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Abstract
We investigate a two-player zero-sum differential game in which the players
have an asymmetric information on the random terminal payoff. We prove
that the game has a value and characterize this value in terms of dual solu-
tions of some Hamilton-Jacobi equation. We also explain how to adapt the
results to differential games where the initial position is random.

1 Introduction

In this paper we investigate a two-player zero-sum differential game in which
the player have an asymmetric information on the random terminal payoff.
The dynamics of the game is given by{

x′(t) = f(x(t), u(t), v(t)) , u(t) ∈ U, v(t) ∈ V
x(t0) = x0

(1)

where U and V are compact subsets of some finite dimensional spaces, and
f : IRN × U × V → IRN is Lipschitz continuous. We consider a finite
horizon problem with a terminal time denoted by T . The game starts at
time t0 ∈ [0, T ] from the initial position x0.

The description of the game involves I×J terminal payoffs (where I, J ≥
1): gij : IRN → IR for i = 1, . . . I and j = 1, . . . , J , a probability p =
(pi)i=1,...,I belonging to the set ∆(I) of probabilities on {1, . . . , I} and a
probability q = (qj)j=1,...,J of the set ∆(J) of probabilities on {1, . . . , J}.

The game is played in two steps: at time t0, a pair (i, j) is chosen at
random among {1, . . . , I} × {1, . . . , J} according to the probability p ⊗ q ;
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the choice of i is communicated to Player I only, while the choice of j is
communicated to Player II only.

Then the players control system (1) in order, for Player I, to minimize
the terminal payoff gij(x(T )), and for Player II to maximize it. We assume
that both players observe their opponent’s control. Note however that the
players do not know which gij they are actually optimizing, because they
only have a part of the information on the pair (i, j). They can nevertheless
try to guess their missing information by observing what their oponent is
doing. Indeed, in order to use his information a player necessarily reveals
at least a part of it, and any piece of information he reveals can be later
exploited by his oponent.

As usual we introduce two value functions associated to this game. We
have here to take special care of the way we define the strategies of the
players, since this definition has to represent the lack of symmetry in the
knowledge of the players.

The upper-value is given by

V +(t0, x0, p, q) = inf
(αi)∈(Ar(t0))I

sup
(βj)∈(Br(t0))J

I∑
i=1

J∑
j=1

piqjEαiβj

(
gij

(
X

t0,x0,αi,βj

T

))
,

where the αi ∈ Ar(t0) (for i = 1, . . . , I) are I random strategies for Player
I, the βj ∈ Br(t0) (for j = 1, . . . , J) are J random strategy for Player II and
Eαiβj

(
gij

(
X

t0,x0,αi,βj

T

))
is the payoff associated with the pair of strategies

(αi, βj) for the terminal payoff gij : these notions are explained in the next
section. The key point in the definition is that Player I chooses his strategy
αi (i = 1, . . . , I) according to the value of the index i only, while Player
II has a strategy (βj) which only depends upon the index j. This reflects
the asymmetry of information of the players. The sum

∑
i

∑
j piqj . . . is the

expectation of the payoff when the pair (i, j) is chosen according to the
probability p⊗ q, where p = (p1, . . . , pI) and q = (q1, . . . , qJ).

The lower-value is defined by the symmetric formula:

V −(t0, x0, p, q) = sup
(βj)∈(Br(t0))J

inf
(αi)∈(Ar(t0))I

I∑
i=1

J∑
j=1

piqjEαiβj

(
gij

(
X

t0,x0,αi,βj

T

))
.

Obviously we have

V −(t0, x0, p, q) ≤ V +(t0, x0, p, q)

for any (t0, x0) ∈ [0, T ] × IRN , any probability p ∈ ∆(I) on {1, . . . , I} and
any probability q ∈ ∆(J) on {1, . . . , J}. Our aim is to show that the equality
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holds, i.e., that the game has a value, and to provide a PDE characterization
of the value.

The game studied in this paper is strongly inspired by repeated games
with lack of information on one side and on both sides introduced by Au-
mann and Maschler : see [2], [21] for a general presentation. Repeated games
with lack of information on one side (i.e., I = 1 or J = 1) or on both sides
(i.e., I, J ≥ 2) have a value [2], [17], in the sense that the averaged n−stage
games converge to a limit as n → +∞. This value can be characterized in
terms of the value of the game without information. In this paper, we prove
the existence of a value for differential games with lack of information on
both sides. However, we show in the companion paper [10] that the char-
acterization in terms of game without information does not hold. In that
respect, our game is close to stochastic games with incomplete information,
as studied in [20] for instance. Although it is known that stochastic games
with lack of information on one side have a value when the game is con-
trolled by the informed player only [20], the general case is still open.

There are several proofs of Aumann and Maschler’s result. In order to
show that our game has a value, we use a strategy of proof initiated by
De Meyer in [12] and later developed in [13, 14, 16]. We first note that
the maps V + = V +(t, x, p, q) and V − = V −(t, x, p, q) are convex in p and
concave in q (Lemma 3.2). This leads us to introduce, for a generic map
w : [0, T ]× IRN ×∆(I)×∆(J) → IR, the convex Fenchel conjugate w∗ of w
with respect to the variable p and its concave conjugate w] with respect to
q: ∀(t, x, p̂, q) ∈ [0, T ]× IRN × IRI ×∆(J)

w∗(t, x, p̂, q) = sup
p∈∆(I)

p.p̂− w(t, x, p, q)

and, ∀(t, x, p, q̂) ∈ [0, T ]× IRN ×∆(I)× IRJ

w](t, x, p, q̂) = inf
q∈∆(J)

q.q̂ − w(t, x, p, q) .

Then the proof of the equality V + = V − runs as follows: we first check
(Lemma 4.2) that V −∗ satisfies a subdynamic programming principle and
thus (Corollary 4.3) that (t, x) → V −∗(t, x, p̂, q) is a viscosity subsolution of
the (dual) Hamilon-Jacobi (HJ) equation

wt +H∗ (x,Dw) = 0 in [0, T ]× IRN (2)
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for any (p̂, q) ∈ IRI × ∆(J). The map H∗ is defined through the standard
Hamiltonian H of the game

H(x, ξ) = inf
u∈U

sup
v∈V

f(x, u, v).ξ = sup
v∈V

inf
u∈U

f(x, u, v).ξ

via the relation by H∗(x, ξ) = −H(x,−ξ). Note that we assume that Isaacs’
condition holds. We recall that the notion of viscosity solutions was intro-
duced by Crandall-Lions in [11] and first used in the framework of differential
games in [15] (see also [3], [4] for a general presentation). We also establish
a symmetric result for V +] (Corollary 4.4): for any (p, q̂) ∈ ∆(I)× IRJ , the
map (t, x) → V +](t, x, p, q̂) is a viscosity supersolution of the same equation
(2). A new comparison principle (Theorem 5.1) then implies that V + ≤ V −.
Since inequality V + ≥ V − is obvious, the game has a value: V + = V −. We
also have the following characterization of this value: V := V + = V − is
the unique Lipschitz continuous function which is convex in p, concave in q,
such that (t, x) → V∗(t, x, p̂, q) is a subsolution of the HJ equation (2) while
(t, x) → V](t, x, p, q̂) is a supersolution of (2). We call such a function the
dual solution to the Hamilton-Jacobi equation{

wt +H(x,Dw) = 0 in [0, T )× IRN

w(T, x) =
∑

ij piqjgij(x) in IRN

We discuss this terminology below.

We explain in section 6 how to adapt our approach to differential games
with lack of information on the initial positions. As previously, the game is
played in two steps. At time t0, the initial position of the game is chosen at
random among I×J possible initial positions x0

ij according to a probability
p⊗ q where p ∈ ∆(I) and q ∈ ∆(J); the index i is communicated to Player
I while the index j is communicated to Player II. Then the players control
system (1) in order, for Player I, to minimize a terminal payoff g(x(T )), and,
for Player II, to maximize it. The key assumption is that the players observe
their opponent’s behaviour, but not the state of the system x(·). We prove
that this game has a value, which can be characterized as the unique dual
solution of some HJ equation in [0, T ]× IRNIJ .

Although there has been several attemps to formalize differential games
with lack of information [5, 6, 7, 8], there are only very few papers in which a
game is proved to have a value: see in particular [18] and [19], which discuss
interesting examples. In [9] we consider a game with lack of information
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on the current position, but with symmetric information. To the best of
our knowledge, our result is the first one showing the existence of a value
for differential games with asymmetry in the information in a general setting.

The kind of characterization proposed in this paper for the value func-
tion (as dual solution of some Hamilton-Jacobi equations) is also new. It
relies upon a new comparison principle (Theorem 5.1) stating the following:
assume that w1 and w2 defined on [0, T ]× IRN ×∆(I)×∆(J) are convex in
p, concave in q, that (t, x) → w]

1(t, x, p, q̂) is a supersolution of the dual HJ
equation (2) for any (p, q̂) and that (t, x) → w∗2(t, x, p̂, q) is a subsolution of
this HJ equation for any (p̂, q). If futhermore w1(T, x, p, q) ≤ w2(T, x, p, q)
for any (x, p, q), then w1 ≤ w2.

