Notes on the course on MFG - Course 2
Comments on Section 4.2 of the course on MFG.

The aim of this presentation is to simplify the lecture of Section 4.2 of the course devoted to the

existence of a solution for the (relatively simple) MFG system

(1)

(i) —Ow— Au+ %|Du|2 = F(x,m(t)) in R? x (0,7T)
(i1) Oym — Am —div(m Du) =0 in R% x (0,7)
(#i) m(0) =mo, u(z,T) = G(x,m(T)) in R?

The assumptions for this are explained at the beginning of Section 4.2 and are assumed to hold.

1. Explain why, formally, the MFG system corresponds to a control problem with infinitely many

agents where the dynamics for each agent is
S
X, :er/ agds + B, — By
t

and where the cost (given the flow of probability measures (m(t))) is

71
J(t,z,a) =E /t (§|ozs|2—|—F(Xs,m(s)))ds—i-G(XT,m(T))

The proof of the existence of a solution to is based on a fixed point argument. Given a flow
of probability measures t — u(t), one first solves the Hamilton-Jacobi equation (with unknown
u = u(t, z), depending on )

@ { —Ou— Au+ %|Du|2 = F(z,u(t))  inRx (0,T)

u(z, T) = G(a, u(T)) in R4

and then the Fokker-Planck (or Kolmogorov) equation (with unknown m = m(t, z), still depending
on p, through w)

Oym — Am —div (m Du) =0 in R? x (0,7)
3) m(0) =m in R?
= 0 m

This defines a map ¥ which, to “any” u associates some m. The problem is to understand in what
extend the map V¥ has a fixed point.

. Note that a fixed point of ¥ is (formally) a solution of the MFG system ().

There are a huge number of theorems ensuring the existence of a fixed point for a map V. We will
be mostly interested in two of them:

(a) the more standard one is Banach fized point Theorem, which asserts the existence of a unique
fixed point of a map ¥ provided that W is defined on a complete metric space into itself and
is a contraction. When applied to MFGs, this fixed point theorem requires some “smallness
conditions” on the data (for instance T'), which are seldom met in practice (see, for instance,
Exercise 1 in the previous notes on the course).

(b) Schauder fixed point Theorem (a generalization to infinite dimensional spaces of Brouwer fixed
point Theorem). It says that, if K is a nonempty convex closed subset of a Hausdorff topologi-
cal vector space X and W is a continuous mapping of K into itself such that U(K) is contained
in a compact subset of K, then ¥ has a fixed point.

(c) Let us also mention Schaefer fized point Theorem, which says that, if ¥ is a continuous and
compact mapping of a Banach space X into itself, such that the set {x € X, x = A¥(z), ) €
[0,1]} is bounded, then ¥ has a fixed point. We won’t use it here but it is a possible alternative
to handle the problem.



Let us first build a compact convex space as required by Schauder fixed point Theorem. Recall
that Py is a set of Borel probability measures on R? with finite first order moment endowed with
the Monge-Kantorovitch distance d; (see Chap. 3.2). We fix a constant C; > 0 to be chosen below
and let C be the set of mapﬁﬂ w € C°([0,T],P;) such that

d
upw <Cy and sup / | *m(t, dz) < C1 .
T teto) Jas

3. Prove that C is a convex compact subset of C°([0, T], P;) (which is itself embedded in the topological
space of signed measures on [0,7] x R9).

The main step is to show that the map ¥ is well-defined from C into itself and continuous. For this
let u € C and u be the classical solution to (by classical solution, we mean that D?u and dyu
exist and are continuous). We will assume for a while that this solution exists, is unique, with D?u
and O;u bounded, and that there exists a constant Cy > 0, independent of y and of C7, such that

(4) [Dulloe < Ca.
We will explain this later (in step (L0)).
Let Xy be a random variable of law mg and X be the solution to

t
Xt = XO — / Du(s,Xs)ds + \/iBt
0

where B is a d—dimensional BM. We denote by m(t) the law of X;.

4. Show that there exists a constant C3, depending on Cs and on d only (in particular independent of
w and Cy) such that

sup / [e[*m(t,d) = sup E[|X;]*] < Cs,
Rd

te[0,T] te[0,T]

and d El|X: — X
sup T mls) o SENX = X
R e A PR RE

(Hint: have a look at Section 3.1.3 of the course).

