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1 Introduction

The aim of the work is to investigate a mathematical model describing the
Hele-Shaw approximation of the injection of a power-law fluid between two
closely situated plates. The fluid is supposed to be surrounded by another
fluid with small viscosity, so we consider a one-phase moving boundary prob-
lem. Let us denote by S the source of the injection, by Ω(t) the portion of
space occupied by the fluid at time t, by Σ(t) the moving boundary. Then,
according to [2], [3] and [18], Σ(t) evolves with a normal velocity Vt,x given
at each point x ∈ Σ(t) by the quasi-static equation

Vt,x = |∇u(t, x)|p−1
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where u(t, x) satisfies at any time t > 0 the p−Laplace equation (with p > 1)
−div

(
|∇u(t, x)|p−2∇u(t, x)

)
= f(x) in Ω(t)\S

u(t, x) = 0 on Σ(t)
u(t, x) = g(x) on S

where f and g are some positive functions.
When p = 2, this is the well-known Hele-Shaw problem, which has been

investigated by many authors. In particular, if the initial data is smooth,
the evolution equation admits a smooth solution for a short period of time
[11], but singularities appear in general in finite time. In order to define
the solutions after the onset of singularities, various notions of generalized
solutions have been introduced. For instance the Hele-Shaw problem is re-
formulated in terms of variationnal inequalities via the Baiocchi transform
in [10] while Kim proposes in [14] a definition of viscosity solution for this
problem.

To the best of our knowledge, the case of p 6= 2 has never been studied
up to now. Our aim is to define a notion of generalized solution, to prove
its uniqueness and its stability.

The key feature of the moving boundary problem we are investigating is
that it preserves, at least formally, the inclusion: Namely, if Ω1(t) and Ω2(t)
are two families of solutions, with Ω1(0) ⊂ Ω2(0), then this inclusion should
be preserved along the time. This is just because the velocity is increasing
with respect to the set. The main result of the paper (Theorem 3.1) is that
this inclusion principle holds true even for weak solutions.

The inclusion principle is the key feature for building generalized solu-
tions of other front propagation problems: It has extensively been used in
the construction of viscosity solutions for the mean curvature motion (see in
particular [12], [9] for the so-called level-set approach and [19], [4], [5] for re-
lated but more geometric approaches). Similar viscosity solutions have also
been introduced for the porous-medium equation [6] and for a free bound-
ary problem motivated by combustion [15]. In [14] Kim proved the inclusion
principle for the viscosity solutions of the Hele-Shaw problem when p = 2,
f ≡ 0 and a particular source S.

In order to prove the inclusion principle for power-law fluids, the method
of [14] seems no longer applicable, because it involves the construction of
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rather tricky super and sub-solutions, which could hardly be possible in a
more general context. Here we use instead several ideas introduced by the
first author in [8] for simpler moving boundary problems. In particular,
we use two basic ingredients of [8]: An equivalent definition of solutions
(Proposition 2.7) and Ilmanen interposition Lemma [13]. However the proof
differs substancially from that of [8] because the main feature of the problem
studied in [8] is an invariance by translation which is no longer satisfied for
the Hele-Shaw problem.

We now briefly explain the organization of the paper. We first introduce
the notion of viscosity solutions for the Hele-Shaw problem for power-law
fluids, and investigate the main properties of the velocity. Next we state
and prove the inclusion principle. We finally apply this inclusion principle
in the last part to derive existence, uniqueness and stability of solutions.

2 Definitions and preliminary results

2.1 Definition of the solutions

Let us first fix some notations: throughout the paper | · | denotes the eu-
clidean norm (of IRN or IRN+1, depending on the context). If K is a subset
of IRN and x ∈ IRN , then dK(x) denotes the usual distance from x to K:
dK(x) = infy∈K |y−x|. Finally we denote by B(x, R) the open ball centered
at x and of radius R.

We intend to study the evolution of compact hypersurfaces Σ(t) = ∂Ω(t)
of IRN , where Ω(t) is an open set, evolving with the following law:

∀t ≥ 0 , x ∈ Σ(t), Vt,x = h(x,Ω(t)) (1)

where Vt,x is the normal velocity of Ω(t) at the point x, h = h(x,Ω) is given,
for any set Ω with smooth boundary by

h(x, Ω) = |∇u(x)|p−1 . (2)

In the previous equation, u : Ω → IR is the solution of the following p.d.e.
i) −div(|∇u|p−2∇u) = f in Ω\S
ii) u = g on ∂S
iii) u = 0 on ∂Ω

(3)
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and (i) is understood in the sense of distributions. The set S is a fixed
source and we always assume above that S ⊂⊂ Ω(t). If S = ∅, then we omit
condition (ii) in (3). Here and throughout the paper, we assume that

i) S ⊂ IRN is bounded and equal to the closure of an open set
with a C2 boundary

ii) f : IRN → IR is continuous and bounded and
- either f > 0 on IRN and f is locally Lipschitz continuous
- or S 6= ∅ and f = 0 on IRN

iii) g : S → (0,+∞) is C1,β (for some β ∈ (0, 1))

(4)

Remark 2.1 Following [16] h(x,Ω) is well defined as soon as Ω has a
“smooth” boundary. More precisely, it is proved in [16] that, if Ω has a C1,β

boundary and if S ⊂⊂ Ω, then the solution u is C1,α for some α ∈ (0, β).
Moreover the C1,α norm of u is bounded by a constant which depends only on
‖f‖∞, |g|1,β, p and on the C1,β norm of the mapping which locally flattens
the boundary of Ω\S.

In the sequel, we set

D = {K ⊂ IRN , K bounded and S ⊂ Int(K)} , (5)

where Int(K) denotes the interior of K.

From now on, we consider the graph of the evolving sets Ω(t) and we
denote it K. This set K is a subset of IR+×IRN . Formally, with the notations
above

K = {(t, x) such that x ∈ Ω(t)} .

The set K is our main unknown. We denote by (t, x) an element of such a
set, where t ∈ IR+ denotes the time and x ∈ IRN denotes the space. We set

K(t) =
{
x ∈ IRN | (t, x) ∈ K

}
.

The closure of the set K in IRN+1 is denoted by K. The closure of the
complementary of K is denoted K̂:

K̂ = (IR+ × IRN ) \K

and we set
K̂(t) =

{
x ∈ IRN | (t, x) ∈ K̂

}
.

Let us continue with the terminology: If K is a subset of [0,+∞)× IRN ,
we say that
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• K is a tube, if ∀T ≥ 0, K∩ ([0, T ]× IRN ) is a compact subset of IRN+1.

• K is non decreasing if K(s) ⊂ K(t) for any 0 ≤ s ≤ t.

• K is left lower semi-continuous if

∀t > 0, ∀x ∈ K(t), if tn → t−, ∃xn ∈ K(tn) such that xn → x .

• Kr is a smooth tube if Kr is closed in I × IRN (where I is some open
interval), has a non empty interior and ∂Kr∩(I×IRN ) is a C1,1 subman-
ifold of IRN+1, such that at any point (t, x) ∈ Kr the outward normal
(νt, νx) to Kr at (t, x) satisfies νx 6= 0. In this case the normal velocity
V Kr

(t,x) of Kr at the point (t, x) ∈ ∂Kr is given by V Kr

(t,x) = −νt/|νx|,
where (νt, νx) is the outward normal to Kr at (t, x).

We use smooth tubes as “test sets”. Namely, we say that the smooth
tube Kr is externally tangent to a tube K at (t, x) ∈ ∂K if Kr is defined on
some open interval I containing t, and if

K(s) ⊂ Kr(s) ∀s ∈ I and (t, x) ∈ ∂Kr .

In the same way, the smooth tube Kr is said to be internally tangent to
K at (t, x) ∈ ∂K̂ if Kr(s) is defined on some open interval I containing t,
and if

Kr(s) ⊂ K(s) ∀s ∈ I and (t, x) ∈ ∂Kr .

