
Notes on the course on MFG - Course 1
Comments and Exercises on Section 4.1 of the course on MFG.

Warning: this part is very formal! rigorous analysis shall be led in the next parts. In Section 4.1,
we consider a game with a very large number of players. This game is played on the time interval [0, T ]
and the state of each player is in Rd. We denote by m(t) the empirical distribution of the players at
time t. It is a probability measure on Rd. As the state of each players is random, it should be a random
measure. But we know from Section 3.3 that, if the noise of the players are independent, then m(t)
converges to a deterministic measure as the number of players tends to infinity. So we can assume in a
first approximation that the number of players is so large that m(t) is deterministic and continuous in
time for the weak-* convergence.

We describe the game through the dynamics of a small player and its cost function. For this player,
the time-dependent empirical measure is given.
The dynamics:

(1) Xs = x+

ˆ s

t

b(r,Xr, αr,m(r))dr +

ˆ s

t

σ(r,Xr, αr,m(r))dBr,

where X lives in Rd, α is the control (taking its values in a fixed set A) and B is a given M−dimensional
Brownian motion. Here the coefficients b : [0, T ]×Rd×A×P(Rd)→ Rd and σ : [0, T ]×Rd×A×P(Rd)→
Rd×M are assumed to be smooth enough for the solution (Xt) to exist.
The cost function:

(2) J(t, x, α) = E

[ˆ T

t

L(s,Xs, αs,m(s))ds+ g(XT ,m(T ))

]
.

Here T > 0 is the finite horizon of the problem, L : [0, T ×Rd×A×P(Rd)→ R and g : Rd×P(Rd)→ R
are given continuous maps. The small player is minimizing.

1. What is the value function u(t, x) of the problem? We assume in the rest of this part that u is
smooth.

2. What is the dynamic programming principle and the Hamilton-Jacobi equation satisfied by u ?

3. What is the optimal feedback α∗ = α∗(t, x) for the small player in function of u and the data ?

4. We now assume (this is another modeling assumption) that the initial positions of the small players
are independent and distributed according to a measurem0 ∈ P(Rd). LetX∗0 be the initial condition
of a given small player (the law of X∗0 is m0 and X∗0 is independent of B). By the argument above,
we understand that each small player, if she plays in an optimal way, has for dynamics

X∗s = X∗0 +

ˆ s

t

b(r,X∗r , α
∗(r,X∗r ),m(r))dr +

ˆ s

t

σ(r,X∗r , α
∗(r,X∗r ),m(r))dBr,

5. For simplicity, we assume that σ = Id (B being a d−dimensional Brownian motion). Check that
the law m̃(t) of X∗ satisfies in the sense of distribution the equation{

∂tm̃−
1

2
∆m̃(t, x) + div(m̃(t, x)b(s, x, α∗(s, x),m(s))) = 0 in (0, T )× Rd,

m̃(0) = m̄0 in Rd,

(recall that ∆φ =
∑d
i=1

∂2φ
∂x2

i
and that, if F = (Fi) : Rd → Rd is a vector field, then div(F ) =∑d

i=1
∂Fi

∂xi
). In a first step, it is convenient to do the proof for d = 1.

As explained in Section 3.3, if all the small players play the feedback α∗, have independent Brownian
motions and independent initial conditions of law m0, then their empirical distribution (for a large
number of players) is the same as the law m̃ of the distribution of a given player. We say that we
are in an equilibrium configuration if m̃(t) = m(t) for all t ∈ [0, T ].



The interpretation of the equilibrium configuration can be the following: this is a game with
infinitely many players. In this game, the players decide collectively to play the optimal feedback
α∗. If they all do this, their empirical distribution is then m̃ = m. On the other hand, if one (and
only one) of the small player deviates, the empirical measure does not change become she is very
small. Her optimal control problem is therefore the one described above, with dynamics (1) and
cost (2). So the optimal feedback for her is precisely α∗. This means that α∗ is a Nash equilibrium
for this game with infinitely many players: no player has interest to deviate unilaterally.

6. Still in the case σ = Id, show that the MFG problem reduces to the system
−∂tu(t, x)− 1

2
∆u(t, x) +H(t, x,Du(t, x),m(t)) = 0 in (0, T )× Rd,

∂tm−
1

2
∆m(t, x) + div(m(t, x)b(s, x, α∗(s, x),m(s))) = 0 in (0, T )× Rd,

m(0) = m̄0, u(T, x) = g(x,m(T )) in Rd,

where α∗ satisfies, for any s, x,

−b(s, x, α∗(s, x),m(s)))·Du(s, x)−L(s, x, α∗(s, x),m(s)) = sup
α∈Rd

−b(s, x, α,m(s)))·Du(s, x)−L(s, x, α,m(s))

is the optimal feedback. The above system is called the MFG system.

Exercice 1 (A simple explicit example). We consider a simple problem in dimension d = 1, in which
the dynamic is of the form

Xs = x+

ˆ s

t

αrdr +Bt −Bs

and the cost is

J(t, x, α) = E

[ˆ T

t

1

2

[
(αs)

2 + (Xs + e(s))2
]
ds+

1

2
(XT + e(T ))2

]
.

where e(s) =
´
R xm(s, dx). We assume that the initial distribution m0 for the players has a smooth

density with a compact support.