5. Show that the law of X is a solution in the sense of distribution of .
We will admit that the solution to in the sense of distribution is unique.

6. How can one choose C; in order to ensure that ¥ is defined from C into itself?

We now turn to the analysis of the Hamilton-Jacobi equations of the form and show the exis-
tence of a solution satisfying . It could be a very delicate issue for a general Hamiltonian H,
which would largely exceed the scope of these notes. However, the specific choice of the quadratic
Hamiltonian makes things much simpler.

7. Set w = €“/? and check that u is a solution of (2)) if and only if w is a solution of the linear
(backward) equation

5) { —dyw(t,z) — Aw(t,z) = w(t,z)F(z, u(t))  inR? x (0,7)

w(z,T) = F@nT)/2 in RY

We will admit the following result (the so-called Schauder estimates). We consider the following
second order parabolic equation

{ wy — Aw + {(a(x,t), Dw) + b(z, t)w = f(x,t) in R? x (0,7
w(zx,0) = wo(z) in RY

(6)

1cO([0,T),P1) is the set of continuous maps from [0, T] to P;.



10.

11.
12.
13.

14.
15.

We denote by C*T¢ (for an integer s > 0 and a € (0,1)) the set of maps z : [0,7] x R? — R such
that the derivatives 9F DLz exist for any pair (k,) with 2k + [ < s and such that these derivatives
are bounded and a—Holder continuous in space and («/2)—Holder continuous in time. It is known
that, if @ : R x [0,7] — R, b, f : [0,7] x R — R and wy : R? — R belong to C* for some
a € (0,1), then the above heat equation is has a unique weak solution and this solution belongs to
C%*t@ (references in the course).

Another estimates which will be needed is the following: if @ = b = 0 and f is continuous and
bounded, any classical, bounded solution w of @ satisfies, for any compact set K C (0,T) x R?,

|Dw(t,z) — Dw(s,y)]
7 sup < C(K, |wlloo)l flloo
(7) UL A oy - By T T (K, [Jwlloo) Lf]

where 5 € (0,1) depends only on the dimension d while C(K, |w||«) depends on the compact set
K, on ||w||s and on d (Reference in the course).

Show that there exists a unique classical solution w to . Derive from this that has a unique
classical solution 1 and that D?u and 0;u are bounded.
An important property of equations of the form is the comparison principle.
(difficult - can be omitted) Let f : [0,7] x R? and g : R? — R belong to C®. Let u and v be in C>*+
verify
1
—Owu(t,z) — Ault, z) + §|Du(t, z)? < f(t,x) in R? x (0,7)
u(z,T) < g(x) in R?

{ —Ow(t,x) — Av(t,z) + Dot )2 > f(tr) iR x (0,T)
v(z,T) > g(x) inR

(one says that u is a subsolution while v is a super solution of the equation). Show that u < v.
This result is called a comparison principle.

Infer from the comparison principle that the solution u to is uniformly bounded independently
of p and C; and uniformly Lipschitz continuous in space independently of p and Cy. This shows
the existence of Cy in .

(Hint: for the bound, find constant C' (independent of y and C7) such that v (t) = C(T —t + 1)
is a supersolution and v~ (t) = —C(T — t + 1) is subsolution of (2. For the Lipschitz regularity, fix
h € R? and find a constant C' > 0 such that v*(t,x) = u(t,z+h)+C|h|(T —t+1) is a supersolution
while v=(t,z) = u(t,x + h) — C|h|(T — t + 1) is a subsolution of (2).)

So far we have proved that ¥ : C — C is well-defined. It remains to check that it is continuous.
Assume that (u,) converges to to some g in C. Let (up,m,) and (u,m) be the corresponding
solutions of and associated with u,, and p respectively.

Use the comparison principle to prove that (u,) converges to u uniformly on [0, 7] x R%.
Use the estimate in @ as well as to prove that Du, is locally equicontinuous and bounded.

Infer from this that any limit of a subsequence of the compact sequence (m,,) in C is a solution of
in the sense of distribution.

Conclude that ¥ has a fixed point.

Use Schauder estimates to show that, if m is the solution to , then m has a density which is in
cte,