We are now ready to define the viscosity solutions of (1). Recall that
the set D is defined by (5).

Definition 2.2 Let K be a tube and K0 ∈ D be an initial position.

1. K is a viscosity subsolution to the front propagation problem (1) if K
is non decreasing, left lower semi-continuous and K(0) ∈ D, and if,
for any smooth tube Kr externally tangent to K at some point (t, x),
with Kr(t) ∈ D and t > 0, we have

V Kr

(t,x) ≤ h(x,Kr(t))

where V Kr

(t,x) is the normal velocity of Kr at (t, x).

We say that K is a subsolution to the front propagation problem with
initial position K0 if K is a subsolution and if K(0) ⊂ K0.
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2. K is a viscosity supersolution to the front propagation problem if K is
non decreasing and K(0) ⊂ D and if, for any smooth tube Kr internally
tangent to K at some point (t, x), with Kr(t) ∈ D and t > 0, we have

V Kr

(t,x) ≥ h(x,Kr(t)) .

We say that K is a supersolution to the front propagation problem with
initial position K0 if K is a supersolution and if K̂(0) ⊂ IRN\K0.

3. Finally, we say that a tube K is a viscosity solution to the front prop-
agation problem (with initial position K0) if K is a sub- and a super-
solution to the front propagation problem (with initial position K0).

Let us point out that any classical solution is a viscosity solution. The
previous definition has been introduced in [1] and was also used in [8].

2.2 Regularity properties of the velocity h

We now investigate the main regularity properties of the map h defined
by (2) and (3). Recall that the set S and the function f and g satisfy
assumptions (4).

The following Proposition is straightforward application of the maximum
principle:

Proposition 2.3 The function h is non negative and non decreasing with
respect to the inclusion. Namely,

h(x,K) ≥ 0 for any closed subset K ∈ D of IRN

with C1,1 boundary and any x ∈ ∂K
(6)

and

if K1 ∈ D and K2 ∈ D are closed and with a C1,1 boundary,
if K1 ⊂ K2 and if x ∈ K1 ∩ ∂K2,

then h(x,K1) ≤ h(x,K2)
(7)

In order to describe the continuity properties of h, let us first recall that,
if K is a closed set with C1,1 boundary, then the signed distance d defined
by

d(x) =
{

dK(x) if x /∈ K
−d∂K(x) otherwise
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is C1,1 in a neighborhood of ∂K. We say that a sequence Kn of sets with
C1,1 boundary converges to some set K with C1,1 boundary if Kn converges
to K and ∂Kn converges to ∂K for the Hausdorff distance, and if there is an
open neighborhood O of ∂K such that, if d (resp. dn) is the signed distance
to K (resp. to Kn), then (dn) and (∇dn) converge uniformly to d and ∇d
on O and if the L∞ norms of (∇2dn) are uniformly essentially bounded on
O.

Proposition 2.4 The velocity h is sequentially continuous with respect to
its arguments, i.e.,

if Kn and K ∈ D are closed subsets of IRN with C1,1 boundary,
such that Kn converge to K, if xn ∈ ∂Kn converge to x ∈ ∂K,

then limn h(xn,Kn) = h(x,K)
(8)

Proof of Proposition 2.4: Note that, if K ∈ D, then, for n large
enough, the sets Kn also belongs to D. The rest of the Proposition is
an straightforward application of the regularity results of [16] recalled in
Remark 2.1. QED

We now state some estimates on the variations of the mapping v →
h(x + v,K + v) for a set K with a smooth boundary and x ∈ ∂K. The key
point is that such an estimate has to be independent of the regularity of K.
Here and below, we set

Sr = {x ∈ IRN , dS(x) ≤ r} .

Proposition 2.5 Let R > 0 be some large constant and r > 0 be sufficiently
small so that Sr has a C2 boundary. There is a constant λ > 1/r, such
that, for any compact set K with C1,1 boundary such that Sr ⊂ Int(K) and
K ⊂ B(0, R− r), for any v ∈ IRN with |v| < 1/λ and any x ∈ ∂K, we have

h(x + v,K + v) ≥ (1− λ|v|)h(x,K)

Proof of Proposition 2.5: We do the proof in the case S 6= ∅ and
f > 0, the proof for the other cases being similar. Since f > 0 and f
Lipschitz continuous, we can find a constant C1 > 0 such that

∀x, y ∈ IRN , with |x|, |y| ≤ R, f(x) ≥ f(y)(1− C1|x− y|) . (9)

Let u+ and u−r be respectively the solutions of
−div(|∇u+|p−2∇u+) = f in B(0, R)\S

u+ = g on ∂S
u+ = 0 on ∂B(0, R)
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and 
−div(|∇u−r |p−2∇u−r ) = f in Int(Sr)\S

u−r = g on ∂S
u−r = 0 on ∂Sr

Since g is C1,β , S, Sr and B(0, R) have a C2 boundary, the functions u+

and u−r belongs to C1,α(Ω) (for some α ∈ (0, β)) and there is some constant
C2 > 0 such that u+ and u−r are C2−Lipschitz continuous. Whence

∀x ∈ Sr\S , u−r (x) ≥ u+(x)− 2C2dS(x) , (10)

because u+ = u−r on ∂S. We now choose λ = max{6C2(p − 1)/m,C1, 2/r}
where m = minSr\S u+. Note that m is positive.

Let K ⊂ IRN be some compact set with C1,1 boundary, such that Sr ⊂
Int(K) and K ⊂ B(0, R− r) and let v ∈ IRN with |v| < 1/λ. Let u and uv

be the solution of (3) with K and K + v respectively in place of Ω. From
the maximum principle, we have u−r ≤ u ≤ u+ and u−r ≤ uv ≤ u+ on Sr\S
because Sr ⊂⊂ K ⊂⊂ B(0, R) and Sr ⊂⊂ K + v ⊂⊂ B(0, R) from the
choice of λ > 1/r and v.

Since Sr ⊂ K and |v| < r, we have S ⊂ Int(K + v). We claim that

1
(1− λ|v|)1/(p−1)

uv(x + v) ≥ u(x) ∀x ∈ K\S|v| . (11)

For proving this claim, let us set w(x) = 1
(1−λ|v|)1/(p−1) uv(x+v) for x ∈ K\S|v|

and let us show that

w ≥ u on ∂S|v| and − div(|∇w|p−2∇w) ≥ f on K\S|v| . (12)

We have, for any x ∈ ∂S|v|,

(1−λ|v|)1/(p−1)w(x) = uv(x+v) ≥ u−r (x+v) ≥ u−r (x)−C2|v| ≥ u+(x)−3C2|v|

because u−r is C2−Lipschitz continuous and thanks to (10). Thus

(1− λ|v|)1/(p−1)w(x) ≥ u+(x)− 3C2|v| ≥ (1− λ|v|)1/(p−1)u+(x)

because u+ ≥ m in Sr\S, |v| < 1/λ and λ ≥ 6C2(p − 1)/m. So we have
proved that w(x) ≥ u+(x) ≥ u(x) for any x ∈ ∂S|v|.

From the definition of C1 in (9) and from the choice of λ, we have, for
any x ∈ K\S|v|,

−div(|∇uv(x + v)|p−2∇uv(x + v)) = f(x + v) ≥ f(x)(1− λ|v|) .
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Thus
−div(|∇w(x)|p−2∇w(x)) ≥ f(x) ∀x ∈ K\S|v| .

So (12) is proved, which entails (11). In particular, at any point x ∈ ∂K,
we have, since w ≥ u in K\S|v| and w = u in ∂K,

h(x,K) = |∇u(x)|p−1 ≤ |∇w(x)|p−1

=
1

1− λ|v|
|∇uv(x + v)|p−1 =

1
1− λ|v|

h(x + v,K + v) .

