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INTRODUCTION

L’analyse des données (AD), et plus généralement la fouille des données (FD), est constituée d’un en-
semble de techniques qui ont pour but de déterminer les structures possédées par I’ensemble des données.
Ces structures peuvent étre de nature descriptive ( partition, hiérarchie, plan factoriel,...) ou explicative (
arbre de décision, analyse factorielle discriminante,...). L’analyse de données peut étre considérée comme
une science expérimentale : propriétés démontrées aprés avoir été observées, indice empirique pour l'inter-
prétation des résultats, codages établis de facon heuristique.

Par ailleurs, les premiers résultats fournis par une analyse factorielle sont généralement évidents, alors
que les résultats suivants ne sont pas triviaux et sont souvent intéressants.

Les données peuvent se présenter sous différentes formes : tableaux individus x variables (dans un but
descriptif, 'interprétation établira des liens entre variables et groupes d’individus qui se ressemblent selon
ces variables), tableaux de distances ( représentation des individus dans un plan, sur une droite, etc ou
partitionement de ensemble des individus), tableaux de contingence ( ces tableaux croisent les ensembles
de modalités de deux caractéres qualitatifs), tableaux de présence-absence (0/1), tableaux de notes, tableaux
de pourcentage...

Les techniques d’analyse de données se différencient non seulement par les outils mathématiques utilisés
( algeébre linéaire dans le cas de l'analyse factorielle, théorie des graphes et combinatoire pour certaines
méthodes de classification ) mais aussi par les buts poursuivis qui peuvent étre un but descriptif ou un but
prévisionnel. Le but descriptif consiste & essayer d’obtenir une représentation simplifiée aussi proche que
possible des données initiales, le but prévisionnel consiste & expliquer et prévoir une ou plusieurs variables
en fonction d’autres variables. Dans ce cours, nous présenterons les techniques suivantes :

e Analyse en composantes principales (ACP) : rechercher des axes d’inertie d’un systéme de points
affectés de poids, ce qui permet d’en déduire des sous-espaces de dimensions réduites sur lesquels la
projection des points est la moins déformante.

e Analyse des correspondances (AC) : double ACP ayant un but a la fois descriptif et prévisionnel (
étude de liens existants entre lignes et colonnes d’un tableau).



CHAPITRE 1

NUAGES DE POINTS

1. Tableau de données

On observe p variables quantitatives mesurées sur un échantillon de taille n. Les données sont rassemblées
en un tableau ou matrice de n lignes et p colonnes. On note X ce tableau de données, son terme général
xz , situé a la iéme et jéme colonne, désigne la valeur prise par le iéme individu pour la variable j.

On note I = [1,n] et J = [1,p] qui sont les ensembles d’indices désignant respectivement les n individus
et les p variables.

X = (#])ierjes € Mnp(R).

Ainsi les valeurs prises par la variable 27 pour les n individus se lisent sur la jéme colonne et les valeurs
prise par l'individu ¢ pour les p variables se lisent sur la iéme ligne. On note z’ la jéme variable et x; le
1éme individu :

] !
V(i j) € [1,n] x [1,p], 27 = cleR"etz; = 1 | €RP
af, xy
Ainsi
i
X =" 2] = | :
x/

2. Nuages des individus et nuages des variables

On munit RP de la base canonique, O étant 1'origine de ce repére, on peut alors associé a chaque individu
i le point M; tel que

Chaque axe représente une variable. L’ensemble des points Mx = {M;, 1 < i < n} est appelé le nuage des
individus et RP est ’espace des individus.
De méme, on munit R de la base canonique, on peut alors associé & chaque variable le point N7 tel que

— .
Vi e [1,p], ON? =a’.

Chaque axe représente un individu. L’ensemble des points Ny = {N7, 1 < j < p} est appelé le nuage
des variables et R™ est ’espace des variables.

Les ensembles R™ et RP sont considérés comme des espaces affines. Dans 'annexe A, on rappelle les
principales notions a connaitre pour ce cours.
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3. Métrique dans un espace euclidien, distance dans un espace affine
Définition 1.1 — Métrique

On considére F un espace euclidien de dimension n, ot n est un entier naturel non nul, muni d’un
produit scalaire noté < .,. >. Soit B = (e1,- - ,e,) une base de E. La matrice du produit scalaire
dans la base B est la matrice M carrée d’ordre n et de terme courant

V(’L,j) S [[1,’/1]]2, m;; =< €j,ej > .

On appellera M la métrique de E.

Proposition 1.2

Soit E un espace euclidien de dimension n, ot n est un entier naturel non nul. Soit M la métrique
de E dans la base B = (e1,- -+ ,en). La matrice M est symétrique, définie et positive. De plus soit u
et v deux vecteurs de E, on note U et V' les matrices représentant u et v dans B, on a

<u,v>=U'MV = V' MU.

On note le produit scalaire avec M en indice pour indiquer la métrique utilisée : < u,v >pr.
Réciproguement, toute matrice d’ordre n symétrique, définie positive permet de définir un produit
scalaire dans E en utilisant la relation précédente.

Remarque 1.3. — La base B est orthonormée si et seulement si la matrice M est égale a I'identité.

Démonstration. — La matrice M est symétrique car le produit scalaire est symétrique. Par ailleurs, on a

n n
U = E U;€; V= E Vj€j.
i=1 Jj=1

Donc d’aprés les propriétés du produit scalaire de bilinéarité et symétrie, on a

< U, v >= ZZuwjmm =U'MV =V'MU.

i=1 j=1
On en déduit que pour toute matrice colonne U
U'MU = ||lu||* <0,

donc M est positive. Enfin U’ MU = 0 implique u = 0 soit U = 0 donc M est définie positive.

Réciproquement soit M matrice d’ordre n symétrique, définie positive, on se place dans R™ muni de la
base canonique, pour tout vecteur u et v de R™ , on peut associer les matrices U et V respectivement & u
et v, on pose alors

d(u,v) =UMV.
On vérifie que ¢ est un produit scalaire sur R"™.

O

Pour étudier la proximité entre deux individus d’un méme nuage de points, on introduit une distance
notée d entre les individus.
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Soit € un espace affine associé a Iespace euclidien E. Soit M; et Ms deux points de &, la distance
entre M, et M est égale & la norme du vecteur joignant ces deux points :

S
d(My, My) = || My Ma||.

Dans toute la suite de ce cours, nous noterons M la métrique de I’espace des individus RP. Si I’on suppose
que la matrice M est diagonale M = diag(m,--- ,m,;), alors la distance entre les individus ¢ et 7’ est donnée
par

P
d(wi,ay) = | Y my(r] — )2
j=1
Par ailleurs chaque individu ¢ est muni d’une masse, appelée aussi poids, notée p; et telle que

Viel, p;>0et sz‘zl

i=1

On note D, la matrice diagonale définie par

Dp = diag(pla e apn)

En général, les poids sont tous égaux a 1/n, mais ce n’est pas toujours le cas comme par exemple en Analyse
des Correspondances. Alors ’espace des variables R™ est muni de la métrique D,,. Par conséquent la distance
entre deux variables est

n
d(z?,27 ) = sz(mf —al)2.
=1

4. Centre de gravité du nuage Mx

Le centre de gravité du nuage des individus M; affecté du poids p; est le point G tel que
n
i=1
La jéme coordonnée de G est donnée par
n
3= il =,
i=1

Ainsi g; est la moyenne de la variable 27 et les coordonnées du point G sont les p moyennes des p
variables.

On note 1, le vecteur de R™ dont toutes les coordonnées sont égales a 1, on a

g1
g=0G=|:|=xD,1,.
Ip

,
\.
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D1

Démonstration. — Puisque Dpl, = | . |, on en déduit que
Pn
Vi Lol g;=a" Dyl
ce qui donne le résultat. O

Remarque 1.7. — Lorsque I'on se place dans R” muni de la métrique Dy, le vecteur 1,, est unitaire, soit
Pyect(1,,) 1a projection orthogonale sur Vect 1,,, alors on a
Vu € R", Pyecr(r,) () =< u,1, > 1, = U'Dpl,.

On en déduit que g; est I'abscisse de la projection orthogonale pour la métrique D,, de 7 sur Vect(1,,).

Il est naturel de centrer le nuage des individus sur le centre de gravité G ce qui revient a construire un
nouveau tableau Y tel que

V(i j) € [L,n] x [L,p], o] =a] —ad,
soit
Vi€ [[1,71]]7 Yi = M; — G.

Ainsi dans ce nouveau tableau de données, toutes les variables y7, 1 < j < p, sont de moyennes nulles.

Proposition 1.8

On a
Y=X-1,4

Par ailleurs
yj =l — gjln = (Id - P\/ect(ln))(xj)v

ce qui signifie que y’ est la projection de 27 sur ’hyperplan orthogonal & 1,,.

5. Support des nuages
Définition 1.9 — Support d’un nuage

On appelle support d’un nuage le plus petit sous-espace affine contenant les points du nuage. On
note
Sx = supp(Mx) et Sy = supp(My).
Puisque le nuage My est centré, le support Sy contient l'origine et est assimilé & un sous-espace
vectoriel
Sy = Vect(y1,- -+ ,yn) =ImY".

Proposition 1.10

Soit r le rang de la matrice Y, alors la dimension de Sy est égale a r, le rang de Y.

Démonstration. — Une matrice et sa transposée ont méme rang donc r est égale a la dimension de ’espace
vectoriel générée par les vecteurs lignes soit la famille (y;)1<i<n- O
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6. Matrice Variance

Définition 1.11 — Matrice Variance

La matrice variance, notée V', des p variables pour les n individus est une matrice carré d’ordre p et
de terme courant v; ;» donné par

V(i 5") € [1,p1%, vj 4 = Cov(a?,2’) sz T —9) @] —g) =<¢’,y" >p,

Proposition 1.12
En notation matricielle, on a
V =Y'D,Y.
ou encore
V=(X-1,9)Dy(X —1,9') = X'D, X — g¢'.

La matrice V' se décompose de la maniére suivante

n
V= Zpi Yi Y-
i=1

Démonstration. — C’est une preuve directe, soit (4,5’ € [[1,p]]2 le terme courant de Y'D,Y est
n
(Y'DY)j50 = > ylpiyl =vj 0.
i=1
D’ou I'égalité. En remplacant Y en fonction de X, on obtient
V=(X—1,9")Dy(X — 1,9).
Puis on développe cette expression donc
V =X'D,X — g1,D,X — X'D,1,4 + g1, D,1,g

Or 1,, est un vecteur unitaire pour la métrique D, et par symétrie du produit scalaire, on a

1,D,1, =1, etgl,D,X =X'D,l,¢' = gg'.
Il reste alors
V=X'D,X —gq.