1. Give a heuristic interpretation of the problem.

2. Write the MFG system in this setting.

3. One looks for a solution u in the form u(t, x) = a(t)x2 + b(t)x + c(t). Assume that u is such a
solution. Show that a, b and c then satisfy, for any t ∈ [0, T ],

a(t) =
1

2
, −b′(t) + 2b(t) = e(t), −c′(t)− 1− 1

2
(b(t))2 =

1

2
(e(t))2, b(T ) = e(T ), c(T ) =

1

2
(e(T ))2.

4. In view of the equation for m and assuming that lim|x|→±∞m(t, x) = lim|x|→±∞ x2|∂xm(t, x)| = 0,
show that, formally, e(t) satisfies for any t ∈ [0, T ],

e′(t) = −e(t)− b(t), e(0) =

ˆ
R
xm0(dx).

5. Show that, if T > 0 is small enough,then the MFG system has at least a solution.

Exercice 2 (Infinite horizon problem). We consider here an infinite horizon problem. For simplicity of
notation, we assume that the dynamics of a small player is given by

Xs = x+

ˆ s

t

b(r,Xr, αr,m(r))dr +Bs −Bt, s ≥ t,



while the cost function is

J(t, x, α) = E
[ˆ +∞

t

e−r(s−t)L(s,Xs, αs,m(s))ds

]
where r > 0 is the instantaneous discount rate (representing the preference of a player for the present).
As usual, m(t) is the distribution of the players at time t (probability on Rd). The initial distribution is
denoted by m0. The map L is supposed to be bounded (so that the integral converges). Arguing formally
as above, write the MFG system associated with this problem.



Hint for the exercises

Solution of Exercise 1.

1. Players want to be as close as possible from the opposite of the average of the crowd (the terms
(Xt + e(t))2) while not paying a loo large control (the term α2

t ).

2. The MFG system in this setting takes the form:

−∂tu(t, x)− 1

2
∂xxu(t, x) +

1

2
|∂xu(t, x)|2 − 1

2
(x+ e(t))2 = 0

∂tm(t, x)− 1

2
∂xxm(t, x)− ∂x(m(t, x)∂xu(t, x)) = 0

e(t) =

ˆ
R
xm(t, dx)

m(0) = m0, u(T, x) =
1

2
(x+ e(T ))2

3. It is a straightforward verification.

4. The equation for m should be understood in the sense of distribution. Let us compute however
formally

e′(t) =

ˆ
R
x∂tm(t, dx) =

ˆ
R
x(

1

2
∂xxm(t, x) + ∂x(m(t, x)∂xu(t, x)))dx.

We integrate by parts to obtain, since lim|x|→±∞m(t, x) = lim|x|→±∞ x2|∂xm(t, x)| = 0:

e′(t) = −
ˆ
R

(
1

2
∂xm(t, x) + (m(t, x)∂xu(t, x)))dx

= 0−
ˆ
R
(2a(t)x+ b(t))m(t, x)dx = −e(t)− b(t),

since a(t) = 1/2 and
´
Rm(t, dx) = 1.

5. The system satisfied by (b, e) is(
b′(t)
e′(t)

)
=

(
2 1
−1 −1

)
=

(
b(t)
e(t)

)
, e(0) = e0 :=

ˆ
R
xm0(dx), b(T ) = e(T ).

The solutions of the system are of the form(
b(t)
e(t)

)
= Av1 exp{λ1t}+Bv2 exp{λ2t}

with A,B ∈ R are to be found, λ1 = (1 +
√

13)/2, λ2 = (1 −
√

13)/2 and v1 and v2 are fixed
eigenvectors associated with these eigenvalues λ1 and λ2 of the matrix. Note that {v1, v2} is a basis
of R2. The initial and terminal conditions read

Av1,2 +Bv2,2 = e0, Av1,1 exp{λ1T}+Bv2,1 exp{λ2T} = Av1,2 exp{λ1T}+Bv2,2 exp{λ2T},

which determines completely A and B provided

v1,2(v2,1 − v2,2) exp{λ2T} − v2,2(v1,1 − v1,2) exp{λ1T} 6= 0,

which is the case for T = 0 (since {v1, v2} is a basis) and therefore for T > 0 small enough. We can
then find c(t) easily. This gives a solution to the system because a solution the equation for m can
be obtained as the law of the solution to dXt = −(Xt − b(t))dt+ dBt with an initial condition X0

with law m0.

Hint of the solution of Exercise 2. One finds that the pair (u,m) solves the system:
(i) −∂tu(t, x) + ru(t, x)− 1

2
∆u(t, x) +H(x,Du(t, x),m(t)) = 0 in (0,+∞)× Rd

(ii) ∂tm(t, x)− 1

2
∆m(t, x)− div (m DpH(x,Du(t, x),m(t))) = 0 in (0,+∞)× Rd

(iii) m(0) = m0 in Rd, u bounded