QED

In order to prove the global existence of solution, we need below to
control the growth of h:

Proposition 2.6 There are constants r0 > 0 and σ > 0 such that

∀r ≥ r0, ∀x ∈ ∂B(0, r), h(x, B(0, r)) ≤ σr . (13)

Moreover, the constants r0 and σ only depend on p, S, ‖f‖∞ and ‖g‖∞.

Proof of Proposition 2.6: Let us fix r0 > 0 such that S ⊂⊂
B(0, r0/2

(p−1)
p ) and κ = max{ 2‖g‖∞

r
p/(p−1)
0

, ‖f‖
1/(p−1)
∞ (p−1)

N1/(p−1)p
}. Let r ≥ r0 and u

be the solution to
−div(|∇u|p−2∇u) = f in B(0, r)\S

u = g on ∂S
u = 0 on ∂B(0, r)

We claim that u ≤ w on B(0, r)\S, where w(x) = −κ|x|p/(p−1) + κrp/(p−1)

and u = w on ∂B(0, r). Indeed, −div(|∇w|p−2∇w) = κp−1N [p/(p−1)]p−1 ≥
f in B(0, r)\S. Since S ⊂ B(0, r0/2(p−1)/p) we also have

∀x ∈ ∂S, w(x) ≥ −κ
r
p/(p−1)
0

2
+ κr

p/(p−1)
0 ≥ ‖g‖∞ ≥ g(x) .

Finally, u = w = 0 on ∂B(0, r) by construction. So u ≤ w on B(0, r)\S and
u = w on ∂B(0, r). This entails that h(x,B(0, r)) = |∇u|p−1 ≤ |∇w|p−1 =
κp−1[p/(p − 1)]p−1r for any x ∈ ∂B(0, r). Whence the result with σ =
κp−1[p/(p− 1)]p−1. QED
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2.3 A preliminary result

We need below an equivalent definition for the solutions. This formulation
is introduced in [8].

Let us set, for any compact set K, x ∈ ∂K and ν ∈ IRN , ν 6= 0,

h](x,K, ν) = inf{h(x, K ′)} (14)

where the infimum is taken over the sets K ′ with C1,1 boundary, such that
K ⊂ K ′, K ′ ∈ D, x ∈ ∂K ′ and ν is an outward normal to K ′ at x. In the
same way, we set

h[(x,K, ν) = sup{h(x,K ′)} (15)

where the supremum is taken over the sets K ′ with C1,1 boundary, such that
K ′ ⊂ K, K ′ ∈ D, x ∈ ∂K ′ and ν is an outward normal to K ′ at x.

We set h](x,K, ν) = +∞ or h[(x,K, ν) = −∞ if there is no set K ′ with
the required properties.

If A is a subset of some finite dimension space and x belongs to A, we
say that a vector ν is a proximal normal to A at x if the distance of x + ν
to A is equal to |ν|.

Proposition 2.7 Let K be a nondecreasing tube with K(0) ∈ D.
Then K is a subsolution of the front propagation problem for h if and

only if K is left lower semi-continuous and if, for any (t, x) ∈ K with t > 0,
for any proximal normal (νt, νx) to K at (t, x) such that νx 6= 0, we have

− νt

|νx|
≤ h](x,K(t), νx) .

In the same way, the tube K is a supersolution of the front propagation
problem for h if and only if, for any (t, x) ∈ K̂ with t > 0, for any proximal
normal (νt, νx) to K̂ at (t, x) such that νx 6= 0, we have

νt

|νx|
≥ h[(x,K(t),−νx) .

Remark : Proposition 2.7 also holds true for any velocity h satisfying
(6), (7) and (8).

Proof of Proposition 2.7: The proof is completely similar to that
of Proposition 2.2 of [8]. The only difference yields in the construction of
some approximation of the tube K. We only give the main arguments for
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the case of subsolutions, the case of supersolutions being symetric. For any
ε > 0, let us set

Kε = {(t, x) ∈ IR+ × IRN | ∃(s, y) ∈ K with (t− s)2 + |x− y|2 ≤ ε2}

In [8], since h was translation invariant, Kε was also a subsolution of the
front propagation problem. Instead here we have:

Lemma 2.8 If K is a subsolution of the front propagation problem for h,
then for any ε > 0, Kε is a subsolution for hε on the time interval [ε,+∞),
where

hε(x,K) = sup
|v|≤ε

h(x + v,K + v)

is defined for any set K with C1,1 boundary such that Sε ⊂⊂ K and x ∈ ∂K.

Once Lemma 2.8 establish, we can complete the proof of the Proposition
as in [8] by noticing that hε → h as ε → 0+, thanks to (8). QED

Proof of Lemma 2.8 : A straightforward application of the defini-
tion of Kε shows that Kε is non decreasing and left lower semicontinuous.
Moreover, since S ⊂⊂ Int(K(0)) ⊂ Int(K(ε)), we have Sε ⊂⊂ Kε(ε).

Let Kr be a smooth tube which is externally tangent to Kε at some point
(t, x), with t > ε. Since (t, x) belongs to the boundary of Kε, there is some
(s, y) ∈ K such that

(t− s)2 + |x− y|2 = ε2 .

Let us notice that, since t > ε, we have s > 0. Now it is easy to check that
the tube Kr − ((t, x)− (s, y)) is externally tangent to K at (s, y). Since K is
a subsolution, we have

V
Kr−((t,x)−(s,y))
(s,y) ≤ h(y,Kr(t)− (x− y))

where V
Kr−((t,x)−(s,y))
(s,y) is the outward normal velocity of the smooth tube

Kr − ((t, x)− s, y)) at (s, y). Using the definition of hε, this leads to

V Kr

(t,x) = V
Kr−((t,x)−s,y))
(s,y) ≤ h(y,Kr(t)− (x− y)) ≤ hε(x,Kr(t))

because |x− y| ≤ ε. QED
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3 The inclusion principle

The main result of this paper is the following:

Theorem 3.1 (Inclusion principle) Let K1 be a subsolution of the front
propagation problem on the interval [0, T ) for some T > 0 and K2 be a
supersolution on [0, T ). If K1(t) and K2(t) are non empty for t ∈ [0, T ) and
if

K1(0) ∩ K̂2(0) = ∅ ,

then
∀t ∈ [0, T ), K1(t) ∩ K̂2(t) = ∅ .

Remarks :

1. Let K1 and K2 be bounded subsets of IRN such that K1 ⊂ Int(K2). If
K1 is a subsolution with initial condition K1 and K2 is a supersolution
with initial position K2, then the assumption of the Theorem holds:
K1(0) ∩ K̂2(0) = ∅.

2. The statement K1(t) ∩ K̂2(t) = ∅ implies that K1(t) ⊂ Int(K2(t)).

3. Theorem 3.1 holds true for any velocity h satisfying (6), (7), (8) and
the conclusion of Proposition 2.5.

The rest of this section is devoted to the proof of Theorem 3.1.

From the definition of subsolutions, we can assume that K1 has a closed
graph: K1 = K1. The main step of the proof amounts to show that, for any
γ > 1, such that Sγ−1 ⊂ Int(K1(0)),

∀t ∈ [0, T ), K1(t) ∩ K̂2(γt) = ∅ . (16)

We explain how to obtain Theorem 3.1 from (16) at the very end of the
proof.