Note that the fonction w2 for instance is a kind of supersolution for our
problem. For this reason we call it a dual supersolution of the orginal HJ
equation

wt +H (x,Dw) = 0 in [0, T ]× IRN (3)

and we see the HJ equation (2) as a dual one. Let us recall that, although
the Fenchel conjugate of a supersolution of (3) is a subsolution of the dual
equation (2) (see [1]), the converse does not hold in general. In fact we show
through several examples in [10] that the value function V := V ] = V −

of our game is not a solution of the original HJ equation (3), nor are its
Fenchel conjugates V∗ and V] solutions of the dual one (2). The particular
structure of our problem leads us to replace the classical notion of sub- and
supersolutions by a weaker one, involving families of sub and supersolutions
in some dual spaces (see also Lemma 5.4 where an equivalent definition for
dual subsolution is discussed).

We complete this introduction by describing the organization of the pa-
per. In section 2, we introduce the main notations: in particular we explain
the notions of random strategies and define the value functions of our game.
Section 3 is mainly devoted to the proof of the convexity properties of the
value functions. In section 4 we show that V −∗ satisfies a subdynamic pro-
gramming principle and the dual HJ equation, and give the corresponding
results for V +]. Section 5 is devoted to the comparison principle and to the
existence of a value. In the last section, we extend our results to differential
games with lack of information on the initial position.
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2 Definitions of the value functions and notations

Notations : Throughout the paper, x.y denotes the scalar product in
the space IRN , IRI or IRJ (depending on the context) and | · | the euclidean
norm. The ball of center x and radius r will be denoted by Br(x). If E is a
set, then 1E is the indicatrix function of E (equal to 1 is E and to 0 outside
of E). The set ∆(I) is the set of probabilities mesures on {1, . . . , I}, always
identified with the simplex of IRI :

p = (p1, . . . , pI) ∈ ∆(I) ⇔
I∑

i=1

pi = 1 and pi ≥ 0 for i = 1, . . . I .

The set ∆(J) of probability measures on {1, . . . , J} is defined symmetrically.
The dynamics of the game is given by:{

x′(t) = f(x(t), u(t), v(t)) , u(t) ∈ U, v(t) ∈ V
x(t0) = x0

(4)

Throughtout the paper we assume that

i) U and V are compact subsets of some finite dimensional spaces,
ii) f : IRN × U × V → IRN is bounded, continuous, Lipschitz

continuous with respect to the x variable,
iii) for i = 1, . . . , I and j = 1, . . . , J , gij : IRN → IR is Lipschitz

continuous and bounded.
(5)

We also assume that Isaacs condition holds:

H(x, ξ) := inf
u∈U

sup
v∈V

f(x, u, v).ξ = sup
v∈V

inf
u∈U

f(x, u, v).ξ (6)

for any (x, ξ) ∈ IRN × IRN . We note that the Hamilton-Jacobi equation
naturally associated with the dynamics is the so-called primal Hamilton-
Jacobi equation

wt +H(x,Dw) = 0 in [0, T )× IRN (7)

For any t0 < t1 ≤ T , the set of open-loop controls for Player I on [t0, t1]
is defined by

U(t0, t1) = {u : [t0, t1] → U Lebesgue measurable} .

If t1 = T , we simply set U(t0) := U(t0, T ). Open-loop controls on the interval
[t0, t1] for Player II are defined symmetrically and denoted by V(t0, t1) (and
by V(t0) if t1 = T ).
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If u ∈ U(t0) and t0 ≤ t1 < t2 ≤ T , we denote by u|[t1,t2]
the restriction of

u to the interval [t1, t2]. We note that u|[t1,T ]
belongs to U(t1).

For any (u, v) ∈ U(t0) × V(t0) and any initial position x0 ∈ IRN , we
denote by t→ Xt0,x0,u,v

t the solution to (4).
Next we introduce the notions of pure and mixed strategies. The defini-

tion of mixed strategies involves a set S of (non trivial) probability spaces,
which has to be stable by finite product. To fix the ideas we choose from
now on

S = {([0, 1]n, B([0, 1]n),Ln), for some n ∈ IN∗} ,

where B([0, 1]n) is the class of Borel sets and Ln is the Lebesgue measure
on IRn. As the reader can easily check, the results presented in this paper
do not depend on this particular choice of S.

Definition 2.1 (Pure and random strategies)
A pure strategy for Player I at time t0 is a map α : V(t0) → U(t0) which
is nonanticipative with delay, i.e., there is some τ > 0 such that, for any
v1, v2 ∈ V(t0), if v1 ≡ v2 a.e. on [t0, t] for some t ∈ (t0, T − τ), then
α(v1) ≡ α(v2) a.e. on [t0, t+ τ ].

A random strategy for Player I is a pair ((Ωα,Fα,Pα), α), where (Ωα,Fα,Pα)
belongs to the set of probability spaces S and α : Ωα×V(t0) → U(t0) satisfies

(i) α is measurable from Ωα × V(t0) to U(t0), with Ωα endowed with the
σ−field Fα and U(t0) and V(t0) with the Borel σ−field associated with
the L1 distance,

(ii) there is some delay τ > 0 such that, for any v1, v2 ∈ V(t0), any t ∈
(t0, T − τ) and any ω ∈ Ωα,

v1 ≡ v2 on [t0, t) ⇒ α(ω, v1) ≡ α(ω, v2) on [t0, t+ τ) .

We denote byA(t0) the set of pure strategies and byAr(t0) the set of random
strategies for Player I. By abuse of notations, an element of Ar(t0) is simply
noted α—instead of ((Ωα,Fα,Pα), α)—, the underlying probability space
being always denoted by (Ωα,Fα,Pα).

In order to take into account the fact that Player I knows the index
i of the terminal payoff, a strategy for Player I is actually a I−upplet
α̂ = (α1, . . . , αI) ∈ (Ar(t0))I .

Pure and random strategies for Player II are defined symmetrically: at
time t0, a pure strategy β is a nonanticipative map with delay from U(t0)
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to V(t0), while a random strategy is a map β : Ωβ × U(t0) → V(t0), where
(Ωβ ,Fβ ,Pβ) belongs to S, which satisfies the conditions:

(i) β is measurable from Ωβ × U(t0) to V(t0),

(ii) there is some delay τ > 0 such that, for any u1, u2 ∈ U(t0), any
t ∈ (t0, T − τ) and any ω ∈ Ωβ ,

u1 ≡ u2 on [t0, t) ⇒ β(ω, u1) ≡ β(ω, u2) on [t0, t+ τ) .

The set of pure and random strategies for Player II are denoted B(t0) and
Br(t0) respectively. Elements of Br(t0) are denoted simply by β, and the
underlying probability space by (Ωβ ,Fβ,Pβ).
Since Player II knows the index j of the terminal payoff, a strategy for Player
II is a J−upplet β̂ = (β1, . . . , βJ) ∈ (Br(t0))J .

Lemma 2.2 For any pair (α, β) ∈ Ar(t0)×Br(t0) and any ω := (ω1, ω2) ∈
Ωα × Ωβ, there is a unique pair (uω, vω) ∈ U(t0)× V(t0), such that

α(ω1, vω) = uω and β(ω2, uω) = vω . (8)

Furthermore the map ω → (uω, vω) is measurable from Ωα × Ωβ endowed
with Fα ⊗ Fβ into U(t0)× V(t0) endowed with the Borel σ−field associated
with the L1 distance.

Notations : Given any pair (α, β) ∈ Ar(t0) × Br(t0), we denote by
(Xt0,x0,α,β

t ) the map (t, ω) → (Xt0,x0,uω ,vω
t ) defined on [t0, T ]×Ωα×Ωβ , where

(uω, vω) satisfies (8). We also define the expectation Eαβ as the integral
over Ωα × Ωβ against the probability measure Pα ⊗ Pβ. In particular, if
φ : IRN → IR is some bounded continuous map and t ∈ (t0, T ], we have

Eαβ

(
φ
(
Xt0,x0,α,β

t

))
:=
∫
Ωα×Ωβ

φ
(
Xt0,x0,uω ,vω

t

)
dPα ⊗Pβ(ω) , (9)

where (uω, vω) is defined by (8). Note that (9) makes sense because the map
(u, v) → Xt0,x0,u,v

t being continuous in L1, the map ω → φ
(
Xt0,x0,uω ,vω

t

)
is

measurable in Ωα×Ωβ and bounded. If either α or β is a pure strategy, then
we simply drop α or β in the expectation Eαβ , which then becomes Eβ or Eα.

Proof of Lemma 2.2 : The existence of (uω, vω) is proved in [9].
We only show here the measurability of ω → (uω, vω). For this we argue by
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induction by proving that ω → (uω, vω)|[t0,t0+nτ ]
from Ωα×Ωβ into L1([t0, t0+

nτ ]) is measurable, where τ a the minimum of the delays for α and β (see
condition (ii) in Definition 2.1).