La décomposition se prouve directement aussi : soit (j,j’) € [1, 10]]2 le terme courant de Z Di i Y est

i=1
n n
O _piviviiy = Y pilyivl); sz vyl =i
i=1 i=1
D’ou l'égalité. O
Remarque 1.13. — Si la matrice V est définie positive, elle fournit une métrique sur RP, métrique induite

par Dy, et Y. Si V n’est pas réguliére, on aura seulement une pseudo métrique.

Proposition 1.14

Le rang de la matrice V' est égal au rang de Y .
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Démonstration. — On montre directement que le noyau de Y est égal au noyau de V. En effet soit u de
KerY, alors Yu = 0. donc Vu = Y'D,Yu = 0 ainsi u € Ker V. Réciproquement si u € Ker M, alors
Y'DpYu =0 soit v'Y'DpYu = 0 ce qui donne |[Yul|p, =0 donc Yu =0 et u € KerY.

Ensuite on applique le théoréme du rang et on conclut

rang(Y) =p—dim(KerY) = p — dim(Ker V) = rang(V).

O
Proposition 1.15
U1 (%
Soientu= | : | etv=| : | deRP, on définit deux nouvelles variables z et t par
Up Up
= Zujx] ett= Zvjxj.
j=1 j=1
Alors la covariance entre z et t est donnée par
Cov(z,t) = u'Vo.
Si la matrice V' est définie positive, V' définit une métrique pour laquelle la covariance entre z et t
est le produit scalaire entre les vecteurs z et t et la variance de la variable z est le carré de la norme
de z soit
Cov(z,t) =< u,v >v et V(z) = ||ull.
Démonstration. — On a
P
Cov(z,t) = Cov Z Z vj/xj
PP
= Z Z ujv; Cov(a?, 2 ), par bilinéarité de la covariance,
J: :
= u’Vv
O

7. Effet d’une transformation linéaire A du nuage des individus

On considére une application linéaire f de 'espace des individus RP dans R® ol s est un entier naturel.
Le nuage de points M x est alors transformé en un autre nuage noté M. Si le paramétre s est inférieur a
p, le nouveau nuage de points Mz évolue alors dans un espace de dimension plus faible.

On note A la matrice qui représente ’application linéaire f. Ainsi A est une matrice de format s x p. On
note

Mz ={z1,---,z,} avec Vi € [1,n], 2z = f(x;) = Ax;.

On obtient ainsi une nouvelle matrice Z dont les lignes sont les z1,- - , 2, soit

= AX' donc Z = X A'.
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Le centre de gravité de My affectés des poids p1,--- ,pn Noté gz est
9z = Ag.
La matrice de variance de Z noté Var(Z) est

Var(Z)=Var(XA") = AV A’

Démonstration. — On a
n n
9z = Zpizi = ZPz’AﬂCz‘ = Ag.
i=1 i=1

On note Z, la matrice centrée
Ze=7Z 1,9y =XA —1,JA' =Y A,

donc

Var(Z) = Z\DyZ, = AY'D, YA = AV A’

8. Inerties

Dans tout ce chapitre, on se place dans RP considéré comme un espace euclidien muni d’une métrique
notée M.

Soit A un point, l'inertie du nuage M = (x;)1<i<» par rapport au point A est
n
Ia(M) =" pilles — A3
i=1

Si A = G le centre de gravité , I (M) est appelée inertie totale du nuage :
I (M) = Ig(M).

Si I’on suppose que M = diag(my,--- ,my) alors
n n P ' p ‘
Ip(M) = pilluillie =Y pi > _mi(l)? = m; v(y'),
i=1 i=1 j=1 j=1

ou V(y?) représente la variance de y?. L’inertie totale est ainsi la somme pondérée des variances des variables
initiales, elle mesure la dispersion du nuage autour du centre de gravité.

On a

Ia(M) = Ir(M) + A = Gl3;-
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Démonstration. —

lzs = A3, = o —G+G = Al
lzi — Gy + |G — A2, +2 <2 — GG — A >y .

On en déduit que

IaM) = > pillei — A3,
i=1

= > pillri =GR + ) _pllG— A} +2 <) piwi - G),G— A>y,
=1 =1 =1

= Ir(M)+G - Al

Définition 1.19 — Inertie par rapport 4 un sous-espace affine

Soit £ un sous-espace affine de RP et E le sous-espace vectoriel associé. Soit A un point de £ et B
un point de RP, la distance de B & £ est

v (B, E) = |(Id — Pg)(AB)||u,

ou Pg est la projection orthogonale sur E.
On appelle inertie du nuage M = (M;)1<i<n par rapport au sous-espace affine £

Ig(./\/l) = ipid?\/[(Mi,g).

p=l1

Remarque 1.20. — La définition de dps (B, E) ne dépend pas du point A de €. En effet soit C' un point
de & distinct de A alors

(Id — Py)(CB) = (Id — P)(CA) + (Id — Pp)(AD),

— —
or le vecteur C'A est dans E donc sa projection sur E est lui-méme, ainsi (Id — Pg)(CA) = 0 donc

(Id— Pg)(CB) = (Id - Py)(AB),

Ce qui montre que la définition ne dépend pas du choix du point A.

Remarque 1.21. — Si l'inertie est nulle Ig(M) = 0, cela signifie que le nuage M est inclus dans le
sous-espace affine £.

Proposition 1.22

Soit Eg un sous-espace affine de direction E et Eg le sous-espace affine de direction E passant par
G, centre de gravité de M , alors pour tout point A de £, on a

Ie(M) = Ieo (M) + ||(Id — pr)(AC) ;.
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Démonstration. —
IeM) = > pidy (M, ),
i=1

_ ZpiH(Id — Pp)(AM)|7,
= Y pillzd - Pp)(AG + GM,)|2,
=1

= Y plld - Pe) AP + Y pill(1d — P)(GIL))|?
i=1 i=1

+2 < (Id — Pg)(AC), zn:pi(fd — Pp)(GM,) >,

=1

= |[(Id— Pe)(AG)|2 + Iee (M),
O

Ce résultat montre que parmi tous les sous-espaces affine paralléles & E, celui qui posséde une inertie
minimale est celui qui passe par le centre de gravité du nuage.

Par la suite, on recherche le ou les sous-espaces affines de dimension k& donnée par rapport auquel(s) le
nuage a une inertie minimale : c’est 'objectif de ’ACP.

On voit donc que ces sous-espaces optimaux passent nécessairement par G. C’est la raison pour laquelle

on supposera, en général, par la suite que le tableau X est centré. Si ce n’est pas le cas, on raisonnera sur
Y.

Proposition 1.23

On note £+ le sous espace affine passant par G et de direction E*-, on a
Ip = Ig(M) + Ig. (M).
On pose
Je(M) = Igi (M).
Jg(M) est Uinertie totale de la projection de M sur &

Démonstration. — On a la relation Pg + P = Id, d’ou en utilisant Pythagore
Ie(M) + Igs (M) = Y pill(Id = Pp)(GM)|* + Y pill(Id — P )(GM))|* = Ir.
i=1 i=1
Pour le dernier point, il suffit d’appliquer la définition :

Je(M) = Y- pill(1d — PE)GIL)|? = 3 pil(Pe) (GIL) |

Ainsi la recherche de £ qui minimise Iz (M) est équivalent a rechercher £ qui maximise Jg(M).

Remarque 1.24. — Si Je(M) = 0, alors le nuage M est inclus dans £+.
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Proposition 1.25 — Cas particulier d’une droite affine passant par G

Soit €1 un vecteur unitaire pour la métrique M de RP. Soit &1 la droite affine passant par G associée
a Vect(er). On a

ng(./\/l) = GllMVM€1 =< e, VMer >y .

Démonstration. — Puisque pour tout vecteur u de RP, on a
PVect(el)(u) =< u,€1 > €1-

On en déduit que

Je (M) = Y pll(Pe)GIL)|

n
2
= E pi < Yi, €1 >,
i=1

n
= > pieiMyy,Me,,
=1
= MV Me.

Remarque 1.26. — Si Jg, (M) = 0, alors le nuage M est inclus dans Vect(e;)*.

Proposition 1.27 — Décomposition de inertie

On considére Eg un sous-espace affine de RP de direction E passant par G. Soit (€1,--- ,€) une
base orthonormale de E pour la métrique M, on compléte cette base en une base orthonormale de
RP? s0it (€1, , €k, €pt1,- - ,€p). ON @

IEG(M): Z ng(M)?

I=k+1
ot & est la droite affine passant par G de direction Vect(e;).

Démonstration. — On a pour tout vecteur u

k
Pg(u) = Z <u,€ >N €,
i=1
on en déduit que pour i fixé

p
I(Zd — Pe)(GM))|* = || > < GM;, e >u e,
l=k+1
ce qui donne
P
|(1d - P)GM)IP = Y <GMia >3,

I=k+1
et matriciellement

I(1d — Pe)GM)IP = 3 e MyyiMe.

l=k+1
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Par conséquent on obtient par interversion de somme

ISG (M) =

sz‘
p n
> aM (Z PiviY;

I=k+1

p

I=k+1

i=1

Z €MV Mey,
l=k+1

> Je(M).

I=k+1

Proposition 1.28 — Calcul de l’inertie totale

On a

=tr(VM).

Z GEMyingﬁb

)MG[,

11

Démonstration. — On applique la proposition précédente en remarquant que Uinertie totale est l'inertie
par rapport a espace RP lui-méme. Comme V M est une matrice associé & un endomorphisme symétrique,

on choisit comme base orthonormale une base constituée de vecteurs propres de VM soit (uq, - - -

\V/j S [[1,])]], VM’LL] = Aj Uj.

I

I(]RP)L (M),

p
> u MV Muy,
j=1

p

> Ailluglls,

,Up), On a
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On peut aussi raisonner directement : puisque la trace de AB est égal a la trace de BA, on en déduit

n
Ir = > willvillir,
=1

n
= Zpingyiv

i=1

n
= () _piyiMy:),
=1

= Y pite(yiMyy),

i=1

n
= Y pitr(Myy}),
=1

n
= tr(M ijyiyz/')a
i=1

= tr(MV)=tr(VM).

12



CHAPITRE 2

ANALYSE EN COMPOSANTES PRINCIPALES

Soit N' = {z;,7 € I} C R? un nuage de points de I'espace R? muni de la métrique M. Chaque point z;
est muni de la masse p; > 0 avec Zpi =1.
iel

1. Recherche du meilleur sous-espace de dimension k représentant A/

L’objectif de 'ACP est de rechercher pour un entier k fixé le ou les sous-espaces affine de dimension
k par rapport auquel(s) le nuage a une inertie minimale. D’aprés ce qui précéde, on sait que le meilleur
sous-espace & passe par G le centre de gravité de N. On peut donc prendre lorigine en O = G et il est
équivalent de rechercher un sous-espace vectoriel Ey, de dimension k tel que 'inertie In(Fy) soit minimale.
Comme

Ir =Ig, + JE,,

il est équivalent de rechercher E}, tel que Jg, soit maximale.