For showing (16), we argue by contradiction, by assuming that there is
some γ > 1 with Sγ−1 ⊂ Int(K1(0)) and some T ∗ ∈ [0, T ) such that

K1(T ∗) ∩ K̂2(γT ∗) 6= ∅ . (17)

Since K1(0) ∩ K̂2(0) = ∅, we have T ∗ > 0. We now introduce several no-
tations: Let R > 0 be sufficiently large so that K1(T ) ⊂ B(0, R − (γ − 1))
and K2(T ) ⊂ B(0, R − (γ − 1)). We denote by λ the constant defined in
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Proposition 2.5 for R and r := γ − 1 > 0. Let us recall that λ > 1/r and
that, for any compact set K with C1,1 boundary such that Sr ⊂ Int(K) and
K ⊂ B(0, R− r), for any v ∈ IRN with |v| < 1/λ and any x ∈ ∂K, we have

h(x + v,K + v) ≥ (1− λ|v|)h(x,K) (18)

For any ε ∈ (0, τ0) and any σ ∈ (0, 1], we set

Kε,σ
1 = {(t, x) ∈ IR+× IRN | ∃(s, y) ∈ K1 with

1
σ2

(t−s)2 + |x−y|2 ≤ ε2e−2s}
(19)

and

K̂ε,σ
2 = {(t, x) ∈ IR+×IRN | ∃(s, y) ∈ K̂2 with

1
σ2

(t−s)2+|x−y|2 ≤ ε2} (20)

and
T ε,σ,γ = min{t ≥ ε | Kε,σ

1 (t) ∩ K̂ε,σ
2 (γt) 6= ∅} .

Let us point out that
T ε,σ,γ ≤ T ∗ (21)

because assumption (17) implies that K1(T ∗) ∩ K̂2(γT ∗) 6= ∅ and K1(t) ⊂
Kε,σ

1 (t) and K̂2(t) ⊂ K̂ε,σ
2 (t).

Let us define Πσ
1 and Πσ

2 the projections on the sets K1 and K̂2 as:
∀σ ∈ (0, 1],

Πσ
1 (t, x) =

{
(s1, y1) ∈ K1 |

1
σ2 (t− s1)2 + |x− y1|2 =
inf(s,y)∈K1

1
σ2 (t− s)2 + |x− y|2

}
and

Πσ
2 (t, x) =

{
(s2, y2) ∈ K̂2 |

1
σ2 (t− s2)2 + |x− y2|2 =
inf

(s,y)∈K̂2

1
σ2 (t− s)2 + |x− y|2

}
.

Proposition 3.2 One can choose ε and σ sufficiently small so that, for
any x ∈ Kε,σ

1 (T ε,σ,γ)∩ K̂ε,σ
2 (γT ε,σ,γ), for any (s1, y1) ∈ Πσ

1 (T ε,σ,γ , x) and any
(s2, y2) ∈ Πσ

2 (γT ε,σ,γ , x), we have y1 6= x, y2 6= x, s1 > 0 and s2 > 0.

Proof of Proposition 3.2 : Let us first prove that there is some
positive ε0 such that

for any ε ∈ (0, ε0) and any σ ∈ (0, 1], we have T ε,σ,γ > ε. (22)
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Since K1(0) ∩ K̂2(0) = ∅ and the sets K1 and K̂2 are closed in IR+ × IRN ,
there is some τ > 0 such that

∀0 ≤ s, t ≤ τ, K1(s) ∩ K̂2(t) = ∅ .

Set
θ = min{|y1 − y2| | y1 ∈ K1(s), y2 ∈ K̂2(t), 0 ≤ s, t ≤ τ} . (23)

Then θ > 0. Set ε0 = min{ θ
2 , τ

1+γ }. We claim that, for any ε ∈ (0, ε0) and
for any σ ∈ (0, 1], we have

Kε,σ
1 (ε) ∩ K̂ε,σ

2 (γε) = ∅ . (24)

It is clearly enough to prove the result for σ = 1. We argue by contradiction.
Suppose that, contrary to our claim, there is some x ∈ Kε,1

1 (ε) ∩ K̂ε,1
2 (γε).

Then there is some (s1, y1) ∈ K1 and some (s2, y2) ∈ K̂2 such that

|(ε, x)− (s1, y1)| ≤ εe−s1 and |(γε, x)− (s2, y2)| ≤ ε .

This implies, on the one hand, that |y1−y2| ≤ 2ε < θ and, on another hand,
that

0 ≤ s1 ≤ 2ε < τ and 0 ≤ s2 ≤ (1 + γ)ε < τ ,

which is in contradiction with the definition of θ in (23). Thus (24) is proved,
which obviously implies that T ε,σ,γ > ε, i.e., (22) holds.

From now on we fix ε ∈ (0, ε0). Let us first notice that T ε,σ,γ is non
decreasing with respect to σ and is bounded by T ∗ thanks to (21). Let us
set t̄ = limσ→0+ T ε,σ,γ . Let us also define

Kε,0
1 = {(t, x) ∈ IR+ × IRN | ∃y ∈ K1(t) with |x− y| ≤ εe−t}

and
K̂ε,0

2 = {(t, x) ∈ IR+ × IRN | ∃y ∈ K̂2(t) with |x− y| ≤ ε}

It is easy checked that⋂
σ∈(0,1]

Kε,σ
1 = Kε,0

1 and
⋂

σ∈(0,1]

K̂ε,σ
2 = K̂ε,0

2 . (25)

Moreover, Kε,0
1 and K̂ε,0

2 are closed since so are K1 and K̂2. Hence, from the
definition of T ε,σ,γ and of t̄, we have:

Kε,0
1 (t̄) ∩ K̂ε,0

2 (γt̄) 6= ∅ .

14



Let us also point out that, for any t ∈ (0, t̄),

Kε,0
1 (t) ∩ K̂ε,0

2 (γt) = ∅ (26)

because, Kε,0
1 (t) ⊂ Kε,σ

1 (t) and K̂ε,0
2 (γt) ⊂ K̂ε,σ

2 (γt), and Kε,σ
1 (t)∩K̂ε,σ

2 (γt) = ∅
as soon as T ε,σ,γ > t.

The next step of the proof amounts to show that,

∀x ∈ Kε,0
1 (t̄) ∩ K̂ε,0

2 (γt̄), dK1(t̄)(x) = εe−t̄ and dK̂2(γt̄)
(x) = ε . (27)

For proving this, we argue by contradiction, by assuming (for instance) that
dK1(t̄)(x) < ε. Then there is some y1 ∈ K1(t̄) such that |y1 − x| < εe−t̄. Let
also y2 ∈ K̂2(γt̄) be such that |y2 − x| ≤ ε. Since K1 is a subsolution, it is
left lower semi-continuous. Thus, for any sequence tk → t̄−, there is some
yk
1 → y1 with yk

1 ∈ K1(tk). In the same way, since K2 is a supersolution, K̂2

is left lower semi-continuous, and there is a sequence yk
2 ∈ K̂2(γtk) which

converges to y2. Since |y1− y2| < ε(1+ e−t̄), for k large enough we still have
|yk

1 − yk
2 | ≤ ε(1 + e−tk). Then it is easy to find some point xk ∈ [yk

1 , yk
2 ] such

that |yk
1 − xk| ≤ εe−tk and |yk

2 − xk| ≤ ε, i.e., xk ∈ Kε,0
1 (tk)∩ K̂ε,0

2 (γtk). This
is in contradiction with (26). Hence claim (27) is proved.

From this claim we deduce that, for ε′ = ε/4 < ε, we have

Kε′,0
1 (t̄) ∩ K̂ε,0

2 (γt̄) = ∅ .

Hence, there is some σ0 ∈ (0, 1) such that

Kε′,σ0
1 (t̄) ∩ K̂2

ε,σ0
(γt̄) = ∅ ,

because of (25). Since Kε′,σ0
1 and K̂2

ε,σ0
are closed and since T ε,σ,γ → t̄ as

σ → 0+, we have, for any σ > 0 sufficiently small, that

Kε′,σ0
1 (T ε,σ,γ) ∩ K̂2

ε,σ0
(γT ε,σ,γ) = ∅ . (28)

Let x ∈ Kε,σ
1 (T ε,σ,γ) ∩ K̂ε,σ

2 (T ε,σ,γ). Then, from (28), x /∈ Kε′,σ0
1 (T ε,σ,γ).

Therefore, if (s1, y1) ∈ Πσ
1 (T ε,σ,γ , x), we have

1
σ2

(T ε,σ,γ−s1)2+|x−y1|2 ≤ ε2e−2s1 and
1
σ2

0

(T ε,σ,γ−s1)2+|x−y1|2 > (ε′)2e−2s1 .