Let us start with n = 1. It is enough to show that, for any Borel subsets
B1 and B2 of U(t0, t0 + τ) and V(t0, t0 + τ), the set

Ω := {ω ∈ Ωα × Ωβ | (uω, vω)|[t0,t0+τ)
∈ B1 ×B2}

is measurable. Let us fix û and v̂ in U(t0) and V(t0). Since α(ω1, ·)
and β(ω2, ·) are nonanticipative with delay τ , the restrictions of α(ω1, v̂)
and β(ω2, û) to [t0, t0 + τ ] do not depend on û and v̂. Hence (uω, vω) ≡
(α(ω, v̂), β(ω, û)) a.e. in [t0, t0 + τ). Therefore

Ω = {ω1 ∈ Ωα | α(ω1, v̂)|[t0,t0+τ)
∈ B1} × {ω2 ∈ Ωβ | β(ω2, û)|[t0,t0+τ)

∈ B2} ,

which is measurable since α and β are measurable. So the result holds true
for n = 1.

Let us now assume that ω → (uω, vω)|[t0,t0+nτ ]
from Ωα×Ωβ into L1([t0, t0+

nτ ]) is measurable, and let us show that this still holds true for n + 1. It
is again enough to show that, for any Borel subsets B1 and B2 of U(t0, t0 +
(n+ 1)τ) and V(t0, t0 + (n+ 1)τ), the set

Ω := {ω ∈ Ωα × Ωβ | (uω, vω)|[t0,t0+(n+1)τ)
∈ B1 ×B2}

is measurable. Let us fix again û and v̂ in U(t0) and V(t0). For any (u, v) ∈
U(t0, t0 +nτ)×V(t0, t0 +nτ), we denote by ũ and ṽ the maps equal to u and
v on [t0, t0 + nτ ] and to û and v̂ on [t0 + nτ, T ]. Note that (u, v) → (ũ, ṽ)
is continuous from L1 to L1. Since α and β are nonanticipative with delay
τ , uω ≡ α(ω1, ṽω) on [t0, t0 + (n + 1)τ) and vω ≡ β(ω1, ũω) on [t0, t0 +
(n + 1)τ). Therefore Ω is the preimage of the set B1 × B2 by the map
ω → (α(ω1, ṽω), β(ω2, ũω)) which is measurable as the composition of the
mesurable maps ω → (uω, vω)|[t0,t0+nτ ]

, the map (u, v) → (ũ, ṽ) and the
maps α and β. Hence Ω is measurable, and the result is proved.

QED

We now define the payoff associated with a strategy α̂ of Player I and a
strategy β̂ of Player II:
Definition of the payoff: Let (p, q) ∈ ∆(I)×∆(J), (t0, x0) ∈ [0, T )×IRN ,
α̂ = (αi)i=1,...,I ∈ (Ar(t0))

I and β̂ = (βj) ∈ (Br(t0))J . We set

J (t0, x0, α̂, β̂, p, q) =
I∑

i=1

J∑
j=1

piqjEαiβj

(
gij

(
X

t0,x0,αi,βj

T

))
, (10)
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where Eαiβj
is defined by (9). Note that α̂ does not depend on j, while β̂

does not depend on i, which formalizes the asymmetry of information.

Definition of the value functions: The upper value function is given
by

V +(t0, x0, p, q) = inf
α̂∈(Ar(t0))I

sup
β̂∈(Br(t0))J

J (t0, x0, α̂, β̂, p, q)

while the lower value function is defined by

V −(t0, x0, p, q) = sup
β̂∈(Br(t0))J

inf
α̂∈(Ar(t0))I

J (t0, x0, α̂, β̂, p, q) .

Let us underline that, because of the special form of the payoff, the value
functions defined above cannot be recasted in terms of usual value functions
of a zero-sum differential game with perfect information. For instance they
do not satisfy the standard dynamic programming principle, as we show in
the companion paper [10].

3 Convexity properties of the value functions

The main result of this section is Lemma 3.2 which states that the value
functions are convex in p and concave in q. We also investigate some regu-
larity properties of the value functions.

Lemma 3.1 (Regularity of V + and V −)
Under assumption (5), V + and V − are Lipschitz continuous.

Proof : We first note that the Lipschitz continuity of V − and V + with
respect to p and q just comes from the boundness of the gij . Using standard
arguments, one easily shows that, for any t0 ∈ [0, T ], (u, v) ∈ U(t0)× V(t0),
the map

x→ gij

(
Xt0,x,u,v

T

)
is Lipschitz continuous with a Lipschitz constant independant of t0 ∈ [0, T ].
Hence for any pair of strategies (α̂, β̂) ∈ (Ar(t0))I × (Br(t0))J the map

x→ J (t, x, α̂, β̂, p, q) =
I∑

i=1

J∑
j=1

piqjEαiβj

(
gij(X

t0,x,αi,βj

T )
)

is C−Lipschitz continuous for some constant C independant of t ∈ [0, T ], of
p ∈ Σ(I) and of q ∈ ∆(J). From this one easily deduces that V + and V −
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are C−Lipschitz continuous with respect to x (see for instance [15]).

We now consider the time regularity of V − and V +. We only do the
proof for V −, since the case of V + can be treated similarly. Let x0 ∈ IRN ,
(p, q) ∈ ∆(I) × ∆(J) and t0 < t1 < T be fixed. Let β̂ = (βj) ∈ (Br(t0))J

be ε−optimal for V −(t0, x0, p, q) and α ∈ Ar(t1). Let us define, for any
j = 1, . . . , J , β̃j ∈ Br(t1) and α′ ∈ Ar(t0) by setting (for some ū ∈ U fixed)

β̃j(ω, u) = βj(ω, ũ) where ũ(t) =

{
ū if t ∈ [t0, t1)
u otherwise

for any ω ∈ Ωβ̃j
:= Ωβj

and u ∈ U(t1), and

α′(ω, v) =

{
ū if t ∈ [t0, t1)
α(ω, v|[t1,T ]

) otherwise ∀ω ∈ Ωα′ := Ωα, ∀v ∈ V(t0) .

We note that, for any α ∈ Ar(t1) and j = 1, . . . , J , we have∣∣∣∣Xt0,x0,α′,βj

t −X
t1,x0,α,β̃j

t

∣∣∣∣ ≤M |t0 − t1|eL(t−t1) ∀t ≥ t1 ,

(where M = ‖f‖∞ and f is L−Lipschitz continuous) because the pair
(uω, vω) satisfying

α′(ω1, vω) = uω and βj(ω2, uω) = vω

is given by uω = ū and vω = βj(ω2, ū) on [t0, t1] and coincides on [t1, T ] with
the pair (u′ω, v

′
ω) satisfying

α(ω1, v
′
ω) = u′ω and β̃j(ω2, u

′
ω) = v′ω on [t1, T ] .

Therefore, for any α̂ = (αi) ∈ (Ar(t1))I , we have

J (t1, x0, α̂, (β̃j), p, q)
≥ J (t0, x0, α̂

′, β̂, p, q)− LM |t0 − t1|eL(T−t1)

≥ inf α̂”∈(Ar(t0))I J (t0, x0, α̂”, β̂, p, q)− LM |t0 − t1|eL(T−t1)

≥ V −(t0, x0, p, q)− ε− LM |t0 − t1|eL(T−t1)

(where L is also a Lipchitz constant for the gi), because β̂ is ε−optimal for
V −(t0, x0, p, q). Since this holds for any α̂ = (αi) ∈ (Ar(t1))I and any ε > 0,
we get

V −(t1, x0, p, q) ≥ V −(t0, x0, p, q)− LM |t0 − t1|eL(T−t1) .
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The reverse inequality can be proved in a similar way: we choose some
ε−optimal strategy β̂ = (βj) ∈ (Br(t1))J for V −(t1, x0, p, q) and we extend
it to a strategy (β̃j) ∈ (Br(t0))J by setting (for some v̄ ∈ V fixed)

β̃j(ω, u) =

{
v̄ if t ∈ [t0, t1)
βj(ω, u|[t1,T ]

) otherwise ∀ω ∈ Ωβ̃j
:= Ωβj

, ∀u ∈ U(t0) .

Then similar estimates as above show that, for any α̂ ∈ (Ar(t0))I we have

J (t0, x0, α̂, (β̃j), p, q) ≥ V −(t1, x0, p, q)− ε− LM |t0 − t1|eL(T−t1)

from the ε−optimality of β̂ for V −(t1, x0, p, q). Then we get

V −(t0, x0, p, q) ≥ V −(t1, x0, p, q)− LM |t0 − t1|eL(T−t1) .

QED

Lemma 3.2 (Convexity properties of V − and V +)
For any (t, x) ∈ [0, T ) × IRN , the maps V + = V +(t, x, p, q) and V − =
V −(t, x, p, q) are convex in p and concave in q on ∆(I) and ∆(J) respectively.