Le théoréme suivant décrit ’espace qui maximise Jg, parmi tous les sous-espaces vectoriels de dimension
k.

Théoréme 2.1 — ACP

La matrice VM est une matrice M-symétrique, positive. On en déduit que VM est diagonalisable,
que ses valeurs propres sont des réels et il existe une base M-orthonormale (uq,---up,) constituée de
vecteurs propres de VM associés aux valeurs propres respectives

AL S22 20,

On pose
Vk € [1,p], Er = Vect(uy,--- ,ug).
Alors on a
k
Vk € [[Lp]]? JEk = Zl/\z = Ee,v%?rr)fE:k(JE).
=
k
Réciproquement si F' est un sous-espace vectoriel de dimension k tel que Jp = Z Ai, alors il existe
i=1

une base orthonormale (v1, - --vp) constituée de vecteurs propres de VM associé auz valeurs propres
respectives \y > Ap > -+ > A, > 0, telle que

F = Vect(vy, -+ ,vg).
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Démonstration. — Pour le premier point, on a pour tout vecteur u et v de RP :
<u,VMv>y = uMVMy,
= (VMu)' Mo,

= < VMu,v>).
donc la matrice VM est une matrice M-symétrique. De plus
< VMu,u >py=u'MVMu.

or ' MV Mu est la variance d’une combinaison linéaire des variables initiales donc est positif. Ainsi la
matrice VM est une matrice M-symétrique, positive.
Pour le second point, soit £ un entier entre 1 et p, on a

k k
JEk = Z < UJ,VMUJ' >y = Z)\J
J=1 J=1
Puis on considére un sous-espace vectoriel E de RP de dimension k. Soit (hi,--- , k) une base orthonor-
male de F, on a
k

Jg =Y <hi,VMh; >y .
i=1
On décompose le vecteur h; dans la base (ui,---up), on a

p
Vi€ [LE], hi=> <hiu; >y uj
j=1
On en déduit que
p
Vie[Lk]l, VMh; =Y <hiuj >n Ajuy.

j=1

k p p
2
Jg = E E )\j <hi,Uj >u= E /\jq]‘

i=1 j=1 j=1
avec

k
q; :Z < hi,’LLj >?V[ .
i=1
Or en notant Pg la projection orthogonale sur E, on a
0 < g5 = [[Pe(uy)|* < flus|* =1,

ainsi que
p

» k
qu :Z Z <h7;,u]' >?M :ZthH?W = k.
j=1 i=1

i=1 \j=1

On en déduit donc

k D k
JE_Z)\j = Z)\jqj‘—Z)\j,
j=1 j=1 j=1
k p
= > NG -+ Y N,
j=1

j=k+1
k P
< Y Mg =D+ D Mg,
J=1 Jj=k+1

= Mk—FkX;=0.
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Par conséquent
k
JE <Y N =Jg,.
j=1

Réciproquement, on considére un sous-espace vectoriel F réalisant 1’égalité, on note (hy,-- - , hy) une base
orthonormale de E. De 'égalité

k
Jg =3 X\
j=1

on déduit que

P k P
NG =D+ D Nag =Y (g -+ D e,
j=1

Jj=1 j=k+1 j=k+1
soit
k p
D=2 (@G —D= > —N)g-
j=1 j=kt1

Le premier membre de I’égalité est négatif tandis que le second membre est positif puisque les valeurs propres
sont dans ’ordre décroissant. Par conséquent

k p
D= (-1 =0et Y (A—A)g =0.
J=1 j=k+1

Ce que 'on peut écrire
VielLklL (A—M)(g—1)=0etVje[k+1,p], (Ae—2Aj)q =0.
On considére les deux indices jg et j1 tels que
M2 22X > Ajpr = =A== _1 >N, > 2> A, >0,
On a donc

v] € lILjO]]a q; = 1et V] S [[jlap]]7 q; = 0.

Or g; représente la norme au carré de la projection orthogonale de u; sur E. Lorsque g; vaut 1, la norme
de uj, cela signifie que le vecteur u; est dans E. De méme lorsque g; = 0, alors u; est dans ’orthogonale de
E. On en conclut que

vect(uy, -+ ,uj,) C E et vect(uj,, -+ ,u,) C BT,
soit
vect(uy, -+ ,uj,) C E Cwvect(uy, - ,uj—1).

On peut donc construire une base orthonormale de E a partir de (uq,--- ,u;,) en rajoutant des vecteurs
du sous-espace propre associé a \i. Ainsi E admet une base orthonormale constitué de vecteurs propres de
V' M selon le théoréme. U

On peut introduire les définition suivantes :
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Définition 2.2

Soit (u1,---up) une base orthonormale de vecteurs propres de VM associé aux valeurs propres
respectives
A=A > 2>, >0,
pour tout entier 1 < a < p,
e l'axe Vect(u,) est appelé le aiéme axe factoriel du nuage de points N.
e v, = Mu, est appelé le aiéme facteur,
o Vi € [L,n], Yai =< Yi,ua >m= yiMu, = y.pa est Pabscisse de la projection de y; sur

Vect(uq) :
7/}04,1
Vo = =Yy, =Y Mu, est appelée a iéme composante principale.
'l,[}a,n
e le taux d’inertie expliquée par le aiéme axe factoriel, noté 7, est la quantité
_Aa . Aa
Tao — E = 5

>
=1

le taux d’inertie expliquée par E,, noté 7...., est la quantité

Mt +da
rl.,.a_T_;n.

2. Axes de totale M-symétrie

Définition 2.3 — Axe de totale M-symétrie

Un axe A est un axe de totale M symétrie pour le nuage N = {z;, 1 < i < n} sl y a symétrie
des points et des poids c’est-a-dire, en notant sa la symétrie orthogonale par raport a 'axe A, pour
tout entier ¢ compris entre 1 et n, on a

° SA(IZ‘) € N,

e sa(x;) et x; ont le méme poids p;.

Proposition 2.4

Tout aze de totale M-symétrie est un axe factoriel dans ’ACP du nuage N .

Démonstration. — On note g le centre de gravité du nuage N. On a

n n n
salg) = pisala) = pizi =Y pyay=g.
=1 =1 =1

Donc g est sur 'axe A. On en déduit que 'axe A est toujours un axe de totale M-symétrie pour le nuage
centré.
En notant IIA la projection orthogonale sur A, on a la relation

SA = QHA — Id.
De plus soit u un vecteur unitaire de 'axe A, on a pour tout 1 <i<mn

<y, u>p=<sa(yi),u>n ety +sayi) =2 <y, u>m u€ A
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Avec ces propriétés, on prouve que u est un vecteur propre de VM, en effet

VMu = (szyzy;> Mu,

i=1

n
= Zpi Yi <Yi, U >M,
i=1

n
= Zpi <VYi, U >M Yi,
i=1

= Z Pi <Yi,u>M Yi + Z Pi <Yi,u>M Yi,
i, yi€A i, yi EA

= D pi<ysu>m i+ Y pi <ynu>w (yi+salv))/2
i, yi€A i yi EA

= Zpi <yi,u>n (yi +sayi))/2,
i=1

n
- (Zpi (<yi,u >M)2> U.
i=1
n
Par conséquent A est un axe factoriel associé a la valeur propre Z pi (< yiyu > M)Q. O
i=1

3. Représentations des individus

Un individu ¢ du nuage N posséde de nouvelles coordonnées dans la base (u1,---u,) qui est une base
orthonormale de vecteurs propres de VM associé aux valeurs propres respectives

AM>X 2> 2>, >0,
Les nouvelles coordonnées de I'individu ¢ sont données par les composantes principales :

Y1
wa,i
1/);;,1'

Proposition 2.5 — Support du nuage des individus

Soit r le rang de Y. Alors seules les v premiéres valeurs propres sont non nulles

A2 2 >0=Ap == A
Ainsi le nuage N centré a pour support E,. = Vect(uy, -, u,).
Démonstration. — Comme V et VM ont méme rang puisque M est inversible, le rang de V M est celui de

V' qui est aussi celui de Y donc r, cela implique que VM posséde exactement r valeurs propres non nulles
donc

M > >N > ==X, = 0.

Or une valeur propre A, est aussi Jyect(u,)(N) et comme

Va € [[T + 1ap]]7 JVect(ua)(N) =0,
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on en déduit que le nuage N centré est inclus dans Vect(u, 41, -+ ,u,)" soit E, = Vect(ug, -+ ,u,). O

Ainsi lorsque Y est de rang r, un individu 7 a p — r coordonnées nulles donc est caractérisé par r valeurs
Vi1, -, ¥, au lieu des p coordonnées initiales dans la base canonique. Les nouvelles coordonnées de
I'individu 7 sont données par les composantes principales :

Y1

%ﬁm

0
Si le taux 71 2 est proche de 1, on visualise le nuage N dans le plan Vect(uy,us), noté plan 1 x 2. Sinon

on compléte cette représentation par les projections sur les plans 1 x 3, 2 x 3, voire si 71,23 est trop faible,
sur les plans 1 x 4, 2 x 4, etc.

Définition 2.6 — Qualité de représentation

La qualité de la représentation de I'individu 4 sur E}, est
QLT (yi, Ex) = cos® (0,1, ),

ou 0; g, est angle entre y; et Ej.

Proposition 2.7

On a
ST
QLT (y;, Ey) = Z QLT (y;, Vect(uy)) Z ot
— — IszIM
Démonstration. — On note P la projection orthogonale sur Ej, on a
< i, P(yi) >n= |lill [ P(ys) || cos(bs,.,)-
Or on a
k
P(y Z<yz,ua > g et |P(y)|3 = Z<yz,ua >3
a=1
donc

k
< ylaP(yl) >= Z Yi, U > = Zl/f = ||P yl)”]w
a=1

On en conclut que

) Plu; 2 k
0052(9“;,6) _ ( Yi (y ) >1\4>

[lyill " 112 (ya)ll ‘ IIyzHM

a=

O

Plus ce facteur de qualité se rapproche de 1, mieux est représenté 'individu ¢. S’il vaut 1, alors y; est
dans Fy.

On note parfois sur les listings, COR, (i) pour désigner 1000 x COSQ(ei,Vect(ua)) et aussi QLTg, (1) =
1000 x cos®(0;. i, )-
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4. Représentation des variables

Les variables y/ sont représentés par les vecteurs de l'espace R” muni de la métrique D,. Pour cette
métrique, la norme d’un vecteur est ’écart-type de la variable et le produit scalaire entre deux vecteurs est
la covariance entre les deux variables. La composante principale ¢, est un vecteur de R”.