This implies that x 6= y1 as soon as σ < σ0/2 (recall that ε′ = ε/4). So
we have proved that, for any σ sufficiently small, for any x ∈ Kε,σ

1 (T ε,σ,γ) ∩
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K̂ε,σ
2 (T ε,σ,γ) and for any (s1, y1) ∈ Πσ

1 (T ε,σ,γ , x), we have x 6= y1. We can
prove in the same way that, for any (s2, y2) ∈ Πσ

2 (T ε,σ,γ , x), we have y2 6= x.
Finally, s1 is positive because the inequality 1

σ2 (T ε,σ,γ−s1)2 + |x−y1|2 ≤
εe−2s1 implies that

s1 ≥ T ε,σ,γ − σεe−s1 ,

where the right-hand side is positive thanks to (22). We can prove in the
same way that s2 > 0. QED

From now on we fix ε > 0 and σ > 0 as in Proposition 3.2 and also
sufficiently small so that

ε < 1/(2λ) and
1

(1− 2λε)
≤ γ . (29)

Recall that λ is defined at the begining of the proof. Let x, (s1, y1) and
(s2, y2) be as in Proposition 3.2. For simplicity, we set t∗ = T ε,σ,γ .

Let us define, for any two sets U and V , the minimal distance d(U, V )
between U and V by

d(U, V ) = inf
x∈U,y∈V

|x− y| .

Proposition 3.3 The point (t∗, x) belongs to the boundary of Kε,σ
1 while the

point (γt∗, x) belongs to the boundary of K̂ε,σ
2 . Moreover

d(K1(s1), K̂2(s2)) = |y1 − y2| .

In particular, y1 ∈ ∂K1(s1), y2 ∈ ∂K̂2(s2) and

1
σ2

(t∗ − s1)2 + |x− y1|2 = ε2e−2s1 and
1
σ2

(γt∗ − s2)2 + |x− y2|2 = ε2 .

Proof of Proposition 3.3: For proving that the point (t∗, x) belongs
to the boundary of Kε,σ

1 , we argue by contradiction by assuming that (t∗, x)
belongs to the interior of Kε,σ

1 . Then, since K̂2 is left lower semicontinuous,
so is K̂ε,σ

2 . Thus, for any tn → (t∗)−, there is some xn → x such that
(γtn, xn) ∈ K̂ε,σ

2 . But, since (t∗, x) belongs to the interior of Kε,σ
1 , (tn, xn)

also belongs to Kε,σ
1 for n large enough. This is in contradiction with the

definition of t∗.
Symmetric arguments show that the point (γt∗, x) belongs to the bound-

ary of K̂ε,σ
2 . Let us now prove that d(K1(s1), K̂2(s2)) = |y1 − y2|. Since
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y1 ∈ K1(s1) and y2 ∈ K̂2(s2), we have d(K1(s1), K̂2(s2)) ≤ |y1 − y2|. As-
sume for a while that d(K1(s1), K̂2(s2)) < |y1 − y2|. Let z1 ∈ K1(s1) and
z2 ∈ K̂2(s2) be such that |z1 − z2| < |y1 − y2|. One can choose ρ ∈ (0, 1)
such that, if xρ = ρz1 + (1− ρ)z2, then

|z1 − xρ| < |y1 − x| and |z2 − xρ| < |y2 − x| ,

because |z1 − z2| < |y1 − y2| ≤ |y1 − x|+ |y2 − x|. Therefore,

1
σ2

(t∗ − s1)2 + |z1 − xρ|2 <
1
σ2

(t∗ − s1)2 + |y1 − x|2 ≤ ε2e−2s1

and

1
σ2

(γt∗ − s2)2 + |z2 − xρ|2 <
1
σ2

(γt∗ − s2)2 + |y2 − x|2 ≤ ε2 .

So one can find some t < t∗ such that

1
σ2

(t− s1)2 + |z1 − xρ|2 ≤ ε2e−2s1 and
1
σ2

(γt− s2)2 + |z2 − xρ|2 ≤ ε2 ,

which means that xρ ∈ Kε,σ
1 (t)∩K̂ε,σ

2 (γt) and t < t∗. This is in contradiction
with the definition of t∗. Therefore we have proved that d(K1(s1), K̂2(s2)) =
|y1 − y2|. QED

Let us introduce two new notations:

(ν1
t , ν1

x) = (t∗−s1−ε2σ2e−2s1 , σ2(x−y1)) and (ν2
t , ν2

x) = (γt∗−s2, σ
2(x−y2)) .

(30)

Proposition 3.4 There is some ρ > 0 such that the vectors ρ(ν1
t , ν1

x) and
ρ(ν2

t , ν2
x) are proximal normals to K1 at (s1, y1) and to K̂2 at (s2, y2) respec-

tively.

Proof Proposition 3.4 : We only do the proof for (ν1
t , ν1

x), the
proof for (ν2

t , ν2
x) being similar. From Proposition 3.3, (t∗, x) belongs to the

boundary of Kε,σ
1 . Therefore, the set K1 is contained in the set

E = {(s, y) ∈ IR+ × IRN ,
1
σ2

(t∗ − s)2 + |y − x|2 ≥ ε2e−2s} .

From Proposition 3.3 again, the point (s1, y1) belongs to the boundary of E.
Moreover E has a smooth boundary in a neighbourhood of (s1, y1) because
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the gradient of the map (s, y) → ε2e−2s− 1
σ2 (t∗−s)2−|y−x|2 at (s1, y1)

is
(−2ε2e−2s1 − 2(s1 − t∗)

σ2
,−2(y1 − x)) =

2
σ2

(ν1
t , ν1

x) ,

which does not vanish since y2 6= x from Proposition 3.2. Therefore this
gradient is, up to some small positive multiplicative constant, a proximal
normal to E at the point (s1, y1). Since K1 ⊂ E with (s1, y1) ∈ K1, it is also
a proximal normal to K1 at (s1, y1). Since (ν1

t , ν1
x) is proportional to this

gradient, the proof is complete. QED

Since K1 is a subsolution and ρ(ν1
t , ν1

x) is a proximal normal to K1 at
(s1, y1), with ν1

x 6= 0 and s1 > 0 thanks to Proposition 3.2, Proposition 2.7
states that

− ν1
t

|ν1
x|

= − t∗ − s1 − ε2σ2e−2s1

σ2|x− y1|
≤ h](y1,K1(s1), ν1

x) . (31)

Similarly, since K2 is a supersolution and ρ(ν2
t , ν2

x) is a proximal normal to
K̂1 at (s2, y2), with ν2

x 6= 0 and s2 > 0, Proposition 2.7 also states that

ν2
t

|ν2
x|

=
γt∗ − s2

σ2|x− y2|
≥ h[(y2,K2(s2),−ν2

x) . (32)

To proceed, we need some relations between (ν1
t , ν1

x) and (ν2
t , ν2

x):

Proposition 3.5 There is some θ > 0 such that

ν2
x = −θν1

x and ν2
t ≤ −θ(ν1

t + ε2σ2e−2s1)/γ .

Proof of Proposition 3.5 : From the definition of t∗, we know that

∀ε < s < t∗, Kε,σ
1 (s) ∩ K̂ε,σ

2 (γs) = ∅ .

Let us now notice that the sets B1 and B2 defined by

B1 = {(s, y) | 1
σ2

(s− s1)2 + |y − y1|2 ≤ ε2e−2s1} ,

and
B2 = {(s, y) | 1

σ2
(γs− s2)2 + |y − y2|2 ≤ ε2} ,

are respectively subsets of Kε,σ
1 and of the graph of K̂ε,σ

2 (γ·). Therefore

∀(s, y), if (s, y) ∈ B1 ∩B2 , then s ≥ t∗ . (33)
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From Proposition 3.3, the point (t∗, x) belongs to ∂Kε,σ
1 . Hence (t∗, x) ∈

∂B1. In the same way, (γt∗, x) belongs to ∂K̂ε,σ
2 , and so (t∗, x) ∈ ∂B2.