Remark : This result is well-known for repeated games with lack of
information. The procedure we use in the proof is usually called “splitting”:
see [21] for instance.

Proof of Lemma 3.2: We only do the proof for V +, the proof for V −

can be achieved by reversing the roles of the players. One first easily checks
that

V +(t0, x0, p, q) = inf
(αi)∈(A(t0))I

J∑
j=1

qj sup
β∈Br(t0)

[
I∑

i=1

piEαiβ

(
g
(
Xt0,x0,αi,β

T

) )]
.

Hence q → V +(t, x, p, q) is concave for any (t, x, p).
We now prove the convexity of V + with respect to p. Let (t, x, q) ∈

[0, T ) × IRN × ∆(J), p0, p1 ∈ ∆(I), λ ∈ (0, 1) and α̂0 = (α0
i ) ∈ (Ar(t))I

and α̂1 = (α1
i ) ∈ (Br(t))I be ε−optimal for V +(t, x, p0, q) and V +(t, x, p1, q)

respectively (ε > 0). Let us set pλ = (1 − λ)p0 + λp1. We can assume
without loss of generality that pλ

i 6= 0 for any i (because pλ
i = 0 implies that

p0
i = p1

i = 0, so that this index i plays no role in our computation). We now
define the strategy α̂λ = (αλ

i ) ∈ (Ar(t))I by setting

Ωαλ
i

= [0, 1]×Ωα0
i
×Ωα1

i
, Fαλ

i
= B([0, 1])⊗Fα0

i
⊗Fα1

i
, Pαλ

i
= L1⊗Pα0

i
⊗Pα1

i
,

12



(where B([0, 1]) is the Borel σ−field and L1 the Lebesgue measure on [0, 1])
and

αλ
i (ω1, ω2, ω3, v) =


α0

i (ω2, v) if ω1 ∈ [0, (1−λ)p0
i

pλ
i

)

α1
i (ω3, v) if ω1 ∈ [ (1−λ)p0

i

pλ
i

, 1]

for any (ω1, ω2, ω3) ∈ Ωαλ
i

and v ∈ V(t). We note that (Ωαλ
i
,Fαλ

i
,Pαλ

i
) be-

longs to the set of probability spaces S and that αλ
i belongs to Ar(t0) for

any i = 1, . . . , I.

The interpretation of the strategy α̂λ is the following: if the index i
is choosen according to the probability pλ, then Player I chooses α0

i with

probability (1−λ)p0
i

pλ
i

and α1
i with probability 1 − (1−λ)p0

i

pλ
i

= λp1
i

pλ
i

. Hence the

probability for the strategy α0
i to be chosen is pλ

i
(1−λ)p0

i

pλ
i

= (1− λ)p0
i , while

the strategy α1
i appears with probability pλ

i
λp1

i

pλ
i

= λp1
i . Therefore

supβ̂ J (t, x, α̂λ, β̂) =
∑

j qj supβ

∑
i p

λ
i Eαλ

i ,β

(
gij(X

t,x,αλ
i ,β

T )
)

=
∑

j qj supβ

∑
i p

λ
i

[
(1−λ)p0

i

pλ
i

Eα0
i ,β

(
gij(X

t,x,α0
i ,β

T )
)

+ λp1
i

pλ
i

Eα1
i ,β

(
gij(X

t,x,α1
i ,β

T )
)]

≤ (1− λ)
∑

j qj supβ

∑
i p

0
i Eα0

i ,β

(
gij(X

t,x,α0
i ,β

T )
)

+

λ
∑

j qj supβ

∑
i p

1
i Eα1

i ,β

(
gij(X

t,x,α1
i ,β

T )
)

≤ (1− λ)V +(t, x, p0, q) + λV +(t, x, p1, q) + ε

because α̂0 and α̂1 are ε− optimal for V +(t, x, p0, q) and V +(t, x, p1, q) re-
spectively. Therefore

V +(t, x, pλ, q) ≤ sup
β̂

J (t, x, α̂λ, β̂) ≤ (1− λ)V +(t, x, p0) + λV +(t, x, p1) + ε ,

which proves the desired claim because ε is arbitrary.

QED

The convexity properties of the value functions leads naturally to con-
sider their Fenchel conjugates. Let w : [0, T ] × IRN × ∆(I) × ∆(J) → IR
be some function. We denote by w∗ its convex conjugate with respect to
variable p:

w∗(t, x, p̂, q) = sup
p∈∆(I)

p̂.p−w(t, x, p, q) ∀(t, x, p̂, q) ∈ [0, T ]×IRN×IRI×∆(J) .
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For instance V −∗ and V +∗ denote the convex conjugate with respect to the
p−variable of the functions V − and V +.

For a function w = w(t, x, p̂, q) defined on the dual space [0, T ]× IRN ×
IRI × ∆(J) we also denote by w∗ its convex conjugate with respect to p̂
defined on [0, T ]× IRN ×∆(I)×∆(J):

w∗(t, x, p, q) = sup
p̂∈IRI

p.p̂−w(t, x, p, q) ∀(t, x, p, q) ∈ [0, T ]×IRN×∆(I)×∆(J) .

In a symmetric way, we denote by w] = w](t, x, p, q̂) the concave conju-
gate with respect to q of w:

w](t, x, p, q̂) = inf
q∈∆(J)

q̂.q−w(t, x, p, q) ∀(t, x, p, q̂) ∈ [0, T ]×IRN×∆(I)×IRJ .

4 The subdynamic programming

The main result of this section is that V +] and V −∗ are subsolution of the
dual HJ equation. To fix the ideas, we study here the case of V −∗, and
explain at the very end of the section how we deduce the symmetric results
for V +].

Lemma 4.1 (Reformulation of V −∗)
We have

V −∗(t, x, p̂, q) =

inf
(βj)∈(Br(t0))J

sup
α∈Ar(t0)

max
i∈{1,...,I}

p̂i −
J∑

j=1

qjEαβj

(
gij(X

t,x,α,βj

T )
) .

(11)

Proof of Lemma 4.1: Let us denote by z = z(t, x, p̂, q) the right-hand
side of the equality. We first claim that

z is convex with respect to p. (12)

Proof of (12): The proof mimics the proof of the convexity of V +. Let
(t, x, q) ∈ [0, T )×IRN×∆(J), p̂0, p̂1 ∈ IRI , λ ∈ (0, 1) and (β0

j ) ∈ (Br(t))J and
(β1

j ) ∈ (Br(t))J be ε−optimal for z(t, x, p̂0, q) and z(t, x, p̂1, q) respectively
(ε > 0). Let us set p̂λ = (1−λ)p̂0 +λp̂1. We define the strategies βλ

j ∈ Br(t)
by setting

Ωβλ
j

= [0, 1]×Ωβ0
j
×Ωβ1

j
, Fβλ

j
= B([0, 1])⊗Fβ0

j
⊗Fβ1

j
, Pβλ

j
= L1⊗Pβ0

j
⊗Pβ1

j
,
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and

βλ
j (ω1, ω2, ω3, u) =

{
β0

j (ω2, u) if ω1 ∈ [0, (1− λ))
β1

j (ω3, u) if ω1 ∈ [(1− λ), 1]

for any (ω1, ω2, ω3) ∈ Ωβλ
j

and u ∈ U(t). Then (Ωβλ
j
,Fβλ

j
,Pβλ

j
) belongs to S

and (βλ
j ) ∈ (Br(t0))J . For any α ∈ Ar(t), we have by using the convexity of

the map (si) → maxi{si}:

maxi

{
p̂λ

i −
∑

j qjEα,βλ
j

(
gij(X

t,x,α,βλ
j

T )
)}

= maxi

{
(1− λ)(p̂0

i −
∑

j qjEαβ0
j

(
gij(X

t,x,α,β0
j

T )
)

+ λ(p̂1
i −

∑
j qjEαβ1

j

(
gij(X

t,x,α,β1
j

T )
)}

≤ (1− λ) supα maxi

{
p̂0

i −
∑

j qjEαβ0
j

(
gij(X

t,x,α,β0
j

T )
)}

+λ supα maxi

{
p̂1

i −
∑

j qjEαβ1
j

(
gij(X

t,x,α,β1
j

T )
)}

≤ (1− λ)z(t, x, p̂0, q) + λz(t, x, p̂1, q) + ε

because β0 and β1 are ε−optimal for z(t, x, p̂0, q) and z(t, x, p̂1, q) respec-
tively. Hence

z(t, x, p̂λ, q)

≤ supα maxi

{
p̂λ

i −
∑

j qjEα,βλ
j

(
gij(X

t,x,α,βλ
j

T )
)}

≤ (1− λ)z(t, x, q0) + λz(t, x, q1) + ε ,

which proves the desired claim because ε is arbitrary.