Proposition 2.8

La composante principale 1, associée & la valeur propre A, est centrée, de variance égale a la valeur
propre A, et les composantes principales ne sont pas corrélées entre elles :

A sia=p3
Y(a, B) € [1,p]%, Cov(tha,Vs) =< Vo, g >p. =1 & ° )
(@8) € LT, Covlvort) =<t >n,={ o %070
Démonstration. — Toute composante principale est une combinaison linéaire des variables y/ qui sont
toutes centrées donc 1), est centrée. De plus on a
< 'll)o“ 'd]ﬁ >Dp = ¢;Dp¢ﬁ»
u, MY'D,Y Mug,
ul, MV Mug,
= )\g < Uq,UB >N -
D’ou le résultat. O

Proposition 2.9

Soit r le rang de Y. Alors seules les r premiéres valeurs propres sont non nulles

M= >N >0=XAyg == A
On pose
VOZ S |I17TI|’ Vo = ,llzja/ .
Va
La famille (v1,--- ,v,) est une base orthonormale de Vect(yl, - ,y?) = ImY, la aéme coordonnée

de i’ est donnée par

Ya
Vs

Vi<a<r, fa;=<v¢, >p

D ©

On a
7704,1
Na = = VAl et H%H?M = Ao

No,p
Démonstration. — Le premier point a déja été démontré. Puis pour tout 1 < k < r, le vecteur vy est une
combinaison linéaire des variables 3/, 1 < j < p, on en déduit que Vect(vy,- - ,v,) est inclus dans Im Y.
Par ailleurs ces deux espaces ont méme dimension 7 donc ils sont égaux. On en conclut que (vy,--- ,v,) est
une base orthonormale de Vect(y,--- ,y?) = ImY. Puis on a

1
Naj = ——=Yy’ DY Mu
VoV

donc

1

N \/TY’D,,YMUQ = v AalUaq.
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O
On représente donc la variable 47 dans ce nouveau repére et les nouvelles coordonnées de ¢/ sont
.5
Na,j
Mr.j
Définition 2.10 — Qualité de représentation
La qualité de la représentation de la variable ¢/ sur Fj, = Vect(vy,--- ,vg), avec 1 < k <7 est
QLT (y, Fy) = cos*(0,r,),
ou 0; r, est I'’angle entre Yl et Fy.
Proposition 2.11
On a i
J 9 2 _ 2
QLT (y’, Fp,) = ZQLT , Vect(vq)) Z < 1T ﬂH Vo >H =) T2,
a=1 a=1
ol 15,4 désigne la corrélation entre yJ et v, puisque ces deua: variables sont centrées.
Démonstration. — On note P la projection orthogonale sur Fj, on a
<y, P(y’) >p,= | | |IP(y")] cos(b;,r,)-
Or on a
k
P(y Z<y Vo >D, Va et || P(y’ ||D Z<y Ua>Dp-
a=1
donc
<y, Py Z<y ve >*= | P(y))D,-
On en conclut que
; ; 2 k j k
2 yj P(yj) 2
cos“(0;.p,) = ( Z » Vo >D Z "o
Tl TP 2= il T 2
O
5. Décompositions de ’inertie
5.1. Décomposition de l’inertie selon les individus. — Puisque l'inertie totale I est égale a la

somme des valeurs propres et comme chaque valeur propre A, est le carré de la norme de la composante

principale associée 1), pour la métrique D, on a

In =3 A= ltalb, = D> piWai)” =D pilluillar, et da =D pi(tas)’
a=1 a=1 i=1 i=1

a=11i=1
On en déduit la définition suivante :
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La contribution relative de I'individu y; a I'inertie totale est

NNy 112
T

La contribution relative de I'individu y; a l'inertie de ’axe « est

Pi(< Yi, ua >nm)? _ Pi(Va,i)?

CTR, (i) =
a(z) )\a )\a i
P
Remarque 2.13. — De méme puisque |y;||3; = Z ¥Z i, on peut définir la contribution relative de 'axe
a=1
a a l'inertie de 'individu y; de la maniére suivante
_ (wa,i)z _ 2 _ .
CTR,(a) = ——— = cos”(0a,;) = COR,(1),

Z('I/ja,i)Z

oil 0; o, est 'angle entre y; et u,.
Sur les listings, CT R, (i) et COR,(4) sont souvent multipliés par 1000.
5.2. Décomposition de I’inertie selon les variables. — On suppose que la matrice M est diagonale :
M = diag(my,--- ,my;) ot les réels mj, 1 < j < p, sont strictement positifs.
Puisque l'inertie totale I est dans ce cas égale & la somme des variances de chaque variable pondéré par

m;

P
112
Ir =3 mjly’l5,,
j=1
et puisque chaque valeur propre A, est le carré de la norme de 7, pour la métrique M, on a

p
Ao = el =D m;(1a)?,
j=1

on en déduit la définition suivante :

La contribution relative de la variable ¢/ a I'inertie totale est

m;lly’ |12
INR(j) = ——Lr
e
La contribution relative de la variable 3/ & l'inertie de 1’axe o est
) m;(< y’,va >p,)?
CTRa(j) = === =myug;,
(o7
Remarque 2.15. — De méme on peut définir la contribution relative de 'axe a a 'inertie de la variable

y’ par

COR,(j) = rfya = cosQ(Oj,a),

oil 0 , est Pangle entre y7 et v,.
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Sur les listings, CTR,(j) et COR,(j) sont souvent multipliés par 1000.
Remarque 2.16. — 1l est possible de retrouver cette formule en remarquant que pour tout 1 < a < p, le

P
vecteur u, est unitaire pour la métrique M donc Z mjuij = 1, soit en multipliant par A,
j=1

2
aj*

Ao = AaMju

M-

1

J

On retrouve les formules de contributions relatives pour une variable y7.

5.3. Eléments supplémentaires. — On peut prendre comme éléments supplémentaires une observation
douteuse, un élément aberrant, un cas nouveau, le centre de gravité d’un groupe ("homme", "femme"), des
éléments de nature différente ( opinion/CSP).
Un individu supplémentaire est un individu y, de RP n’ayant pas participé a I’analyse. L’abscisse tq, s
de sa projection sur Vect(u,) vérifie
wa,s = yo Mu®.

I1 est clair que v, s’obtient en effectuant I’analyse factorielle du tableau X; = < ) et en donnant un

/
'/I;S
poids nul & s. En effet dans ce cas, les seuls points ayant une inertie non nulle sont les z; pour 1 < i < n.

De méme, une variable supplémentaire est une variable z° de R™ n’ayant pas participé a ’analyse. Elle

peut étre représentée par ses projections sur les nouveaux axes v,, on note y° la variable centrée

. Ya
=<y’ >
Na,s Yy \/E M

Ezxercice de manipulation 2.1. — : Montrer que 'on peut exprimer 1), s en fonction de 1), ; selon la
formule :

1 n

Yas = 1~ > e ipita; avec e =< Ya, Ui > -

@ i=1

solution :

n n

Zws,z‘pz‘¢a,z’ = sz' < Ys, Yi >M Va,is

i1 i—1
n

= <ys > pitbaiyi >,
i=1

n
= < ymZPz‘ < Yis Ua > Yi >M;
i=1

n
= <ys,zpiyi<yiaua >>M,
=1

n

= <ys7zp1yzy;7Mua >M,
=1

= <ys,VMus >nm,

= )\awa,s-

6. Analyse en composantes principales

Etant donnée un nuage de n points, muni chacun d’un poids, dans R? muni de la métrique M, effectuer
une Analyse en Composantes Principales, ACP, du tableau X associé avec les métriques M et D, pour les
espaces RP et R", consiste a rechercher les composantes principales associées aux axes factoriels. Pour cela,
on diagonalise la matrice VM, ce qui fournit les valeurs propres et les axes factoriels.
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Définition 2.17 — ACP sur matrice variance

Effectuer une ACP sur matrice variance du tableau X consiste a prendre comme métrique
M =1, et D, = diag(p1,--- ,Pn).

Dans ce cas, la matrice VM est la matrice de variance-covariance.

On effectue souvent la représentation des variables dans le cercle de corrélations c¢’est-a~dire au lieu de
représenter les variables selon leurs covariances avec les axes v,, on les représente par leurs corrélations avec
les axes v,. Cette opération revient & représenter non pas le vecteur 3’ mais HX’—J” Dans ce cas, toutes les
variables sont des vecteurs unitaires et les extrémités des variables sont sur la sphére unité de R".

Lorsque l'on projette une variable sur un plan factoriel, la sphére unité est projeté sur le cercle unité,
appelé cercle de corrélations, et les projections des variables sont des vecteurs de norme inférieure & 1 donc
dans le cercle unité. Mais si une variable est sur le cercle de corrélations, alors le vecteur m est égal a sa
projection ce sui signifie que la variable est parfaitement représentée, donc expliquée, par les deux facteurs
associés.

6.1. ACP sur matrice de corrélation ou ACP normée. —

Définition 2.18 — ACP normée
Effectuer une ACP normée du tableau X consiste & prendre comme métrique

1 1
M=A%= diag(—,--- ,—) et D, = diag(p1,- - ,Pn),
V11 Upp

avec A = diag( ) olt v;; est la variance de y7.

’ \/Upp

Proposition 2.19

Etant donné un tableau X, on centre et on divise chaque variable par son écart-type, on obtient un
nouveau tableau Z dont les variables sont toutes centrées et réduites. On a

Z=YA ou A =diag(——= — ! )

On réalise une ACP normée sur X en effectuant une ACP sur Z avec M = 1I,.

Démonstration. — 1l s’agit de prouver que 'on retrouve les méme composantes principales dans les deux
ACP. Dans le cas de 'ACP normée, on diagonalise VM = Y'D,Y M. On note u, un axe factoriel associé
a la valeur propre A,

VMuyg, = Mg Uq.

Par ailleurs, 'ACP sur la matrice Z revient a diagonaliser Z'D,ZI,, = Z'D,Z qui est la matrice de corré-
lations. On exprime cette matrice en fonction de V' :

Z'D,Z = AY'D, YA = AV A.
Or on remarque que
7Z'DpZ(Auy) = AVA?u, = AV Muy = M\oAug,.
De plus le vecteur Au,, est non nul puisque de norme 1 :

||Aua||§p = (Auy) Aug = ul, Mu, =1,
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ainsi Au, est un axe factoriel dans 'analyse de Z associé a la valeur propre \,. De plus pour a # 3, on a
< Aug, Aug > = (Aug) Aug = u,, Mug = 0.
On note 1), la composante principale associée a A, dans ’ACP normée, on a
Yo =Y Muy, = YA Auy = ZAu,,

or ZAu, est la composante principale associée & A, dans I’ACP sur Z avec M I,.
On en conclut que les deux ACP sont équivalentes. O

Proposition 2.20 — Inertie totale d’'une ACP

Dans le cas d’'une ACP normée, l'inertie totale du nuage est égal & p, le nombre de variables.