Therefore (33) states that (t∗, x) is a minimum in the following problem:
Minimize s over the points (s, y) ∈ B1 ∩B2.

The necessary conditions for this problem (in term of extended lagrangian)
state that there is some (λ1, λ2, λ3) ∈ IR3

+ with (λ1, λ2, λ3) 6= 0, such that

λ1(
1
σ2

(t∗ − s1), x− y1) + λ2(
γ

σ2
(γt∗ − s2), x− y2) + λ3(1, 0) = 0 .

Using the notations (30), this is equivalent to:

λ1(ν1
t + ε2σ2e−2s1 , σ2ν1

x) + λ2(γν2
t , σ2ν2

x) + λ3(σ2, 0) = 0 .

Since, from Proposition 3.2, ν1
x 6= 0 and ν2

x 6= 0, we have λ1 6= 0 and λ2 6= 0.
Setting θ = λ1/λ2 > 0, we get ν2

x = −θν1
x and

ν2
t = −1

γ

(
θ(ν1

t + ε2σ2e−2s1) +
λ3σ

2

λ2

)
≤ − θ

γ
(ν1

t + ε2σ2e−2s1) .

QED

Let us now recall Ilmanen Interposition Lemma [13], which plays a crucial
role in our study:

Lemma 3.6 (Ilmanen) Let A and B be two disjoint subsets of IRN , A
being compact and B closed. Then there exists some closed set Kr with a
C1,1 boundary, such that

A ⊂ Kr and Kr ∩B = ∅

and
d(A,B) = d(A, ∂Kr) + d(∂Kr, B) .

Let us apply Lemma 3.6 to A = K1(s1) and B = K̂2(s2): There exists
some set Kr with a C1,1 boundary such that

K1(s1) ⊂ Kr and K̂2(s2) ∩Kr = ∅

and
d(K1(s1), K̂2(s2)) = d(∂Kr,K1(s1)) + d(∂Kr, K̂2(s2)) .

Let us set ρ1 = d(∂Kr,K1(s1)), ρ2 = d(∂Kr, K̂2(s2)) and w = y2−y1

|y2−y1| . Let
us notice that ν1

x = |ν1
x|w while ν2

x = −|ν2
x|w.

19



Proposition 3.7 The smooth set Kr − ρ1w is externally tangent to K1(s1)
at the point y1 and w is a normal to Kr − ρ1w at y1. Namely:

K1(s1) ⊂ (Kr − ρ1w) and y1 ∈ ∂K1(s1) ∩ ∂(Kr − ρ1w) (34)

In the same way, the smooth set Kr + ρ2w is internally tangent to K2(s2)
at the point y2 and w is a normal to Kr + ρ2w at y2:

Kr + ρ2w ⊂ K̂2(s2) and y2 ∈ ∂(Kr + ρ2w) ∩ ∂K̂2(s2) . (35)

Finally, S ⊂ Int(Kr − ρ1w) and S ⊂ Int(Kr + ρ2w).

Remark : The proposition states that we can estimate the quan-
tity h](y1,K1(s1), ν1

x) by using the set Kr − ρ1w, while the estimate of
h[(y2,K2(s2),−ν2

x) can be done by using Kr + ρ2w.

Proof of Proposition 3.7: For proving (34) and (35), let us first
notice that the fact that K1(s1) ⊂ Kr and d(∂Kr,K1(s1)) = ρ1 implies the
inclusion K1(s1) ⊂ (Kr − ρ1w). In the same way, since K̂2(s2)∩Kr = ∅ and
d(∂Kr, K̂2(s2)) = ρ2, we have Kr + ρ2w ⊂ K̂2(s2).

Let z = y2 − ρ2w = y1 + ρ1w. We have dK1(s1)(z) ≤ |y1 − z| = ρ1 and
dK̂2(s2)

(z) ≤ |y2− z| = ρ2. Since, from Propositions 3.3, d(K1(s1), K̂2(s2)) =
|y2 − y1|, this leads to

ρ1 + ρ2 ≥ dK1(s1)(z) + dK̂2(s2)
(z) ≥ d(K1(s1), K̂2(s2)) = |y1 − y2| = ρ1 + ρ2 .

So
dK1(s1)(z) = |y1 − z| = ρ1 and dK̂2(s2)

(z)|y2 − z| = ρ2 . (36)

This implies that z /∈ IRN\Kr, since d(∂Kr,K1(s1)) = ρ1, and that z /∈
Int(Kr), since d(∂Kr, K̂2(s2)) = ρ2. Thus z ∈ ∂Kr, and y1 = z − ρ1w ∈
∂K1(s1)∩∂(Kr−ρ1w) while y2 = z+ρ2w ∈ ∂(Kr+ρ2w)∩∂K̂2(s2). Moreover,
using again (36) shows that d(K1(s1), ∂Kr) = |y1 − z|. Since Kr is smooth,
this implies that w (which is proportional to z− y1) is a normal to Kr at z.
So (34) and (35) hold.

We now prove that S ⊂ Int(Kr − ρ1w) and S ⊂ Int(Kr + ρ2w). Indeed,
since S ⊂ Int(K1(0)) and since K1(0) ⊂ (Kr − ρ1w), we have that S ⊂
Int(Kr − ρ1w). Moreover, since, from the choice of ε in (29),

S2ε ⊂ Int(Sγ−1) ⊂ Int(K1(0)) ⊂ Int(K1(s1)) ⊂ Int(Kr − ρ1w))

and since ρ1 + ρ2 = |y2 − y1| ≤ 2ε, we have that S ⊂ Int(Kr + ρ2w)). QED
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We are now ready to prove of main step:

Proof of (16) : Considering now the definition of h] (introduced
before Proposition 2.7), (34) and the fact that ν1

x = |ν1
x|w is a normal to Kr

at y1 and that S ⊂ Int(Kr − ρ1w) yield to:

h](y1,K1(s1), ν1
x) ≤ h(y1,Kr − ρ1w) . (37)

In the same way, (35) together with the fact that ν2
x = −|ν2

x|w is a normal
to Kr at y2 and that S ⊂ Int(Kr + ρ2w) implies that

h[(y2,K2(s2),−ν2
x) ≥ h(y2,Kr + ρ2w) . (38)

Using inequality (18), we can estimate the difference between the right-hand
sides of the two previous inequalities:

h(y2,Kr + ρ2w) ≥ (1− 2λε)h(y1,Kr − ρ1w) (39)

because y2 − y1 = (ρ1 + ρ2)w and |y1 − y2| ≤ 2ε with ε < 1/(2λ). Us-
ing Proposition 3.5 and putting together (31), (32) and the three previous
inequalities finally gives

h(y2,Kr + ρ2w) ≤ h[(y2,K2(s2),−ν2
x) (from (38) )

≤ ν2
t

|ν2
x|

(from (32) )

≤ −ν1
t + ε2σ2e−2s1

γ|ν1
x|

(from Proposition 3.5 )

≤ 1
γ

h](y1,K1(s1), ν1
x)− ε2σ2e−2s1

γ|ν1
x|

(from (31) )

≤ 1
γ

h(y1,Kr − ρ1w)− ε2σ2e−2s1

γ|ν1
x|

(from (37) )

≤ 1
γ(1− 2λε)

h(y2,Kr + ρ2w)− ε2σ2e−2s1

γ|ν1
x|

(from (39) )

This is impossible since h(y2,Kr +ρ2w) ≥ 0 and we have chosen γ ≥ 1/(1−
2λε) in (29). So we have found a contradiction, and (16) is proved. QED
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Proof of Theorem 3.1 : Since from our assumption K1(0)∩K̂2(0) = ∅,
and since K1 and K̂2 have a closed graph, one can find τ > 0 such that

∀t ∈ [0, τ ], K1(t) ∩ K̂2(0) = ∅ .