Next we show that V −∗ = z. Indeed we have by definition of z:

z∗(t, x, p, q)

= sup
p̂
p.p̂− inf

(βj)
max

i

p̂i − inf
α

∑
j

qjEαβj

(
gij(X

t,x,α,βj

T )
)

= sup
(βj)

sup
p̂

min
i

p.p̂− p̂i + inf
α

∑
j

qjEαβj

(
gij(X

t,x,α,βj

T )
)

In this last expression, the sup
p̂

is attained by

p̂i = inf
α

∑
j

qjEαβj

(
gij(X

t,x,α,βj

T

)
,
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for which all the arguments of the mini are equal. Hence

z∗(t, x, p, q) = supβj

∑
i pi infα

∑
j qjEαβj

(
gij(X

t,x,α,βj

T )
)

= V −(t, x, p, q) .

Since we have proved that z is convex with respect to p̂, we get by duality
V −∗ = z∗∗ = z.

QED

Lemma 4.2 (Sub-dynamic principle for V −∗)
We have for any (t0, x0, p̂, q) ∈ [0, T )×IRN×IRI×∆(J) and any t1 ∈ (t0, T ],

V −∗(t0, x0, p̂, q) ≤ inf
β∈B(t0)

sup
α∈A(t0)

V −∗(t1, X
t0,x0,α,β
t1 , p̂, q) .

Proof : Let us denote by V −∗
1 (t0, t1, x0, p̂, q) the right-hand side of

the above inequality. Arguing as in Lemma 3.1 one can prove that V −∗
1 is

Lipschitz continuous with respect to x. We also note that Player I can play
in pure strategies in V −∗: Namely

V −∗(t, x, p̂, q) = inf
(βj)∈(Br(t))J

sup
α∈A(t)

max
i∈{1,...,I}

p̂i −
∑
j

qjEβj

[
gij(X

t,x,α,βj

T )
]

(13)
for any (t, x, p̂, q) ∈ [0, T )× IRN × IRI ×∆(J). Indeed, we have from Lemma
4.1 that

V −∗(t, x, p̂, q) =

inf
(βj)∈(Br(t0))J

sup
α∈Ar(t0)

max
i∈{1,...,I}

p̂i −
J∑

j=1

qjEαβj

(
gij(X

t,x,α,βj

T )
) .

Hence the inequality “≥” in (13) is obvious because A(t) ⊂ Ar(t). To prove
the reverse inequality we first note that, for any α ∈ Br(t0) and for any
ω1 ∈ Ωα, α(ω1, ·) belongs to A(t0). Let us fix (βj) ∈ (B(t))J . We have, from
the convexity of (si) → maxi{si},

supα∈Ar(t) maxi

{
p̂i −

∑
j qjEαβj

(gij(X
t,x,α,βj

T ))
}

≤ supα∈Ar(t)

∫
Ωα

maxi

{
p̂i −

∑
j qjEβj

(gij(X
t,x,α(ω1,·),βj

T ))
}
dPα(ω1)

≤ supα∈Ar(t) supω1∈Ωα
maxi

{
p̂i −

∑
j qjEβj

(gij(X
t,x,α(ω1,·),βj

T ))
}

≤ supα∈A(t) maxi

{
p̂i −

∑
j qjEβj

(gij(X
t,x,α,βj

T ))
}
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Taking the infimum over (βj) ∈ (B(t))J gives (13).

Let ε > 0 and β0 ∈ B(t0) be some pure ε−optimal strategy for V −∗
1 (t0, t1, x0, p̂, q).

For any x ∈ IRN , we can find some ε−optimal strategy β̂x = (βx
j ) ∈ Br(t1)

for Player II in the game V −∗(t1, x, p̂, q). From the Lipschitz continuity of
the map

y → sup
α∈A(t)

max
i∈{1,...,I}

p̂i −
∑
j

qjEβx
j

[
gij(X

t,y,α,βx
j

T )
] ,

and of y → V −∗(t1, y, p̂, q), βx is also (2ε)−optimal for V −∗(t1, y, p̂, q) if
y ∈ Br(x) for some radius r > 0. Using the fact that f is bounded, one can
show that the reachable states from (t0, x0) by using the differential equation
(1) is bounded, and contained in some ball BR(0). Let us set M = ‖f‖∞
and let us fix σ > 0 small such that Mσ ≤ r/2. Then we chose (xl)l=1,···,l0
such that

⋃l0
l=1Br/2(xl) contains the ball BR(0). Let (El)l=1,...,l0 be a Borel

partition of BR(0) such that, for any l, El ⊂ Br/2(xl). We set

βl
j = βxl

j , Ωl
j = Ωβl

j
, F l

j = Fβl
j

and Pl
j = Pβl

j

for j = 1, . . . , J and l = 1, . . . , l0. We choose some delay τ ∈ (0, σ] common
to all the strategies βl

j .
We note for later use that, if for some controls (u, v) ∈ U(t0)×V(t0) and

for some l, we have Xt0,x0,u,v
t1−τ ∈ El, then

|Xt0,x0,u,v
t1−τ −Xt0,x0,u,v

t1 | ≤ ‖f‖∞τ ≤Mσ ≤ r/2 ,

so that Xt0,x0,u,v
t1 belongs to Br(xl). In particular (βl

j)j is (2ε)−optimal for
V + at (t1, X

t0,x0,u,v
t1 , p̂, q). To summerize

Xt0,x0,u,v
t1−τ ∈ El ⇒ (βl

j)j is (2ε)−optimal for V −∗ at (t1, X
t0,x0,u,v
t1 , p̂, q).

(14)
Let us now define a new strategy β̂ = (βj) ∈ (Br(t0))J in the following

way: set

Ωβj
= Πl0

l=1Ω
l
j , Fβj

= F1
j ⊗ . . .⊗F l0

j and Pβj
= P1

j ⊗ . . .⊗Pj0
j

and, for any ω = (ω1, . . . , ωl0) ∈ Ωβj
and u ∈ U(t0),

β(ω, u)(t) =

{
β0(u)(t) if t ∈ [t0, t1)
βl

j(ω
l, u|[t1,T ]

)(t) if t ∈ [t1, T ] and Xt0,x0,u,β0(u)
t1−τ ∈ El
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Then (Ωβj
,Fβj

,Pβj
) belongs to S and β̂ = (βj) ∈ (Br(t0))J .

For any pure strategy α ∈ A(t0), we have:

gij(X
t0,x0,α,βj

T ) =
l0∑

l=1

gij

(
X

t1,X
t0,x0,α,β0

t1
,α̃,βl

j

T

)
1
{Xt0,x0,α,β0

t1−τ ∈El}

where α̃ ∈ A(t1) is defined by

α̃(v) = α(v′) ∀v ∈ V(t1) where v′(t) =

{
v̄(t) if t ∈ [t0, t1]
v(t) otherwise

the controls (ū, v̄) being the pair associated with (α, β0) as in (8). Hence

max
i∈{1,...,I}

p̂i −
∑
j

qjEβj

(
gij(X

t0,x0,α,βj

T )
) =

max
i∈{1,...,I}

p̂i −
∑
j

qj

l0∑
l=1

(∫
Ωl

j

gij

(
X

t1,X
t0,x0,α,β0

t1
,α̃,βl

j

T

)
dPl

j(ω
l)

)
1Ol


(where we have set Ol = {Xt0,x0,α,β0

t1−τ ∈ El})

≤
l0∑

l=1

sup
α′∈B(t1)

max
i∈{1,...,I}

p̂i −
∑
j

qj

(∫
Ωl

j

gij

(
X

t1,X
t0,x0,α,β0

t1
,α′,βl

j

T

)
dPl

j(ω
l)

)1Ol

(because of the convexity of the map s = (si) → max{si})

≤
l0∑

l=1

(
V −∗

(
t1, X

t0,x0,α,β0

t1 , p̂, q
)

+ 2ε
)
1Ol

(because of (14))
= V −∗

(
t1, X

t0,x0,α,β0

t1 , p̂, q
)

+ 2ε

≤ V −∗
1 (t0, t1, x0, p̂, q) + 3ε ,

because β0 is ε−optimal for V −∗
1 (t0, t1, x0, p̂, q).

From this we conclude easily that

V −∗(t0, x0, p̂, q) ≤ V −∗
1 (t0, t1, x0, p̂, q) .

QED
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Corollary 4.3 (V −∗ is a subsolution of HJ)
For any (p̂, q) ∈ IRI × ∆(J), the map (t, x) → V −∗(t, x, p̂, q) is a viscosity
subsolution of the dual Hamilton-Jacobi equation:

wt +H∗(x,Dw) = 0 in [0, T ]× IRN . (15)

where H is defined by (6) and H∗(x, ξ) = −H(x,−ξ).