Démonstration. — Dans ce type d’ACP, on diagonalise la matrice des corrélations. Or cette matrice ne
comporte que des 1 sur la diagonale ( car la corrélation d’une variable avec elle-méme est 1). Dés lors
I'inertie totale est la trace de cette matrice et vaut p. O

7. Analyse factorielle d’un systéme de points munis de poids et de distances

On considére un systéme de points M;, ¢ € I, munis de poids p; dans un espace affine. On identifie les
points M; a leurs vecteurs de coordonnées x; dans un espace euclidien muni de la métrique M.

Théoréme 2.21 — Tableau de distances

Dans un espace affine R de métrique M, on considére le nuage Nx constitué de n points M;,
1 <4 <n. Le tableau de distance noté D entre les points du nuage est une matrice carrée d’ordre n
de terme courant d(i,i") avec
o o 2 o o
V(i i) € [1,n]", d(i,i") = d*(M;, Mir) = |l — zir |3y = llys — v |34
La représentation du nuage N'x des points M; affectés des poids p; dans le systéme des azes factoriels
ne dépend que des poids p; et de la matrice D.

Démonstration. — Soit ¥, la composante principale associée au ciéme axe factoriel uy, on a
YMY'Dytpo = YMY' DY Mug =Y MV Mug = NoY Mg = Aata,

ou Y est le tableau centré associé a X. Ceci montre que la diagonalisation de la matrice Y MY’ D,, fournit
les valeurs propres de ’ACP et pour chaque valeur propre non nulle, tout vecteur propre de norme égale a
v Ao est une composante principale.

Pour démontrer le résultat, il s’agit donc de prouver que 1’on peut construire la matrice Y MY a partir
des poids p; et des distances d?(M;, M;). On pourra alors en déduire Y MY’ D,,.

La matrice Y MY’ est une matrice carrée d’ordre n et le terme courant de cette matrice est

. 2
V(Z,Z/) S Hl,nﬂ , (YMY/)W =< Yi Yir >M -
Une telle matrice s’appelle matrice de Gram associée & la famille de vecteurs (y;)1<i<n. On pose

Vi€ [Ln], d(-i)=> prd(i,i'), etd(,-)= Zpid(-,i).

=1

On exprime le produit scalaire en fonction de la norme soit

-1
. 2
i,i') € [Lnl" < wiyr >n= (v = wwlla = lvillds = llyarl30)-
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On somme de ¢/ = 1 & n en pondérant par p;; d’ou

n n n n
. -1
vi € [1,n], Zpi/ <Yi, Y >M= 7(/2:1192/”3/2 —yirllas — Z:lpz’”yz\ﬁw - Z:lpz’Hyz’H?w)
= = —

/=1

n n
On note Ir l'inertie totale : Iy = szHyzH?M Par ailleurs, Z iy = 0 donc

i=1 /=1

-1 ) .
0= —-(d(3) = llyillas = Ir) = lly:llas = d(,8) — I,
Puis on somme de ¢ = 1 & n en pondérant par p; d’ou
Ir =d(-,-) — Ir.
De cette derniére relation, on déduit que
1
Ir = §d(~, ).
Par conséquent
-1
V(’L,’L/) € H17nﬂ2a < Yir Yir >M= T(d(zazl) - d(J) + IT - d(,Z/) + IT);

donc

-1

V(i,7) € [L,n]?, < wyi,yir >m= - (d(i,4) = d(-,i) = d( i) + d(-, ).

8. Reconstruction du nuage

Cette proposition donne une décomposition du tableau centré Y et montre comment & partir de la
connaissance des composantes principales et des axes factoriels u, on peut reconstruire le tableau centré Y.

Proposition 2.22

On effectue une ACP sur le tableau X avec comme métriqgue M pour RP et D, pour R™. On note r
le rang de Y, on a la relation suivante avec les notations habituelles

Y = i\/gvau’a = iwau;.
a=1 a=1

Démonstration. — On pose
T
T = Z Yo UL,
a=1
Soit 1 <5 <p,ona

TMug =Y o u,Muf =1pg =Y Mup.
a=1
Puisque (uf)1<p<p est une base de R?, on en déduit que TM = Y M et comme M est inversible on en

conclut que T =Y.
O

Remarque 2.23. — Dans cette reconstruction, on pourrait négliger les termes de la somme associées aux
plus faibles valeurs propres, et dans ce cas on obtiendrait un tableau Y qui serait une approximation de Y.
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Il y a une réciproque a la proposition précédente c’est-a-dire :

Proposition 2.24

Soit Y un tableau centrée, s’il existe une famille (uq)1<a<r orthonormale de RP muni de la métrique
M et une famille (vy)1<a<r orthonormale de R™ muni de la métrique D, et r réels strictements
positifs (Aa)1<a<r vETifiant

Y = i \/Evau'a.
a=1

Alors le rang de Y est r, les vecteurs(uq)i<a<r sont les azes factoriels non triviauzr associés aux
valeurs propres (Aa)i1<a<r €t les composantes principales sont o = v/ AqVa, 1 < a < 7.

Démonstration. — Avec la décomposition on a

VMu, = Y'D,YMu,,

li
T T
- (Va0 (S va ) an.
B=1 y=1
- Zm“ﬂ% Dpzmvyu;Mua,
pB=1 y=1
= > > Vs A us <vg, vy >p, ul, Mug,

B=1~=1

T

= Z)\ﬁ’LLB < UB,Uaq > M,
=1

= AUy

On en conclut que les vecteurs u,, 1 < a < r, sont des axes factoriels de ’ACP de Y associées aux valeurs
propres A,. De plus

11[}(1 = YMUO/ =V )\avav

on retrouve donc les composantes principales de ’ACP de Y. Enfin le rang de Y est r, puisque pour tout
vecteur = de RP, Yz est une combinaison linéaire des vecteurs v,, 1 < a < r. Comme chaque vecteur v,
est dans I'image de Y en tant que vecteur propre associé & une valeur propre non nulle, on en conclut que
I'image de Y est I'espace généré par la famille (v, )1<a<,- donc la dimension de 'image de Y est r.

O

Ce que montre cette proposition est que si 'on arrive & décomposer le tableau Y sous la forme donnée
dans la proposition précédente les résultats de 'ACP se lisent directement. Or cette décompostion est
connue sous le nom de décomposition en valeurs singuliéres notée SVD en utilisant les métriques canoniques
c’est-a-dire M = I, et D, = I,,, nous rappelons ce résultat
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Théoréme 2.25 — Décomposition en Valeurs Singuliéres, SVD

Soit Y une matrice de format n X p & coefficients réels. On note r le rang de Y, r < s = min(n,p).
Les espaces R™ et RP sont munis d’une structure euclidienne canonique. Alors il existe

1. (ug,- - ,u,) une base orthonormale de R™,

2. (v1,--- ,vp) une base orthonormale de RP,

3. 1 réels positifs : 01 > 09 > -+ > 0, >0,
tel que

T

/

Y = g iUV,
i=1

Les 1 réels o; sont uniques. On les appelle valeurs singuliéres de Y .
Matriciellement, on pose
U= [ulv"' ,UT] etV = ['Ul,"' avr]v Y= Diag(o—la"' 7Jr),

L’équation précédente s’écrit

Y =UxV/,
ou encore on peut poser
U=lup, - ,u,] et V=1[v1, -, v,],
et X est une matrice n X p dont les coefficients diagonaux sont des réels positifs ou nuls et tous les
autres sont nuls. Les termes diagonauz de > sont rangés par ordre décroissant . Les matrices U et
V' sont deux matrices orthogonales d’ordre respectif n et p (U'U =UU' =1, et VV' =V'V =1,)
Dans les deux cas, la matrice ¥ est unique.

Ezxzemple 2.26. — On considére le tableau de données suivant associé aux résultats de trois variables x,
y et z mesurées sur un échantillon I de six individus.

| U W N~ |

SN[ W N =X
= N[ W =] (<
|
[\

On suppose que chaque individu ¢ de I (1 <4 < 6) est muni de la masse 1/6 donc D, = %I(, et M = I3.
On note X le tableau associé. Le tableau centré est

-2 3 5

-1 2 3

0 -2 =2
Y =

1 0 -1

-1 -1 0

3 -2 =5

Puis on applique la décomposition en valeurs singuliéres de la matrice Y & ’aide de la commande svd de
R, on obtient
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Yy =03V’
avec
—0.627137895  0.1483193 0.676592730
—0.377938565  0.2072554  —0.695626901
9.813206 0 0
U — 0.257478469  —0.5323830  0.124438341 oty — 0 9387675 0

0.120460096  0.3251276  0.065324265
0.008279139  —0.5913191 —0.003105094
0.618858757  0.4429998  0.196376400

0 0 0

0.3669516  0.72939234  0.5773503
V =1 -0.4481965 0.68248558 —0.5773503
—0.8151481 —0.04690676  0.5773503
On en déduit que les résultats d'une ACP sur Y avec comme métrique D, = 1/61s et M = I3 sont
e Pour les valeurs propres, ce sont les carrés des termes de la matrice diagonale

A =96> X =5.7>XA3=0.
e Pour les axes factoriels ce sont les colonnes de V.

e Pour les vecteurs v,, il faut rendre la matrice U D,, orthogonale alors qu’elle est orthogonale pour la
métrique Is, il suffit donc de multiplier par v/6 car \/EVDP\/EV’ =VV' =1Is.

Ces résultats ont été obtenus en utilisant la commande svd de R
Programme en R.
X=matrix(c(1,2,3,4,5,6,6,5,4,3,2,1,0,1,2,2,1,0),6,3)
moy=apply (X,MARGIN=2,mean)

Y=X-t (moy\%*\/matrix(c(1,1,1,1,1,1),1,6))

s=svd (Y)

vV V V V



CHAPITRE 3

ANALYSE FACTORIELLE DES CORRESPONDANCES

1. Introduction

L’analyse Factorielle des Correspondances (AFC) a été introduite pour analyser les tableaux de contin-
gence. Un tableau de contingence croise les ensembles I et J de deux variables qualitatives X et Y. Un tel
tableau peut se noter ky; et a alors pour terme général le nombre k(%, j) d’individus qui ont pris simulta-
nément la modalité ¢ pour la variable X et la modalité j pour la variable Y.

I’AFC consiste a effectuer deux ACP, I'une sur le tableau des profils lignes, I’autre sur celui des profils
colonnes de kj ;.