Let us now apply (16) to the subsolution K1,δ and the supersolution K2,
where

δ ∈ (0, τ) ∀t ≥ 0, K1,δ(t) = K1(t + δ) .

Since K1,δ(0) ∩ K̂2(0) = ∅, we have, for any γ > 1,

∀t ≥ 0, K1,δ(t) ∩ K̂2(γt) = ∅

Applying this with t− δ (for t > δ) and to γ = t/(t− δ) > 1 gives

∅ = K1,δ(t− δ) ∩ K̂2(γ(t− δ)) = K1(t) ∩ K̂2(t)

because γ(t − δ) = t. Since we can choose δ > 0 arbitrary small, the proof
of Theorem 3.1 is complete. QED

4 Existence, uniqueness and stability of solutions

In this section, we prove the existence of viscosity solutions for the front
propagation problem. We also state some uniqueness and stability results.

4.1 Some preliminary estimates

Let us first give some estimates which are necessary in the sequel. The first
one says that the left lower semicontinuity of the subsolution is somehow
“uniform”.

Lemma 4.1 Let us fix ε > 0 and ρ > 0 such that ρ > ε. Then there is some
constant η > 0 such that, for any subsolution K of the front propagation
problem, with K(0) ⊂ B(0, ρ) and for any x0 ∈ IRN with dK(0)(x0) ≥ ε and
|x0| ≤ ρ, we have: dK(0, x0) ≥ η.

Moreover, the constant η > 0 only depends on ε, ρ and on the maximum
of the velocity h(y, Kr) for y ∈ ∂Kr and for Kr belonging to the compact
family of smooth sets:

{B(z, R)\B(z, r) | ε

4
≤ r ≤ ε

2
, 2ρ ≤ R ≤ 3ρ, |z| ≤ ρ, dS(z) ≥ ε} .
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Remarks :

1. Since the front propagation problem we are considering is invariant
with respect to time translations, the above estimate also shows that,
for any subsolution K of the front propagation problem, with K(t) ⊂
B(0, ρ) and for any x0 ∈ IRN with dK(t)(x0) > ε and |x0| ≤ ρ, we have:
dK(t, x0) ≥ η.

2. The symmetric estimates for supersolution (i.e., if K is a supersolution,
dK̂(0)

(x0) > ε and |x0| ≤ ρ implies that dK̂(0, x0) ≥ η, for some η)

clearly holds with η = ε because, since K being nondecreasing, K̂ is
nonincreasing.

Proof of Lemma 4.1: Let us denote by κ the maximum of the velocity
h(y, Kr) for y ∈ ∂Kr and for Kr belonging to the compact family of smooth
sets:

{B(z, R)\B(z, r) | ε

4
≤ r ≤ ε

2
, 2ρ ≤ R ≤ 3ρ, |z| ≤ ρ, dS(z) ≥ ε} .

Note that κ < +∞ since the above family is compact and the velocity h is
continuous (Proposition 2.4). Let us introduce the tube K2 defined by:

K2(t) = B(x0, 2ρ + κt)\B(x0,
ε

2
− κt) .

Then, from the definition of κ, K2 is a smooth supersolution of the Hele-
Shaw problem on the time interval [0, τ ], where τ = min{ ε

4κ , ρ
κ}, because,

on this time interval, 2ρ ≤ 2ρ + κt ≤ 3ρ and ε/4 ≤ ε− κt ≤ ε/2.
Let K be some subsolution of the Hele-Shaw problem, with K(0) ⊂

B(0, ρ) and let x0 ∈ IRN with dK(0)(x0) > ε and |x0| ≤ ρ. Then we have

K(0) ⊂ B(x0, 2ρ)\B(x0, ε). Hence K(0) ∩ K̂2(0) = ∅. Then the inclusion
principle (Theorem 3.1) states that

∀t ∈ [0, τ ], K(t) ∩ K̂2(t) = ∅ .

Therefore dK(0, x0) ≥ η, where η = min{ε/2, τ}, because B((0, x0), η) ⊂ K̂2.
QED

Next we establish some estimates of the growth of the solutions. For
this, we recall that, according to Proposition 2.6, there are constants r0 > 0
and σ > 0 such that

∀r ≥ r0, ∀x ∈ ∂B(0, r), h(x,B(0, r)) ≤ σr .

Moreover, the constants r0 and σ only depend on S, p, ‖f‖∞ and ‖g‖∞.
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Lemma 4.2 If K is a subsolution of the front propagation problem, then

∀t ≥ 0, K(t) ⊂ B
(
0,max{|K(0)|, r0}eσt

)
.

where |K(0)| = supy∈K(0) |y|.

Proof of Lemma 4.2: From Proposition 2.6, for any ε > 0, the tube

Kε
2(t) = B

(
0, (max{|K(0)|, r0}+ ε)eσt

)
is a supersolution of the front propagation problem with K(0) ∩ K̂ε

2(0) = ∅.
Hence, K(t)∩ K̂ε

2(t) = ∅ for any t ≥ 0, which entails the desired result when
letting ε → 0+. QED

4.2 Existence and uniqueness of solutions

Let us first give an existence result.

Theorem 4.3 For any initial position K0, with S ⊂ Int(K0) and K0

bounded, there is (at least) one solution to the front propagation problem.
Moreover, there is a largest solution, denoted by S(K0), and a smallest

solution, denoted by s(K0), to this problem. The largest solution has a closed
graph while the smallest solution has an open graph in IR+ × IRN . The
largest solution contains all the subsolutions of the front propagation problem
with initial condition K0, while the smallest solution is contained in any
supersolution.

Remarks:

1. From the maximality property of the largest solution and the time
invariance of the evolution law, the semi-group property holds for this
solution:

∀s ≥ 0, t ≥ 0, S( S(K0)(s) )(t) = S(K0)(s + t) .

2. For general front propagation problems, one cannot expect the unique-
ness of the solutions. Soner pointed out in [19] the existence of a
maximal and a minimal solution for geometric flows of mean curva-
ture type. This result has been generalized in [7] for some class of
geometric flows with nonlocal terms.

24



Proof of Theorem 4.3: The proof is based on Perron’s method. Since
it is exactly the same as the proof of Theorem 4.1 and of Corollary 4.2 of
[8], we omit it. QED

We say that the solution of our Hele-Shaw problem with initial position
K0 is unique if s(K0) = S(K0) or if, equivalently, Ŝ(K0) = ŝ(K0) (note that
ŝ(K0) = (IR+ × IRN )\s(K0) since s(K0) has an open graph in IR+ × IRN ).

We have the following uniqueness result:

Theorem 4.4 Assume that K0 is the closure of an open, connected and
bounded subset of IRN with C2 boundary and such that S ⊂ Int(K0). Then
there is a unique viscosity solution to the Hele-Shaw problem.

Remark : Some uniqueness criteria for geometric flows can be found
in [19] and [4]. Our proof uses several arguments from these papers.

Proof of Theorem 4.4: Since K0 is the closure of an open, connected
and bounded subset of IRN with C2 boundary and such that S ⊂ Int(K0),
Hopf maximum principle implies that there is a constant δ > 0 such that
h(x,K0) ≥ 2δ for any x ∈ ∂K0. Let us set, for any σ ∈ IR, Kσ = {x ∈
K0| d(x) ≤ σ} , where d is the signed distance to the boundary of K0

(negative in Int(K0)). From the continuity of h (see (8)), there is some ε > 0
such that h(x,Kσ) ≥ δ for any x ∈ ∂Kσ and for any σ such that |σ| ≤ ε.
Hence the tube K(t) = Kδt−ε is a subsolution of the Hele-Shaw problem
starting from K−ε on the time interval [0, 2ε/δ], because it is smooth and has
a normal velocity δ on this interval of time. In particular, K(t) ⊂ S(K−ε)(t)
on [0, 2ε/δ], which proves that K(2ε/δ) = Kε ⊂ S(K−ε)(2ε/δ).

