that α(vj) ≡ α(v̄) in [tj , T ]× Ac

j , we deduce
that α(v̄) = α(v) in [tj , tj+1]×Ac

j . Let us now notice that

[[t, S ∧ tj+1]] = [[t, S ∧ tj ]] ∪ ([tj , tj+1]×Ac
j) .

From assumption (36) we know that α(v̄) = α(v) in [[t, S ∧ tj ]] and we have just proved that
α(v̄) = α(v) in [tj , tj+1]×Ac

j . Therefore we have established that α(v̄) = α(v) in [[t, S ∧ tj+1]].

It remains to show that α(vj+1) ≡ α(v̄) in [tj+1, T ] × Ac
j+1. Let us first notice that vj+1 =

vj1Ac
j+1

+v1Aj+1 . Then, since vj ≡ v on [t, tj+1] and since Aj+1 ∈ Ft,tj+1 , we have, from assumption
(C),

α(vj+1) = α(vj1Ac
j+1

+ v1Aj+1) ≡ α(vj)1Ac
j+1

+ α(v)1Aj+1 on [t, T ] .(37)

In particular, α(vj+1) ≡ α(vj) on [t, T ] × Ac
j+1. Moreover, from (36), α(vj) ≡ α(v̄) on [tj+1, T ] ×

Ac
j+1, because Ac

j+1 ⊂ Ac
j . Thus

α(vj+1) ≡ α(vj) ≡ α(v̄) on [tj+1, T ]×Ac
j+1 .

By induction the proof is now complete.

QED

We complete this appendix by showing that condition (C) is not equivalent with the notion
of strongly nonanticipative strategies. More precisely we build a strategy which is nonanticipative
with delay, an r-strategy, satisfies condition (C), but is not strongly nonanticipative.
Let us suppose that each of the spaces in which the controls take their values has only two elements:
U = {u1, u2} and V = {v1, v2}. Let t ∈ [0, T ]. We define the strategy α : V(t) → U(t) in the
following way:
Let t = t0 < t1 < t2 = T be a partition of [t, T ]. For any v ∈ V(t), we set α(v)s = u1 for s ∈ [t, T ],
if v satisfies the following property:

∃ε > 0 such that v ≡ v1 on [t, t + ε].(38)

Otherwise we set α(v)s = u1 for s ∈ [t, t1] and α(v)s = u2 for s ∈ (t1, T ].
It is easy to check that α is a nonanticipative strategy with delay. Let us now prove that α is an
r-strategy: If t > 0, for t ∈ [0, t) and v ∈ V(t), define the process (ũs = α(v|[t,T ])s, s ∈ [t, T ]) (using
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the notations of Chapter 2. This process satisfies ũ ≡ u1 on [t, t1], then is constant on (t1, T ] equal
to u1 or u2, with

{ũs = u1, s ∈ (t1, T ]} =
⋂

ε>0 rationnal

{v ≡ v1 in [t, t + ε]} ∈ Ft,t+ ⊂ Ft,t1
.

Thus ũ is adapted to the filtration (Ft,s)s≥t. Since, moreover, its paths are left continuous, it follows
that ũ is (Ft,s)s≥t-progressively measurable.
Let us now prove that α satisfies the condition (C): Let us point out that Ft,t = {∅,Ω} P−a.s. .
Thus (C) is trivially satisfied for θ = t. Further, by the construction of α, if for v, v ∈ V(t), we
have v ≡ v on some time interval [t, θ], θ > t, then α(v) = α(v) on [t, T ]. In particular, α satisfies
(C).
We finally show that α is not strongly anticipative: Let S be an (Ft,s)s∈[t,T ]-stopping time such
that P [S > t1] > 0 and, for all ε > 0, P [S ≤ t + ε] > 0, say S = inf{s ≥ t, Bs − Bt = 1} ∧ T . We
define v and v ∈ V(t) by

v ≡ v1 on [t, T ],
v ≡ v1 on [[t, S]] and v ≡ v2 on ]]S, T ]].

It holds that v ≡ v on [[t, S]]. But the strategy α applied to the two controls gives

α(v) ≡ u1 and α(v) ≡ u2 on (t1, T ].

Remark 6.5 Remark also that in Assertion 2. of Proposition 6.3 we have found an example of a
property which holds for every stopping time taking a finite number of values, but which cannot
be generalised to all stopping times.

References
[1] BENSOUSSAN, A. and FREHSE, J. (2000) Stochastic games for N players. J. Optimization Theory Appl. 105,

No.3, 543-565.

[2] FLEMING, W.H. and SOUGANIDIS, P.E. (1989) On the existence of value functions of two-player, zero-sum
stochastic differential games. Indiana Univ. Math. J. 38, No.2, 293-314.
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