I’AFC peut étre appliquée a des tableaux de nombres positifs de types divers : tableaux de contingence,
tableaux homogénes de nombres positifs, tableaux d’échanges, tableau de rangs, tableaux de présence /ab-
sence, tableau disjonctifs complets,....

2. Définition des nuages étudiés par 'AFC

2.1. Notations. — On étudie deux variables qualitatives X et Y, X a p modalités et Y ¢ modalités.
Le tableau de contingence kr; est une matrice de format p x ¢. On pose I = {1,---p} = [1,p] et J =

{1,---q} =[1,4].

On note

ki = (k(i,"))icr € R? avec k(i,-) = Y k(i j),

<.
=

p
kJ = (k( ,j)JGJ € R? avec k(a]) = Zk(zvj)v
i=1
g P
k= k(i,j)
j=1 i=1
Ces définitions dans le tableau ci-dessous :
i RGO | | k) || kG || RGO
p | kp,1) k(p,5) k(p,q) || k(n,-)
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On transforme les effectifs en fréquences : on obtient un nouveau tableau Fr; ou F' de terme courant

V(Z,]) el x J, fi,j = @

On a les lois marginales :

I k(i)
fr=(fi.)ier € RP avec f;. = Zfi,j =

j=1

fr=(fjjes R avec f; = fi;= #
=1

f1 est la loi marginale sur I et f; sur J. Ainsi f; et f; sont des distributions de probabilités donc

ZZfi,j :Zfi~ :Zf-j =1.

il jeJ il jeJ

On peut aussi introduire la loi conditionnelle sur I sachant j appelé profil de la colonne j :

fi = (f)ierjes avec f! = J;Zj = ZEZ:jg’

Ainsi f{ est une matrice de format p x ¢ et f} est le jiéme vecteur colonne de RP.
De méme on a la loi conditionnelle sur J sachant i appelé profil de la ligne i :

; i i,] k '7 j
f7 = (fierjes avec fj = J;:J = k((z j))

Ainsi f1 est une matrice de format ¢ x p et fi est le iéme vecteur de RY.
Puisque f7 et f% sont des distributions de probabilités, on a

YA s

i€l jeJ

S’il n’y a pas d’ambiguité, on note f; pour f;., f; pour f.;, k(i) pour k(i,-) et k(j) pour k(-,j).

On suppose qu’aucune ligne ou colonne de K ; n’est nulle. Donc f; et f; sont non nulles et ff et fJ’ sont
bien définies.

2.2. Nuages et métriques. —
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Définition 3.1 — AFC

I’AFC consiste a effectuer deux ACP sur deux nuages différents mais présentant une certaine symé-
trie. On note
Dy, = Diag(fi)ier € Mp(R) et Dy, = Diag(f;)jcs € Mq(R).
On a
D;Il = Diag(1/ fi)ict = D1y, et D;Jl = Diag(1/f;)jer = D1y,
On dit que Dy, (respectivement Dy ;) est la métrique du chi-deux de centre fr (respectivement
f).
On considére les nuages suivants :
o N(J) = {f{,j € J}, appelé nuage des profils colonnes, ou chaque point f} de RP est
muni du poids f; et R” est muni de la métrique Dy, .
o N(I) = {f%,i € I}, appelé nuage des profils lignes, ou chaque point f% de R? est muni
du poids f; et R? est muni de la métrique Dy, .
On note

Fl :f}]:(fIlv af}]) et F2:f§:(f}a 7f§)
F est le tableau des profils colonnes et F» des profils lignes. On peut remarquer que FY et Fj sont
les matrices correspondantes a X.

Proposition 3.2

On a
F1 = FDl/fJ et F2 = F/Dl/f1~

On en déduit que le rang de F est égal au rang de Fy et a celui de Fs.

Démonstration. — Les matrices Dy,¢, et Dy/5, sont inversibles d’oui le résultat. O

3. Nuage N (J)

3.1. Support, centre de gravité. — Puisque ’on a pour tout j € J
> fl=1
il

on en déduit que tous les points du nuage N'(J) sont dans I’hyperplan affine de R? d’équation

i€l

Proposition 3.3 — Centre de gravité

Le centre de gravité du nuage N'(J) est fr.
Le support du nuage N(J) est inclus dans I’hyperplan affine passant par fr et Dy, -orthogonal a
fr-

Démonstration. — En effet soit G ce centre de gravité, on a

Gr = f{Ds,1,=F1, = fr.
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Par ailleurs

< ﬁ = fr. fr ZDiypy = (f} - fI)/Dl/frfI = (f; —f1)'1, =0.

3.2. Effet du non centrage. — On effectue une ACP sur la matrice F| avec les métriques M = Dy,
et D, = Dy,. Le centre de gravité des individus pondérés par D, est fr, et la matrice de variance V est

V = (Fy — f11,)Dys,(F\ — f11,) = FADs, F — frfr.

Le support de N'(J) est inclus dans P'hyperplan affine d’équation Z x; = 1, ce qui se traduit par
il

F1,=1,.

Proposition 3.4

La matrice VM =V Dy, et la matrice FlDfJFl’Dl/fI ont les mémes vecteurs propres et

Spectre(VDy¢,) = {Ap =0< Ap_1--- < M1} et Spectre(VDyp,) = {1, \p—1,--+ , A1}

Démonstration. — En effet on a
F1Dy,F{Dyyg, fr = F1Dg, Fil, = F1 Dy, 14 = f1, et fifiDis, fr = frfil, = f1.

On en déduit que fr est un vecteur propre associé¢ a la matrice V.Dy,¢, et a la matrice 1Dy, F{ D¢, avec
les valeurs propres 0 et 1 respectivement. Comme ces matrices représentent des endomorphismes D¢, -
symétriques, 'orthogonal de Vect(f7) est stable pour ces deux matrices. Or soit u un vecteur de Vect(fr)=,
on a

f1f1D1/pu =< fr,u >pyy, Ji = 0.
Ainsi
Yu € VeCt(fI)J" VDl/qu = FlDf,]Fl/Dl/quu

par conséquent la restriction & Vect(f7) des endomorphismes représentés par V D, /s et par F1Dy, F{Dy g,
sont identiques donc les deux matrices ont mémes valeurs propres et méme vecteurs propres.
O

On en déduit que pour obtenir les axes factoriels de ’ACP, le centrage n’est pas nécéssaire. Pour le calcul
des composantes principales, il n’est pas nécessaire de centrer non plus :

Remarque 3.5. — Soit u; un axe factoriel orthogonal & f, la composante principale ¢” associée a 1’axe
uyr est

Vied, =< (f] — fr),ur >=< fi,ur > .

A T'axe factoriel trivial f;, on associe la composante triviale ¢, = F{ Dy, fr = 14.

3.3. Axes Factoriels, facteurs et composantes principales. — On le résultat suivant
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Proposition 3.6 — Axes Factoriels, facteurs et composantes principales

L’ACP du nuage N (J) consiste a diagonaliser Fy F.
Les azxes factoriels sont solutions de

Fngu? = )\au?,
< u?, u? >D1/f1: 6a,ﬁ7
< u?,f[ >D1/f1: 0.
Les facteurs !, sont solutions de
FyF¢f, = Xatpy,
< QL 9% >Dy, = 00
< (pé, 17 >Df1: 0.
Les composantes principales ng sont solutions de
F{Fpsd = At
< wgﬂﬂé >DfJ: Aa(sa,ﬁa
<¢J, 15 >p; = 0.

Toutes les valeurs propres A, sont positives et inférieures a 1.

Démonstration. — On réalise 'ACP de N (J) donc X = F] pour que les individus soient en ligne, la matrice
des poids D, est Dy, et la matrice M est Dy y,.

Pour trouver les axes factoriels, on diagonalise la matrice sans le centrage de F| soit X'Dp, XM ce qui
donne

FiDg, F{Dyyy,,
or F1 = FDyy,, on a
F\Dy,F|Dy)s, = F1Dg, Dy, F'Dyjg,, = F1 F5.
Les facteurs sont vecteurs propres de MV. En effet le facteur ¢, est par définition Mwu, donc
MVpy =MV Muy = Ao Mug = Aada-
Pour la méme raison que dans la propriété sur le non centrage, il n’est pas nécessaire de centrer
Dl/fIFlDfJF{ = F}F| puisque F» = F/Dl/fl-

Enfin les composantes principales sont vecteurs propres de YMY’'D,, et comme le centrage n’est pas
nécessaire, on a
Dy, F1Dy, = F{Fj.

Enfin les valeurs propres sont positives. De plus le terme courant (j, k) de F|Fj est

p
S H s
=1

donc l'égalitée FyFiip = A devient
a P

YOS filk) = x0),

k=11i=1
en notant ¥ (jp) la plus grande coordonnée de 1, on a

< ZZJ” i (o) = ¥ (o),

k=1 i=1
on en déduit que 0 < A < 1.
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4. Le nuage N (I)

L’étude de N(I) se déduit de celle de N'(J) en intervertissant les roles de I et de J. Ainsi le centre de
gravité de N (I) est f, le support de A (I) est inclus dans I'hyperplan affine d’équation ij = 1. On
jeJ
échange Fy et Fy, donc pour trouver les axes factoriels on diagonalise F5F}, les facteurs, on diagonalise
F|F} et les composantes principales, on diagonalise F4F]. On a donc

Proposition 3.7
L’ACP du nuage N (I) consiste a diagonaliser FoF;.
Les axes factoriels sont solutions de
EyFiu§ = Aug,
< uﬁ,u? By = R
< U?afj >D1/fJ: 0.
Les facteurs ¢! sont solutions de
F{F303 = At
< P2, 9% >D;, = Sap;
<@l 15 >p,, =0.

Les composantes principales L sont solutions de
FYF{E = o,
< 1%#% >D‘fI: )‘a(sa,ﬁa
< wé, 17 >Df1: 0.

Toutes les valeurs propres A, sont positives et inférieures a 1.

La proposition suivante établit des relations entre les deux ACP :

Proposition 3.8 — Formules de transition

On a
Vi = Figh = Va9 et o = Fip3 =V Aagh
Démonstration. — Soit A, une valeur propre non nulle de FjF}

FyF{p = X

en multipliant par F}, on obtient que F]p! est non nul et est donc un vecteur propre de F}Fj. On normalise
ce vecteur propre, pour cela on calcule sa norme

IF{ebll> = @LFiDys, Flol,
e FFIo;,
¢u Dy, F3F ol
Aallol 1%,
—

Par conséquent \/?F{cpé est un vecteur propre unitaire de F|F} associé & la valeur propre \,.
(0%
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De plus soit k£ et [ deux indices distincts, on a
Floy, Fiof 1 )T
< ; > = ——=p,/ 1Dy, Fiyp,
/)\k /)\[ /Ak)\l k fJ 1

L

= "Dy, Dy, FDy /s, F'f,
Ak)\lgpk fI l/fI 1/fJ SOl
1

= "Dy, FyF{f
)\k)\l@k friie2 1@

= 0.