Remark : From the definition of H, we have

H∗(x, ξ) := sup
u∈U

inf
v∈V

f(x, u, v).ξ = inf
v∈V

sup
u∈U

f(x, u, v).ξ (16)

Proof of Corollary 4.3: It is well-known that a function satisfying
a subdynamic programming principle is a subsolution of the associated HJ
equation when the game is played with classical nonanticipative strategies
(see [15]). We give a short proof of this fact in the framework of nonantici-
pative strategies with delay. Let (p̂, q) ∈ IRI ×∆(J) be fixed and let φ be a
smooth test function such that

φ(t, x) ≥ V −∗(t, x, p̂, q) ∀(t, x) ∈ [0, T ]× IRN , (17)

with an equality at (t0, x0), where t0 ∈ [0, T ). For any v ∈ V , let us define
the pure strategy β ∈ B(t0) by setting

β(u)(t) = v ∀u ∈ U(t0), t ∈ [t0, T ] .

Let us fix ε > 0 and h > 0 small.
Since V −∗ satisfies the subdynamic programming principle of Lemma

4.2, there is some strategy αh ∈ A(t0) such that

V −∗(t0, x0, p̂, q) ≤ V −∗(t0 + h,Xt0,x0,αh,β
t0+h , p̂, q) + εh . (18)

Let us set uh(s) = αh(v)(s) and xh(s) = Xt0,x0,αh,β
s = Xt0,x0,uh,v

s . Then

xh(t0+h) = x0+
∫ t0+h

t0
f(xh(s), uh(s), v)ds = x0+

∫ t0+h

t0
f(x0, uh(s), v)ds+hε(h)

where ε(h) → 0 as h→ 0+. From (17) and (18) we have

0 ≤ V −∗(t0 + h,Xt0,x0,αh,β
t0+h , p̂, q)− V −∗(t0, x0, p̂, q) + εh

≤ φ(t0 + h, x0 +
∫ t0+h
t0

f(x0, uh(s), v)ds+ hε(h))ds− φ(t0, x0) + εh

≤ hφt(t0, x0) +
∫ t0+h
t0

Dφ(t0, x0).f(x0, uh(s), v)ds+ hε1(h) + εh

≤ hφt(t0, x0) + h supu∈U Dφ(t0, x0).f(x0, u, v) + hε1(h) + εh
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where ε1(h) → 0 as h → 0+. Diviving the last inequality by h > 0 and
letting h→ 0+ gives

φt(t0, x0) + sup
u∈U

Dφ(t0, x0).f(x0, u, v) ≥ −ε .

Then we let ε→ 0+, take the minimum over v ∈ V and use (16) to get the
desired inequality:

φt(t0, x0, p) +H∗(x0, Dφ(t0, x0)) ≥ 0 .

QED

To state the symmetric results for V +], we only need to note that

−V +(t, x, p, q) = sup
α̂∈(Ar(t0))I

inf
β̂∈(Br(t0))J

I∑
i=1

I∑
j=1

piqjEαiβj

(
(−gij)

(
X

t0,x0,αi,βj

T

))
,

which is of the same form as V − when one changes the roles of the Players.
In particular the convex Fenchel conjugate of (−V +) with respect to q, i.e.,
−V +](−q̂), satisfies a subdynamic programming principle and is therefore
a subsolution of some associated Hamilton-Jacobi equation. From this we
easily deduce the

Corollary 4.4 (V +] is a supersolution of HJ)
For any (t0, t1, x0, p, q̂) ∈ [0, T ]× [0, T ]× IRN ×∆(I)× IRJ , we have

V +](t0, x0, p, q̂) ≥ sup
α∈A(t0)

inf
β∈B(t0)

V +](t1, X
t0,x0,α,β
t1 , p, q̂) .

Hence V +] is a supersolution of the dual Hamilton-Jacobi equation (15).

Remark : We use here Isaacs assumption (6). Indeed, if V −∗ is a
subsolution of the HJ equation (15) with H∗(x, ξ) = infu supv f(x, u, v).ξ,
V +] is actually a supersolution of (15) with a Hamiltonian H∗ defined by
H∗(x, ξ) = supv infu f(x, u, v).ξ.

5 Existence of the value and solutions of the pri-
mal/dual HJ equations

In this section we prove that our game has a value: V + = V −. This value
can be characterized in terms of dual solutions of some HJ equations.
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The key argument for this is the following comparison principle, that
we state for later use for a general Hamiltonian H. We assume that H :
IRN × IRN → IR is continuous and we suppose that there is a constant C
such that, for any x1, x2 ∈ IRN and θ ≥ 0,

|H(x1, θ(x1 − x2))−H(x2, θ(x1 − x2))| ≤ C|x1 − x2|(1 + θ|x1 − x2|) . (19)

Let us point out that the map H defined by (6) satisfies the above assump-
tions under conditions (5) on the dynamics.

Recall that, for any map w = w(t, x, p, q) defined on [0, T ]×IRN×∆(I)×
∆(J), w∗ denotes the convex Fenchel conjugate of w with respect to p, while
w] denotes its concave Fenchel conjugate with respect to q.

We now consider a Hamilton-Jacobi equation of the form:

zt +H(x,Dz) = 0 , (20)

We say that a function w : [0, T ] × IRN × ∆(I) × ∆(J) → IR is a dual
subsolution of (20) if w is Lipschitz continuous, convex with respect to p
and concave with respect to q and if, for any (p, q̂) ∈ ∆(I) × IRJ , (t, x) →
w](t, x, p, q̂) is a supersolution of the dual HJ equation

zt +H∗(x,Dz) = 0 , (21)

where H∗(x, ξ) = −H(x,−ξ). In a symmetric way, w is a dual supersolution
of the HJ equation (20) if w is Lipschitz continuous, convex with respect to
p and concave with respect to q and if, for any for any (p̂, q) ∈ IRI ×∆(J),
(t, x) → w∗2(t, x, p̂, q) is a subsolution of the dual HJ equation (21). We say
that w is a dual solution of (20) if w is at the same time a dual subsolution
and a dual supersolution of (20).

Theorem 5.1 (Comparison principle) Let w1, w2 : [0, T ]×IRN×∆(I)×
∆(J) → IR be respectively a dual subsolution and a dual supersolutions of
the HJ equation (20). We assume that for any (x, p, q) ∈ IRN×∆(I)×∆(J),
w1(T, x, p, q) ≤ w2(T, x, p, q). Then w1 ≤ w2 in [0, T ]× IRN ×∆(I)×∆(J).

Remarks:

1. We cannot compare w]
1 and w∗2 at time t = T . So this result is not an

application of the classical comparison principle.

2. It is known that, if w2 is a supersolution of the HJ equation (20),
then w∗2 is a subsolution of the dual HJ equation (21) (see for instance
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[1]. The converse does not hold true in general, and so we cannot
rephrase the asumptions in term of sub- and supersolutions of (20) for
w1 and w2. However it turns out that w2 for instance is a supersolution
at “some suitable points”, related with its convexity property with
respect to p. We explain this more precisely in Lemma 5.4 below.

3. The result can be extended to bounded uniformly continuous subso-
lutions by standard techniques (see [3] for instance).

The comparison principle is proved at the end of the section. Let us now
state the main result of this paper:

Theorem 5.2 (Existence of the value)
Assume that conditions (5) on f and on the gi hold and that Isaacs assump-
tion (6) is satisfied. Then we have

V +(t, x, p, q) = V −(t, x, p, q) ∀(t, x, p) ∈ [0, T ]× IRN ×∆(I)×∆(J) .

Proof of Theorem 5.2: From Lemma 3.1 V − and V + are Lipschitz
continuous. From Lemma 3.2, we know that V + and V − are convex with
respect to p and concave with respect to q. Corollary 4.3 states that, for any
(p̂, q) ∈ IRI × ∆(J), V −∗(·, ·, p̂, q) is a subsolution of the dual HJ equation
(15). Hence V − is a dual supersolution of (7). Corollary 4.4 states that
V +](·, ·, p, q̂) is a supersolution of the HJ equation (15) for any (p, q̂) ∈
∆(I) × IRJ , and therefore a dual subsolution of (7). Since V +(T, ·, p, q) =
V −(T, ·, p, q) =

∑
i,j piqjgij , the comparison principle states that V + ≤ V −.

But the reverse inequality always holds. Hence V − = V + and the game has
a value.

QED

The above proof also shows the

Corollary 5.3 (Characterization of the value)
Under the assumptions of Theorem 5.2, the value function V := V + = V −

is the unique dual solution of the HJ equations (7), such that V (T, x, p, q) =∑
ij piqjgij.

We complete this section by an equivalent formulation of the notion of
dual supersolution. Although the result is not needed in the rest of the text,
we think that it can help to enlighten the notion.
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Lemma 5.4 Let w : [0, T ]×IRN×∆(I)×∆(J) → IR be Lipschitz continuous,
convex with respect to p and concave with respect to q. Then the following
statements are equivalent:

(i) w is a dual supersolution of (20).