Since K0 ⊂ Int(Kε) ⊂ Int(S(K−ε)(2ε/δ)), the inclusion principle (The-
orem 3.1) combined with the semi-group property gives

S(K0)(t) ⊂ S(S(K−ε)(2ε/δ))(t) = S(K−ε)(2ε/δ + t) ∀t ≥ 0 .

Moreover, since K−ε ⊂ Int(K0), the inclusion principle also states that
S(K−ε)(t) ⊂ s(K0)(t). Accordingly, we have, for all t ≥ 0, S(K0)(t) ⊂
s(K0)(2ε/δ + t). Letting ε → 0+ gives the desired inclusion: S(K0)(t) ⊂
s(K0)(t). QED

4.3 Stability of the solutions

We are now investigating the stability of the flow under variations of the
initial position and of the data f and g.
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For this we first generalize the well-known stability result of viscosity
solution to our framework.

Let us assume that we are given a family of maps hn = hn(x,K) which
are defined for any set K with C1,1 boundary and for any x ∈ ∂K, and
continuous in the sense of (8). We also assume that hn converges to a
continuous map h, i.e., if a sequence of closed set Kn with C1,1 boundary
converges to a closed set K with a C1,1 boundary for the C1,1 convergence,
and if a sequence of points (xn), with xn ∈ ∂Kn, converges to some x ∈ ∂K,
then hn(xn,Kn) converges to h(x,K).

Let us recall that the upper-limit of a sequence of sets An is the set of
all limits of converging subsequences of sequences (xn) with xn ∈ An.

Proposition 4.5 If Kn is a sequence of subsolutions for hn, locally uni-
formly bounded w.r. to t, then K∗, the upper limit of the Kn, is also a
subsolution for h.

In a similar way, if Kn is a sequence of supersolutions for hn, locally
uniformly bounded w.r. to t, then K∗, the complementary of the upper limit
of K̂n, is also a supersolution for h.

Proof of Proposition 4.5: We only prove the statement for the
subsolutions, the proof for the supersolutions being similar. Let us first
prove that K∗ is a left lower semicontinuous tube. Indeed K∗ is a tube
because the Kn are locally uniformly bounded. In order to show that K∗ is
left lower semicontinuous, it is enough to establish that, for any T ≥ 0 and
for any ε > 0, there is some η > 0 such that

∀t ∈ [0, T ], ∀x ∈ IRN , dK∗(t)(x) > ε ⇒ dK∗(t, x) ≥ η .

For this, let us fix T ≥ 0 and ε > 0. Since the hn converge to h, Lemma 4.1
states that there is some some η > 0 (independent of n and of t ∈ [0, T ])
such that

∀n ∈ N, ∀t ∈ [0, T ], ∀x ∈ IRN , dKn(t)(x) > ε/2 ⇒ dKn(t, x) ≥ η .

Let us now assume that dK∗(t)(x) > ε for some x ∈ IRN and for some t ∈
[0, T ]. Since K∗ is equal to the upper limit of the Kn, we have dKn(t)(x) > ε/2
for any n large enough, whence dKn(t, x) ≥ η. This implies that dK∗(t, x) ≥
η. So K∗ is a left lower semicontinuous tube.

Let us now check that K∗ is a subsolution. For this, let us fix some
smooth tube Kr which is externally tangent to K∗ at some point (t, x). We
denote by d the signed distance function to ∂Kr. This function is C1,1 in a
neighborhood V = {|d| < η} of ∂Kr.
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Let us now consider the function dε(s, y) = d(s, y) − ε|(s, y) − (t, x)|2,
for ε > 0. Let us underline that dε has a unique maximum on K∗ at the
point (t, x). We can choose ε > 0 sufficiently small in such a way that the
set Kε

r = {dε ≤ 0} has a boundary which is contained in V and ∇dε 6= 0
on V. Let us now consider a point (tn, xn) of maximum of dε onto Kn.
Using standart argument, we can prove that a subsequence of (tn, xn) (again
denoted (tn, xn)) converges to (t, x), because dε has a unique maximum on
K∗ at the point (t, x). Hence the set Kn

r = {dε ≤ dε(tn, xn)} is a smooth
tube for n large enough, since, for n large enough, the boundary of Kn

r is
in V. Since Kn is a subsolution and since Kn

r is externally tangent to Kn at
(tn, xn), we have

V
Kn

r

(tn,xn) ≤ hn(xn,Kn
r (tn)) .

The sequence of sets Kn
r converges to Kε

r for the C1,1 topology. So we get at
the limit

V
Kε

r

(t,x) ≤ h(x,Kε
r(t))

because hn converges to h. Letting ε → 0 gives the desired result, since Kε
r

converges to Kr for the C1,1 topology and h is continuous. QED

We finally investigate the stability of solutions with respect to the initial
position K0 and to the functions f and g.

Theorem 4.6 Let (fn, gn) and (f, g) satisfy (4) for any n, with f > 0 and
locally Lipschitz continuous. Let Kn ∈ D be a sequence of initial positions
and K0 ∈ D.

Let us assume that the fn are globally bounded and converge to f locally
uniformly, that the gn converge to some g > 0 in C1,β(∂S) for some β ∈ (0, 1)
and that the Kn converge to K0, in the sense that the upper limit of the Kn is
contained in K0 and the upper limit of the IRN\Kn is contained in IRN\K0.
Let us also suppose that there is a unique solution—denoted by S(K0)—of
the Hele-Shaw problem starting from K0 with data f and g.

If Kn is a solution of the Hele-Shaw problem, with data fn and gn, start-
ing from Kn, then the Kn converge to S(K0) in the following sense: The
upper limit of the Kn is equal to S(K0), while the upper limit of the K̂n is
equal to Ŝ(K0).

Proof of Theorem 4.6: Let K∗ be the upper limit of the Kn and K∗
be the complementary of the upper limit of the K̂n.

Let us first prove that K∗ is a subsolution to the front propagation prob-
lem with initial position K0. According to Proposition 4.5, it is enough to

27



prove that the Kn are locally uniformly bounded w.r. to t and the maps
hn defined, for any smooth set Kr ∈ D and any x ∈ ∂Kr by hn(x,Kr) =
|∇u(x)|p−1 where u is the solution to

−div(|∇u|p−1∇u) = fn in Kr

u = gn on ∂S
u = 0 on ∂Kr

converge to h defined by (2). The Kn are locally uniformly bounded thanks
to Lemma 4.2, because the fn and the gn are uniformly bounded. Moreover,
the local uniform convergence of the hn to h is a straightforward application
of the estimates in [16]. Using Lemma 4.1, we can also show that K∗(0) ⊂ K0

(the arguments are similar to those developed for proving that K∗ is left
lower semicontinuous in Theorem 4.5). Hence K∗ is a subsolution to the
Hele-Shaw problem with initial position K0. In particular, this implies that
K∗ ⊂ S(K0), because S(K0) contains any subsolution.

In the same way, K∗ is a supersolution for h, with K̂∗(0) ⊂ IRN\K0.
Hence s(K0) ⊂ K∗. So we have proved that

s(K0) ⊂ K∗ ⊂ K∗ ⊂ S(K0) . (40)

From our assumption, the Hele-Shaw problem with initial position K0

has a unique solution, i.e., s(K0) = S(K0). Combining this equality with
(40) gives s(K0) = K∗ = K∗ = S(K0), since K∗ and S(K0) have a closed
graph.

Taking the complementary in (40) also gives Ŝ(K0) ⊂ K̂∗ ⊂ K̂∗ ⊂ ŝ(K0).
Since Ŝ(K0) = ŝ(K0) from the uniqueness of the solution, we finally have the
equality K̂∗ = Ŝ(K0), which is the desired result since K̂∗ = (IR+× IRN )\K∗
is the upper limit of the K̂n. QED
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