On note r le nombre de valeurs propres non nulles de F}, Fy, c’est-a-dire le rang de F;FY. Ainsi I'image par
F{ de la base orthonormale (¢f, -+, ol ol |, - ,cpé) de R? muni de la métrique Dy, donne une famille

. . F/ I F/ I . .
orthogonale que I'on peut normaliser soit ( \}? AEEEI \})\ﬁ ), ce qui donne une famille orthonormale de R?
1 T

muni de la métrique Dy, constituée de vecteurs propres de F|Fy.

On en déduit que le rang de F|F} est supérieure a r. Par symétrie entre les deux analyses, on en déduit
que F{F} et FyF] ont méme rang et donc les mémes valeurs propres non nulles.

Par conséquent pour toute valeur propre non nulle, on a

Ff@é =V )\a(pia

d’ou les formules de transition.
Pour une valeur propre nulle, A\, = 0, le calcul de la norme de Fj¢’ montre que

Flol =o.
Les formules de transition sont encore satisfaites.
O
Remarque 3.9. — 1l existe diverses formulations des relations de transition. Par exemple si la valeur

propre A, est non nulle, on peut écrire

1
Vo = —=F{va.

On en déduit
, 1 i
Vied, ¢l =—=> fly
De méme en inversant ¢ et 7, on a aussi

: i 1 ij
Viel, ¢ = \/Tijng.
@ jed

On a aussi les méme relations de transition pour les facteurs.

Représentation simultanée. En AFC, on effectue une représentation simultanée des modalités i € T
et j € J. Plus précisément, sur chaque axe «, on représente i € I par le point d’abscisse ¢! et j € J par le
point d’abscisse 7. Autrement dit, on superpose les représentations des nuages N (I) et N'(J) dans leurs
systémes d’axes respectifs. D’aprés les formules de transitions, il en résulte qu’au facteur \/% pres, le point
j est le barycentre des points ¢ affectés des poids ff . De méme le point i est le barycentre des points j
affectés des poids f;.

5. Inerties

5.1. Inertie totale. — On a le résultat suivant :
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Proposition 3.10 — Inertie totale

Les nuages N'(I) et N'(J) ont méme inertie totale égale

fl,] fzf]
IT_ZZ A7

i€l jeJ

Démonstration. — On a
Ir = > fllf = flbayms
jeJ
YA IR
jeJ iel 7t
- IY -y
jeJ 161
- Ly G
iel jeJ fifi
O
Remarque 3.11. — En écrivant :
(fij— [:if;)? = fj —2fififi;+ f? ]-27
et en remarquant que
—2fififij+ ffff
’ = <2/, + fify,
Jifi 7 !
on en déduit que
—2fif; fz, + 1217
I ) WIS 31D SR
iel jeJ iel jeJ il jeJ
Par conséquent, on a
2
=YY -1
icl jeJ fil
5.2. Interprétation de l’inertie totale dans le cas d’un tableau de contingence. — On suppose

que K est un tableau de contingence, et plus précisément que I (resp. J) est 'ensemble des modalités d’une
variable qualitative X (resp. Y). Ainsi K donne les effectifs de co-occurence des couples de modalités (i, )
sur un échantillon de taille k. Donc F' est un estimateur de la mesure de probabilité théorique pr s (loi jointe
de (X,Y)). On sait alors que asymptotiquement, i.e. pour k tendant vers Uinfini, on a

kzz f’L,j pm _>qu N

icl jeJ
ou p = Card(I) et ¢ = Card(J).
Lorsque 'on teste ’hypothése :
Ho :pr; =pips,
Hj représente 'hypothése d’indépendance des variables aléatoires X et Y, on est amené & estimer les lois

marginales py par f; et py par f;. Pour py, on estime p — 1 paramétres puisque la somme des p; vaut 1, de
méme pour py on estime g — 1 paramétres. Il en résulte que

kzz fzjflfzf] _>Xf“

i€l jeJ
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avec
p=pg—1-(p-1)—(¢g-1)=(@-1(-1.
On en conclut que la quantité
fl] flf]
kIp =k > ==
iel jeJ fifi

permet de tester I’hypothése d’indépendance des variables X et Y.
Dans le cas d’indépendance, kIr aura tendance a étre faible (kIT < ¢,), et par conséquent, puisque It
est la somme des valeurs propres, plus les valeurs propres sont faibles moins les facteurs sont interprétables.
Si X et Y ne sont pas indépendants, I’AFC permet de voir comment fr; s’écarte de I'indépendance, les
axes factoriels associés aux plus grandes valeurs propres traduisant les liaisons entre X et Y.

5.3. Décomposition de I’inertie, Contributions. — On exprime I en fonction des composantes prin-
cipales des deux ACP, on note 7 le nombre de valeurs propres non nulles, on a

T T
Ir =) fLiWh)?=23"> fiw.)
a=1jeJ a=1 i€l
De plus la norme d’une composante principale valant la valeur propre, on a
=3 FHWD? =Y fi(wh)?
JjeJ el
En intervertissant les sommes
T
Ir=23_f; ) Wh)*=3_ 100,
jeJ  a=1 jeJ

ot p2(j) est la distance au carré entre f7 et fr.
De méme

It = Zfi Z(¢;)2 = Zfz’ﬂ2(i)7

i€l a=1 i€l

ot p2(i) est la distance au carré entre f7 et f;. On en déduit les définitions suivantes :

Définition 3.12

La contribution de j et ¢ a 'inertie de ’axe « sont respectivement :

CTR.(j) = LiWa) CTR.(i) = fida)*

Ao Aa
La contribution de I’axe a & I'inertie de j et de ¢ sont
(¥d)? (¥d)?
COR,, =cos”(0;,n) et COR, = cos“(0;
(4) = 207) *(85,0) (1) = (1) ?(8,a),

ot 0; o et 0, désignent respectivement les angles formés entre fi — f; et u§ d’une part et entre
fi — fr et u§ d’autre part.

Ezxzemple 3.13. — Montrer que les relations suivantes sont vérifiées :

cos?(0),a) = corr®(ff, ¢z et cos(0ia) = corr®(f], o),

ott corr?( jl s oL et corr®(f{, pl) sont calculées respectivement avec les mesures de probabilté f; et f.



6. PRINCIPE D’EQUIVALENCE DISTRIBUTIONNELLE 38

6. Principe d’équivalence distributionnelle
Proposition 3.14 — Principe d’équivalence distributionnelle

Si deux lignes i1 et ia (resp. colonnes ji et jo) du tableau fr; ou krj sont proportionnelles, alors
on ne change pas les résultats de l’analyse des correspondances en remplacant ces deuz lignes (resp.
colonnes) par leur somme iy (resp. jo) affectée de la somme de leurs poids :

Vi€ J, fing = firj + finj-

Démonstration. — On suppose que les deux lignes i1 et io du tableau f;; ou ky; sont proportionnelles,

alors il existe un réel a tel que
vj € Ja fi1j =ax figja

= Zfilj =ax Zfin =afi,..

on en déduit que

jeJ jeJ
Ainsi dans le nuage N (I), les deux profils lignes i; et i5 sont confondus :
. 0 Jig  0fig
VJ = J’ le = L) = 2J = fi.2.
/ fi1' afiz' /

Par conséquent 'ACP du nuage N () n’est pas modifié¢ si Pon réunit les deux individus i; et iy en un
individu ¢ affecté du poids fi,. = fi,. + fi,- :

o __ f£i1 __ pi2

Jg = J5 =I5
Ainsi pour tout j € J,

figj = flo 7

= fu flo+f12f )

= fll f“ + f22 ] 9

= Jirj + fiaj-

Pour le nuage N (J) initial, les distances entre les colonnes j et j' sont
d*(j,5') :Zf (=),
iel 'V

et pour le nuage en tenant compte du regroupement des lignes, on a

PO = X R A

i€I\{i1,iz}

Or
7 (- = fsz(f’ijin,f’]O),
- (f“+fw)(§t jf ®
LR
. s

Par conséquent les distances entre les individus j et 7’ sont les mémes dans les situations, donc PACP de

N (J) est identique dans les deux situations.
O
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Remarque 3.15. — Cette propriété garantit une invariance des résultats vis a vis du choix de la mo-
menclature pour la construction des modalités d’une variable, sous réserve de regrouper des modalités aux
profils similaires.

7. Tableau de Burt

Définition 3.16 — Tableau de Burt pour un tableau de contingence

On appelle tableau de Burt associé a un tableau de contingence kj; le tableau B

V(5,4") € J?, by = Z%
i€l v
Matriciellement, on a
B = K’Dl/le.

Proposition 3.17

L’AFC de B donne les mémes axes factoriels u§ et les mémes facteurs de variance o) que ceux
obtenus dans VAFC de kry. Les valeurs propres de I’AFC de B sont les carrés des valeurs propres
de L’AFC de :ZC[J.

Démonstration. — Pour 'AFC de B, on remarque que par interversion de somme
q L a 4
D b= ki 1 = k() et YD b=k
=1 i€l =1 Jj=1j'=1
Ainsi ce qui joue le role de F' dans ’AFC de B est la matrice notée G
1
G= EB'

La matrice G est symétrique donc les deux marges sont égales. On note g; cette marge commune, on a
d’aprés le calcul précédent
Vj S J, 95 =95 = fj
Donc g; = f;. Les matrices profil ligne et profil colonne, G; et G5 sont
G1=GDyyg, = F'Dyp Dy, = FaFy et G2 = G'Dyyg, = G
Par conséquent ’AFC de B revient a diagonaliser G1G5 = (F»F;)2. On conclut avec des résultats classique

de diagonalisation. O

Remarque 3.18. — Si l'on veut représenter I’ensemble I, il suffit de rajouter f;; en supplémentaire au
tableau gy = G. On obtient la méme représentation que dans PAFC de fr;.
Soit G = (g;j7);,j7e le tableau défini par
G = F'Dy 4, F.
On a
V(.)€ J% g =) M

iel v



CHAPITRE 4

ANALYSE DES CORRESPONDANCES MULTIPLES

1. Notations-Tableau disjonctif complet-tableau de Burt

1.1. Notations et définitions. — On note :
Q ensemble de questions ou de variables qualitatives,
I ensemble des individus qui ont répondu aux questions, avec n = | I |,
J ensemble de toutes les modalités de réponse a toutes les questions, avec p = | J |,

ensemble de toutes les modalités de réponse a la question ¢,

~

kry : tableau de taille n x p défini par

k(i, j) = 1 silindividu ¢ a adopté la modalité j de J,
7= 0 sinon.