(ii) for any q ∈ ∆(J), for any test function φ = φ(t, x, p) which is C1 and
convex in p, and such that

(t, x, p) → w(t, x, p, q)− φ(t, x, p)

has a strict global minimum at some point (t0, x0, p0) ∈ [0, T )× IRN ×
∆(I), we have

φt(t0, x0, p0) +H(x0, Dφ(t0, x0, p0)) ≤ 0 . (22)

Remarks :

1. This result means that a dual supersolution of (20)—originaly defined
in terms of subsolution of the dual HJ equation—is indeed a super-
solution of the primal HJ equation (20) in weak sense. However it is
not a classical supersolution. For instance, if I = 1, f = f(u, v) and
gj(x) = aj .x for some aj ∈ IRN (j = 1, . . . , J), then we prove in [10]
that

V +(t, x, p) = V −(t, x, p) = (T − t)Cav(h)(p) +
∑
j

pjx.aj

where h(p) = H(
∑

j pjaj) and Cav(h) is the concave hull of h with
respect to p ∈ ∆(I). Then

V −
t +H(DV −) = −Cav(h)(p) + h(p) ≥ 0 ,

with a strict inequality in general. In particular, V − is not a classical
supersolution of the primal HJ equation.

2. Note carefully that we require the minimum w(t, x, p, q) − φ(t, x, p)
at (t0, x0, p0) to be strict. This point is absolutely crucial for the
equivalence. It is related with similar definition in repeated games,
where some function has to be tested only at extreme points (see [16]).
Let us point out that a general minimum of w − φ cannot not be
made artificially strict by substracting ε|(t, x, p) − (t0, x0, p0)|2 to φ
(as is usually done in viscosity solutions) because one then looses the
convexity of φ with respect to p.
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3. A symmetric result holds for subsolutions: w is a dual subsolution of
(20) if and only if, for any p ∈ ∆(I), for any test function φ = φ(t, x, q)
which is C1 and concave in q, and such that w − φ has a strict global
maximum at some point (t0, x0, q0) ∈ [0, T )× IRN ×∆(J), we have

φt(t0, x0, q0) +H(x0, Dφ(t0, x0, q0)) ≥ 0 .

Proof of Lemma 5.4 : Let us first assume that w is a dual superso-
lution of (20). Let q ∈ ∆(J), φ = φ(t, x, p) be a test function which is C1

and convex in p, and such that w − φ has a strict global minimum at some
point (t0, x0, p0) ∈ [0, T )× IRN ×∆(I). This means that

w(t, x, p, q) ≤ φ(t, x, p) + w(t0, x0, p0, q)− φ(t0, x0, p0) (23)

for any (t, x, p) ∈ [0, T ]×IRN×∆(I), with an equality only at (t0, x0, p0). By
using the fact that the minimum of w−φ is strict and standard perturbation
argument (consisting in replacing φ by φ+ε|p|2 if necessary), we can assume
that φ is strictly convex in p. Then φ∗ is differentiable in t and x and one
easily checks that

φ∗t (t0, x0, p̂) = −φt(t0, x0, p) and Dφ∗(t0, x0, p̂) = −Dφ(t0, x0, p) , (24)

for any p̂ ∈ IRI , p being the unique element of the subdifferential of φ∗(t0, x0, ·)
at p̂. Let p̂0 belong to the subdifferential with respect to p of w at (t0, x0, p0).
Then inequality (23) shows that p̂0 belongs to the subdifferential of φ with
respect to p at (t0, x0, p0). Since w and φ are convex in p, we have

w∗(t0, x0, p̂0, q) = p0.p̂0−w(t0, x0, p0, q) and φ∗(t0, x0, p̂0) = p0.p̂0−φ(t0, x0, p0) .

Thus

w(t0, x0, p0, q)− φ(t0, x0, p0) = w∗(t0, x0, p̂0, q)− φ∗(t0, x0, p̂0) . (25)

We note that (23) can be rewritten as

p.p̂0 − w(t, x, p, q) ≥ p.p̂0 − φ(t, x, p)− w(t0, x0, p0, q) + φ(t0, x0, p0)

for all (t, x, p) ∈ [0, T ] × IRN × ∆(I). Taking the sup over p ∈ ∆(I) and
taking into account (25) gives

w∗(t, x, p̂0, q) ≥ φ∗(t, x, p̂0) + w∗(t0, x0, p̂0, q)− φ∗(t0, x0, p̂0) .
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Therefore (t, x) → w∗(t, x, p̂0, q) − φ∗(t, x, p̂0) has a maximum at (t0, x0).
Since w∗ is a subsolution of the dual HJ equation, we have

φ∗t (t0, x0, p̂0) +H∗(x0, Dφ
∗(t0, x0, p̂0)) ≥ 0 ,

which implies the desired inequality (22) thanks to (24).

Conversely, let us assume that (ii) holds. Let φ be a C1 test function
such that (t, x) → w∗(t, x, p̂0, q) − φ(t, x) has a local minimum at (t0, x0)
for some (p̂0, q) ∈ IRI × ∆(I). Without loss of generality, we can assume
that this minimum is a global one and that φ(t0, x0) = w∗(t0, x0, p̂0, q) (see
[3]). Let φ̃(t, x, p̂) = φ(t, x) if p̂ = p̂0 and φ̃(t, x, p̂) = +∞ otherwise. Then
φ̃ ≥ w∗(·, ·, ·, q) on [0, T ]× IRN × IRI , with an equality at (t0, x0, p̂0). Thus,
by duality,

p.p̂0 − φ(t, x) = φ̃∗(t, x, p) ≤ w∗∗(t, x, p, q) = w(t, x, p, q)

for any (t, x, p) ∈ [0, T ] × IRN × ∆(I), with an equality at (t0, x0, p0) for
any p0 ∈ ∂w∗(t0, x0, p̂0, q) (where ∂w∗(t0, x0, , p̂0, q) denotes the superdiffer-
ential of the convex function p̂ → w∗(t0, x0, p̂, q) at p̂0). Hence (t, x, p) →
w(t, x, p, q) − (p.p̂0 − φ(t, x)) has a minimum at (t0, x0, p0) for any p0 ∈
∂w∗(t0, x0, p̂0, q). In order to get a strict minimum, we have to introduce
some perturbation term. Let γ > 0, ε > 0 and (tε, xε, pε) be a point of
minimum of w − ψε,γ , where

ψε,γ(t, x, p) = p.p̂0 + ε|p|2 − φ(t, x)− γ|(t, x)− (t0, x0)|2 .

Then (tε, xε, pε) converges (up to some subsequence) to (t0, x0, p0) for some
p0 ∈ ∂w∗(t0, x0, p̂0, q) as ε → 0+ (we use here the penalization term in γ).
Moreover, we have

ψ̃(t, x, p) := ψε,γ(t, x, p)− ε|p− pε|2 − ε|(t, x)− (tε, xε)|2
< ψε,γ(t, x, p)
≤ w(t, x, p)− w(tε, xε, pε) + ψ̃(tε, xε, pε)

for any (t, x, p) 6= (tε, xε, pε), with an equality at (tε, xε, pε). This means that
w− ψ̃ has a strict minimum at (tε, xε, pε). Since ψ̃ is still convex in p we get
from assumption (ii) that

ψ̃t(tε, xε, pε) +H(xε, Dψ̃(tε, xε, pε)) ≤ 0 .

Using the definition of ψ̃ and letting ε→ 0+, we then obtain

φt(t0, x0) +H∗(x0, Dφ(t0, x0)) ≥ 0 ,

which proves that w is a dual supersolution of (20).
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QED

Proof of Theorem 5.1: We follow the proof of Theorem 3.7 in [3].
Let us argue by contradiction, by assuming that there is some (t1, x1, p1, q1)
such that w1(t1, x1, p1, q1) > w2(t1, x1, p1, q1). This means that, for some
σ > 0, we have

sup
t,x,p,q

w1(t, x, p, q)− w2(t, x, p, q)− σ(T − t) > 0 . (26)

We now use the standard method of separation of variables. In order
to avoid burdensome details, we do the proof under the additional assump-
tion that there is some R > 0 such that w1(t, x, p, q) ≤ w2(t, x, p, q) for any
(t, x, p, q) with |x| ≥ R. This assumption can be omitted by using penaliza-
tion arguments at infinity (see [3] for the details). Let ε > 0 be fixed. From
our assumption, the map

(t, x, s, y, p, q) → w1(t, x, p, q)−w2(s, y, p, q)−
1
ε
|(t, x)− (s, y)|2 − σ(T − t) .

