
Notes on the course on MFG - Course 3
Comments on Sections 4.2.3 and 4.2.5 of the notes on MFG.

The aim of this presentation is to simplify the lecture of Section 4.2.3 of the notes devoted to the
uniqueness of a solution for the (relatively simple) MFG system

(1)


(i) −∂tu−∆u+

1

2
|Du|2 = F (x,m(t)) in Rd × (0, T )

(ii) ∂tm−∆m− div (m Du) = 0 in Rd × (0, T )

(iii) m(0) = m0 , u(x, T ) = G(x,m(T )) in Rd

and to the interpretation for games with finitely many players (Section 4.2.5 of the notes). The assump-
tions on F and G are discussed at the beginning of Section 4.2 and are assumed to hold here.

1. Here we explain why there exists at most a unique classical solution to (1) under the monotonicity
condition

(2)

ˆ
Rd

(F (x,m1)− F (x,m2))d(m1 −m2)(x) ≥ 0 ∀m1,m2 ∈ P1,

and

(3)

ˆ
Rd

(G(x,m1)−G(x,m2))d(m1 −m2)(x) ≥ 0 ∀m1,m2 ∈ P1 .

Let (u1,m1) and (u2,m2) be two classical solutions of (1).

(a) Show that

d

dt

ˆ
Rd

(u1(t, x)− u2(t, x))(m1(t, x)−m2(t, x))dx

= −
ˆ
Rd

(F (x,m1(t))− F (x,m2(t))(m1(t, x)−m2(t, x))dx

−
ˆ
Rd

1

2
((m1(t, x) +m2(t, x))|Du1(t, x)−Du2(t, x)|2dx

(b) Use the monotonicity of F and G to infer that Du1 = Du2 in {m1 > 0} ∪ {m2 > 0}.
(c) Prove then that m1 and m2 solves the same Kolmogorov equation and therefore have to be

equal.
(Hint : use the representation of m1 and m2 in terms of SDE in the Course 2)

(d) Using the comparison principle (see Course 2), conclude that u1 = u2.

Exercice 1. Using the same technique, show that the slightly more general MFG system
−∂tu(t, x)−∆u(t, x) +H(t, x,Du(t, x)) = F (x,m(t)) in (0, T )× Rd,
∂tm−∆m(t, x)− div(m(t, x)DpH(t, x,Du(t, x)) = 0 in (0, T )× Rd,
m(0) = m̄0, u(T, x) = g(x,m(T )) in Rd,

has at most a classical solution if H = H(x, p) is convex in the p variable and (2) and (3) hold.

2. Before addressing the mean field limit, let us understand better the MFG system (1). Fix (u,m)
a solution of the MFG system (1). We consider a single player, with a random initial position X0

with law m0. He faces the following minimization problem

(4) inf
α
J (α) where J (α) = E

[ˆ T

0

1

2
|αs|2 + F (Xs,m(s)) ds+G (XT ,m(T ))

]
.

In the above formula, Xt = X0 +
´ t
0
αsds +

√
2Bs, X0 is a fixed random intial condition with law

m0 and the control α is adapted to some filtration (Ft). We assume that (Bt) is an d−dimensional
Brownian motion adapted to (Ft) and that X0 and (Bt) are independent.



Exercice 2. (a) Show that ᾱ(x, t) := −Du(x, t) is optimal for this optimal stochastic control
problem: namely, that, if (X̄t) be the solution of the stochastic differential equation{

dX̄t = ᾱ(X̄t, t)dt+
√

2dBt
X̄0 = X0

and α̃(t) = ᾱ(X̄t, t). Then

inf
α
J (α) = J (α̃) =

ˆ
RN

u(x, 0) dm0(x) .

(Hint: as in a usual a verification theorem, compute u(t,Xt) along a standard solution Xt)

(b) Check that m(t) is the law of X̄t for any t ∈ [0, T ].
(Hint: compute the equation satisfied by the law of Xt and conclude by uniqueness of the
weak solution of the Fokker-Planck equation).

3. We now study the mean field limit. We consider a differential game with N players which consists in
a kind of discrete version of the mean field game. In this game player i (i = 1, . . . , N) is controlling
through his control αi a dynamics of the form

(5) dXi
t = αitdt+

√
2dBit

where (Bit) is a d−dimensional brownian motion. The initial condition Xi
0 for this system is also

random and has for law m0. We assume that the all Xi
0 and all the brownian motions (Bit)

(i = 1, . . . , N) are independent. However player i can choose his control αi adapted to the filtration
(Ft = σ(Xj

0 , B
j
s , s ≤ t, j = 1, . . . , N}). His payoff is then given by

JNi (α1, . . . , αN )

= E

ˆ T

0

1

2
|αis|2 + F

Xi
s,

1

N − 1

∑
j 6=i

δXj
s

 ds+G

Xi
T ,

1

N − 1

∑
j 6=i

δXj
T


Our aim is to explain that the strategy given by the mean field game is suitable for this problem.
More precisely, let (u,m) be one classical solution to (1) and let us set ᾱ(x, t) = −Du(x, t). With
the closed loop strategy ᾱ one can associate the open-loop control α̃i obtained by solving the SDE

(6) dX̄i
t = ᾱ(X̄i

t , t)dt+
√

2dBit

with random initial condition Xi
0 and setting α̃it = ᾱ(X̄i

t , t). The main result of Section 4.2.5
(Theorem 4.2.9) says that, for any ε > 0, there exists N0 such that, if N ≥ N0, then the family (α̃i)
is an ε−Nash equilibrium in the N−player game:

JNi (α̃1, . . . , α̃N ) ≤ JNi ((α̃j)j 6=i, α) + ε

for any control α adapted to the filtration (Ft) and any i ∈ {1, . . . , N}. The proof is a little bit
technical and we discuss here only a few points through questions (and we do it for i = 1)

Exercice 3. (a) Let us denote by X̄j
t the solution of the stochastic differential equation (6) with

initial condition Xj
0 . Show that the (X̄j

t ) are independent and identically distributed with law
m(t) (see Exercise 2).

(b) Using the law of large number, show that the (random) empirical measuremN
t =

1

N − 1

N∑
j=2

δXj
t

converges to m(t) P−a.s.

(c) Infer that, for any α adapted to the filtration (Ft),

lim
N→+∞

JN1 (α1, α̃2, . . . , α̃N ) = J (α),

where J is defined in (4).

The computation above explains that, roughly speaking, one can replace de cost JN1 by J ,
which simplifies of course the problem.