(27)
has a maximum over [0, T ]×IRN×∆(I)×∆(J) and we denote by (tε, xε, sε, yε, pε, qε)
such a point of maximum. From usual arguments in [3], we have tε < T and
sε < T for small ε because w1(T, x, p, q) ≤ w2(T, x, p, q) and w1 and w2 are
Lipschitz continuous. Moreover

lim
ε→0+

1
ε
|(tε, xε)− (sε, yε)|2 = 0 . (28)

Since, for (s, y) = (sε, yε), (tε, xε, qε) is a maximum in (27) we have

w1(t, x, pε, q) ≤ w1(tε, xε, pε, qε) + w2(sε, yε, pε, q)− w2(sε, yε, pε, qε)
+1

ε

(
|(t, x)− (sε, yε)|2 − |(tε, xε)− (sε, yε)|2

)
+ σ(tε − t)

(29)
for any (t, x, q), with an equality at (tε, xε, qε). Let q̂ε belong to the superdif-
ferential ∂+

q w2(sε, yε, pε, qε) of w2 with respect to q at (sε, yε, pε, qε). Then
the above inequality shows that q̂ε ∈ ∂qw1(tε, xε, pε, qε). From the concavity
of w1 and w2 with respect to q, we have

w]
1(tε, xε, pε, q̂ε) = qε.q̂ε − w1(tε, xε, pε, qε)

and
w]

2(sε, yε, pε, q̂ε) = qε.q̂ε − w2(sε, yε, pε, qε) ,

so that

w1(tε, xε, pε, qε)−w2(sε, yε, pε, qε) = w]
2(sε, yε, pε, q̂ε)−w]

1(tε, xε, pε, q̂ε) . (30)
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Combining (29) with (30) then gives

q.q̂ε − w1(t, x, pε, q) ≥
w]

1(tε, xε, pε, q̂ε) + q.q̂ε − w2(sε, yε, pε, q)− w]
2(sε, yε, pε, q̂ε)

−1
ε

(
|(t, x)− (sε, yε)|2 − |(tε, xε)− (sε, yε)|2

)
− σ(tε − t) .

Taking the infimum over q in the above expression then gives

w]
1(t, x, pε, q̂ε) ≥
w]

1(tε, xε, pε, q̂ε)− 1
ε

(
|(t, x)− (sε, yε)|2 − |(tε, xε)− (sε, yε)|2

)
− σ(tε − t) .

So (t, x) → w]
1(t, x, pε, q̂ε)−

(
− |(t,x)−(sε,yε)|2

ε + σt
)

has a minimum at (tε, xε).

Since w]
1(·, ·, pε, q̂ε) is a supersolution of the HJ equation (20), we get

σ +
2
ε
(sε − tε) +H∗

(
xε,

2
ε
(yε − xε)

)
≤ 0 . (31)

We now argue in a symmetric way for w2. Since (sε, yε, pε) is a maximum
in (27), we have

w2(s, y, p, qε) ≥ w2(sε, yε, pε, qε) + w1(tε, xε, p, qε)− w1(tε, xε, pε, qε)
−1

ε

(
|(tε, xε)− (s, y)|2 − |(tε, xε)− (sε, yε)|2

)
(32)

for any (s, y, p) ∈ [0, T ] × IRN ×∆(I). Let p̂ε belong to the subdifferential
∂−p w1(tε, xε, pε, qε) of w1 with respect to p at (sε, yε, pε, qε). Then the above
inequality shows that p̂ε ∈ ∂−p w2(sε, yε, pε, qε). Therefore we have as above

w2(sε, yε, pε, qε)− w1(tε, xε, pε, qε) = w∗1(tε, xε, p̂ε, qε)− w∗2(sε, yε, p̂ε, qε) .

Then we get from (32):

w∗2(s, y, p̂ε, qε) ≤ w∗2(sε, yε, p̂ε, qε) + 1
ε

(
|(tε, xε)− (s, y)|2 − |(tε, xε)− (sε, yε)|2

)
for any (s, y) ∈ [0, T ]× IRN , with an equality at (sε, yε). Since w∗2(·, ·, p̂ε, qε)
is a subsolution of the HJ equation (20), this gives

2
ε
(sε − tε) +H∗

(
yε,

2
ε
(yε − xε)

)
≥ 0 . (33)

Computing the difference between (31) and (33) and using the assump-
tion (19) on H (recall that H∗(x, ξ) = −H(x,−ξ)) gives

−σ + C
2|xε − yε|

ε
(1 + |xε − yε|) ≥ 0 ,

which is in contradiction with (28) as ε→ 0+.

QED
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6 The case of lack of information on the initial
position

In this section we investigate a two-player zero-sum differential game in
which the Players have some private information on the random initial po-
sition. The dynamics of the game is still given by

x′(t) = f(x, u(t), v(t)) , u(t) ∈ U, v(t) ∈ V (34)

where U , V and f satisfy (5). The terminal time of the game is denoted by
T and the payoff is a terminal payoff g(x(T )) where g : IRN → IR is Lipschitz
continuous and bounded. The game starts at time t0 ∈ [0, T ].

The description of the game involves I × J initial positions x0
ij , i =

1, . . . , I, j = 1, . . . , J , a probability p ∈ ∆(I) and a probability q ∈ ∆(J).
As before, the game is played in two steps: at time t0, the pair (i, j) is
chosen according to the probability p ⊗ q, the index i is communicated to
Player I only and the index j to Player II only.

Then the players control system (34) with initial position x0
ij in order,

for Player I, to minimize the terminal payoff g(x(T )), and for Player II to
maximize it. The players observe their oponent’s behavior, and try to deduce
from this behaviour their missing information. They cannot compute the
actual position of the system in general.

As before we define the upper and lower value functions associated to
this game. For this we introduce the new state of the system: x = (xij),
which denotes the I × J−uplet of possible positions. The upper-value is
given for t0 ∈ [0, T ), x0 = (x0

ij) ∈ IRNIJ , p ∈ ∆(I) and q ∈ ∆(J), by

V +(t0,x0, p, q) = inf
(αi)∈(Ar(t0))I

sup
(βj)∈(Br(t0))J

I∑
i=1

J∑
j=1

piqjEαiβj

(
g

(
X

t0,x0
ij ,αi,βj

T

))
,

where t → X
t0,x0

ij ,αi,βj

t is the random solution to (34) with initial position
x0

ij at time t0 when the players play the random strategies αi and βj (see
section 2). The lower-value is defined by the symmetric formula:

V −(t0,x0, p, q) = sup
(βj)∈(Br(t0))J

inf
(αi)∈(Ar(t0))I

I∑
i=1

J∑
j=1

piqjEαiβj

(
g

(
X

t0,x0
ij ,αi,βj

T

))
.

Obviously we have

V −(t0,x0, p, q) ≤ V +(t0,x0, p, q) ∀(t0,x0, p, q) ∈ [0, T ]×IRNIJ×∆(I)×∆(J) .

Our main result is that the equality holds:
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Theorem 6.1 Assume that f , U and V satisfy (5), that the payoff g :
IRN → IR is Lipschitz continuous and bounded and that the following gener-
alized Isaacs condition holds:

H(x, ξ) = inf
u∈U

sup
v∈V

I∑
i=1

J∑
j=1

f(xij , u, v).ξij = sup
v∈V

inf
u∈U

I∑
i=1

J∑
j=1

f(xij , u, v).ξij

(35)
for any x = (xij) ∈ IRNIJ and ξ = (ξij) ∈ IRNIJ .

Then the game has a value:

V −(t0,x0, p, q) = V +(t0,x0, p, q) ∀(t0,x0, p, q) ∈ [0, T ]×IRNIJ×∆(I)×∆(J) .

Furthermore this value is the dual solution of the HJ equation{
zt + H(x, Dz) = 0 in [0, T )× IRNIJ

z(T,x, p, q) =
∑I

i=1

∑J
j=1 piqjg(xij) for x = (xij) ∈ IRNIJ (36)

Proof of Theorem 6.1 : The proof is mainly the same as the proof
of Theorem 5.2 and Corollary 5.3 and we only give an outline of it. We first
note that V + and V − are Lipschitz continuous in their arguments, convex
in p, concave in q as in Lemma 3.1 and Lemma 3.2. Then, following Lemma
4.1, one proves that

V −∗(t,x0, p̂, q) = inf
(βj)∈(Br(t0))J

sup
α∈Ar(t0)

max
i=1,...,I

p̂i −
∑
j

Eαβj
(g
[
X

t,x0
ij ,α,βj

T )
]

for any t ∈ [0, T ], x0 = (x0
ij) ∈ IRNIJ , p̂ ∈ IRI and q ∈ ∆(J). Using this, one

obtains as in Lemma 4.2 that V −∗ satisfies the subdynamic programming
principle

V −∗(t0,x0, p̂, q) ≤ inf
β∈B(t0)

sup
α∈A(t0)

V −∗(t1,X
t0,x0,α,β
t1 , p̂, q)

for any 0 ≤ t0 < t1 ≤ T , x0 ∈ IRNIJ , p̂ ∈ IRI and q ∈ ∆(J), where

Xt0,x0,α,β
t1 =

(
X

t0,x0
ij ,α,β

t1

)
i = 1, . . . , I
j = 1, . . . , J

.

Hence V −∗(·, ·, p̂, q) is a subsolution of the dual HJ equation

zt + H∗(x,Dz) = 0 in [0, T ]× IRNIJ
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for any (p̂, q), which means that V − is a dual supersolution of (36). One
proves in the same way that V + is a dual subsolution of (36). The compari-
son Theorem 5.1 then implies that V + ≤ V −. Since the inequality V − ≤ V +

is obvious, we get the equality and the characterization of the value function.

QED
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