Définition 4.1

Le tableau k;; est dit disjonctif si chaque individu choisit au plus une modalité par question (deux
modalités d’une méme question s’excluent mutuellement). Le tableau kr; est dit complet si chaque
individu choisit au moins une modalité par question.

Proposition 4.2

Un tableau kry est disjonctif complet (TDC) si et seulement si :

Z k(i,7) = 1 pour toute question q € Q et tout individu i € I.
jedq

Démonstration. — En effet si le tableau k;; est disjonctif complet, alors soit ¢ une question, alors tout
individu ¢ doit choisir une modalité et une seule parmi les modalités de la question ¢. Ainsi la réponse de
I'individu 4 est une suite de 0 avec un seul 1, on en déduit que la somme Z k(i,5) =1
Jj€Jq
Réciproquement, si pour toute question ¢ et tout individu ¢, on a I’égalité Z k(i,j) = 1, alors comme
j€J,

k(i,7) est un entier qui vaut 0 ou 1, on en déduit que pout tout individu 4, il eXisqte un seul entier jo de J,
tel que k(7,jo) = 1 et k(¢,7) = 0 pour tout j de J, différent de jo. Donc I'individu ¢ a choisi la modalité jo
de J, et n’a pas choisi les autres. Le tableau est donc disjonctif complet. O



1. NOTATIONS-TABLEAU DISJONCTIF COMPLET-TABLEAU DE BURT 41

Définition 4.3 — ACM

Une analyse des correspondances multiples d’un tableau kj; disjonctif, complet est une analyse
factorielle des correspondances du tableau kj ;.

1.2. Propriétés des tableaux disjonctifs complets. —

Proposition 4.4

Pour tout individu i € I, toute modalité j € J et toute question q € Q, on a :

k(i) = CardQ,
k() = Z k(i,7) = nmombre d’individus ayant choisi la modalité j,
icl
kG = n,
J€Jq
k = n Card@.
Démonstration. — On a

k(i)=Y k(i)=Y Y k(i,j)=Y 1=CardQ.

jeJ qEQ jEJ,q q€Q

Par définition on a

k() = Z k(i,j) = nombre d’individus ayant choisi la modalité j.

il
Puis on a
Dok =D Kig)=) 1=n
JEJq icl jed, il
Enfin
k=> > k(i,j) =Y k(i) =n Card Q.
icl jeJ icl
O
Ezxzemple 4.5. — On suppose que l'on a 3 questions avec 2 modalités pour la premiére, 3 pour la seconde

et 4 pour la troisiéme. Si 'on interroge n individus, le tableau K sera une matrice de format n x 9, car 9
est le nombre de modalités pour toutes les questions, et sera du type

J1 Jo J3 total

i [01]001][0010] k@) =CardQ=3

n
total k(j) k=3n
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2. Tableau de Burt

Définition 4.6 — Tableau de Burt pour un tableau disjonctif complet

Le tableau de Burt associé a un tableau disjonctif complet k;;, noté B s, est défini pour tout j, 7’ € J
par :

B(j,5) = Z k(i,7) k(i, ') = nombre d’individus qui ont choisi les modalités j et j'.
el
Si 4,5 € Jy, alors
. 0 sij# g
B M=
(:3) { k(j) sinon.
Matriciellement, on a

B=K'K.

Proposition 4.7

Pour toute modalité j € J et toute question q € Q, on a :

> BG.j) = k()

j'€Jy
B(j) = ) B(j") = k(j) CardQ,
j'ed
B = n(Card Q)%

Démonstration. — On a

> B(.§) >N kG g) k(i ),

e, j'ed, i€l

= > kG,4) Y kG4,

iel G'ET,

= > k(i)
el

= k().

Puis

B(j) = Y_ B(jJ),
j'ed

= > Y BG.J)

q€Q J'€Jq
= k()
q€eQ
= k(j) Card Q.
Enfin
B= > B(jj) =) _k(j) CardQ =k Card Q = n(Card Q)*.
jedjled jeJ
O
Ezxzemple 4.8. — On reprend 'exemple précédent, le tableau de Burt est alors un tableau de tableaux

de contingence ou toutes les questions sont croisées deux a deux. Dans ce cas, le tableau de Burt est une
matrice 9 x 9 du type :
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Jl J2 Jg total
J k(1) 0 B(1,3) B(1,4) B(1,5) B(1,6) B(1,7) B(1,8) B(1,9) 3k(1)
! ( 0 k(2)) (3(2,3) B(2,4) B( 75)) (B(2,6) B(2,7) B(2,8) B(2,9)) 3k(2)
B(3,1) B(3,2) (3)) 0 0
Jo B(4,1) B(4,2) 0 k(4) 0
B(5,1) B(5,2) 0 0 k(5
k(6)) 0 0 0
Ty oM W B(j) = 3k(;)
0 0 0 k(9
total B=9n

On remarque que lorsqu’une question est croisée avec elle-méme, le tableau de contingence correspond a
une matrice diagonale.

Proposition 4.9

L’AFC du tableau disjonctif complet ky; équivaut ¢ I’AFC du tableau de Burt By ;.

Démonstration. — Puisque k(i) = Card Q, avec la définition 7 de tableau de Burt, on constate que
1
K'D K=—+8B.
1/kr Card Q

L’AFC du tableau selon la définition 3.15 et celle du tableau de Burt sont les mémes. D’aprés la proposition
7, on peut conclure a I’équivalence des deux AFC.

O
3. Propriétés de PAFC d’un questionnaire
Proposition 4.10
Soit FL (resp. G) les projections des profils-lignes (resp. profils-colonnes) sur l’aze de rang o issu
de UVAFC de kr;. Soit FZ, (resp. G},,) les projections des profils-lignes (resp. profils-colonnes) sur
l’aze de rang a issu de I’AFC de Byy. On a :
Flo=Gho =V Gy
Par ailleurs, pour touti € I, on a :
: 1 k(i, j) ,
F,(i) = Ga(j)-
= 75 2 Gariq 60
En notant q(i) la modalité j de la question q € Q choisie par individu i, on obtient :
. 1 Gal(q(d)
F.(i) = > .
Card Q = VAa
Remarque 4.11. — La derniére égalité de cette proposition exprime que F, (7) est égal a la moyenne des

Ga
Ve

, coordonnées "normalisées" des modalités qui ont été choisies par 'individu ¢. Autrement dit encore,
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sur chaque axe, la représentation de chaque individu coincide avec la moyenne des modalités qu’il a choisies

a 1/4/A, pres.

Démonstration. — On note F la matrices des profils colonnes et F, des profils lignes de k;; et By la
matrices des profils colonnes et By des profils lignes de B ;. Le tableau étant disjonctif et complet, on a

F1 :FDl/fJ et F2 = F/Dl/fJ :TLF/.

Puisque le tableau de Burt est une matrice symétrique, on en déduit que By = Bs. De plus, on constate que
B() . kG) k()

B nCard@ k&

La marge selon J du tableau kj; est égale & la marge selon J du tableau By . Donc les métriques des AFC
de k1 et By dans espace R sont identiques. On en déduit que
B K'K k2
n Card Q2 Duygs = n Card Q2 Duygs = n Card Q2
Ainsi pour réaliser ’AFC de kr; on diagonalise F5F; et pour réaliser TAFC de By on diagonalise By By =
(FyFy)?. Par conséquent tout vecteur propre de F»F} est vecteur propre de (FyFy)? et les valeurs propres de
(FyF 1)2 sont celles de F5F; élevées au carré. De plus les métriques étant identiques, les vecteurs unitaires

B1:B2: F/FDl/fJ:TLF/FDl/fJ:FQFl.

représentant les axes factoriels sont les mémes dans les deux AFC. Pour les composantes principales du
nuages des profils colonnes de krj, ce sont des vecteurs propres de F|Fj = (FyF1)’, la métriques étant
identiques on a que Fj et G sont colinéaires et comme

1FZallD;, = Xa et |GAlD,, = VAo
On en déduit
Fj.=Gh, =V G

Les formules de transition entrainent que, pour tout i € I, on a :

Fuli) = = F{G

Avec les notations proposées on a donc

1 Gula)
Fali) = Card @ q%C:Q Ve

Galj \/7 Z CardQ Gald)-

jedJ

O
Proposition 4.12
Lors de ’AFC de kry, le centre de gravité des profils f{ pour j € J, est confondu avec le centre de
gravité global.
Z f'jGa (]) -
j€Jq
Démonstration. — Du fait de la structure en blocs des tableaux k;; et Bjs, on a pour toute question
1eQ:
Z f-jGa (.7) =
j€d,
O
Remarque 4.13. — On a le méme résultat pour les profils (lignes ou colonnes) du tableau (symétrique)

Byj.
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Remarque 4.14. — En pratique, on effectue ’AFC de Bj; et on met le tableau k;; en supplémentaire.
On a alors :

Guali) = VAaGali) = 30
icl
Gpali) = ) Z;}EEZ))

q(i)=j

Fa(i)

Autrement dit, pour tout axe factoriel, chaque modalité j € J est représentée par le centre de gravité
des individus ’ayant choisie.

4. Contributions en ACM

On a une expression pour 'inertie totale.

Proposition 4.15

Dans le cadre d’'une ACM, l’inertie totale est donnée par :

~ CardJ

T Card @

Démonstration. — L’inertie totale est donnée par
Ir =) fillfi = fil5,,,,

jeJ

On pose
2G) = I — fills,

On a alors

PP =D f°0),
qEQ jEJ,

On note p(j) la proportion des individus ayant adopté la modalité j, on a

k()
b = n
On démontre alors que
1—-p;
20 J
pr)=—"
() py

En effet en utilisant 1’égalité k(i,5)? = k(i,7), on obtient :

PO = Y -0

2.7,

kG 1

- 2G5 "

o kGyg) k(L) 1

T PLRGeE PGy P
n

_ L1
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On pose
CR(j) = £.;0°(j), et CR(J) = Y f.;0°())-
Jj€Jq
Comme f,; = 2 — _Pi_ o 4
*J k Card Q’
N 1_pj
CR(]) - CardQ’
d’ou
ot CR(J)_Carqu—l
Y Card@
et on en conclut que
Card J
= Card ) B

Proposition 4.16 — Décompositions en fonction des axes

On a
Ir=)Y Xa=>_> > f;GL0),
@ o geQ jEJ,
on pose
CRa(j) = £.5Ga(#), CRa(Jg) = Y £.5G2(5)-
jed,
On pose
CTRa(q) = 701%;(%)
est la contribution relative de Jq o Uinertie de axze . On peut poser
_ CRq4(Jy) B
CORa(0) = Zgr7y~ QLT(@) = ;CORa(q%
CR(J,) CR(J,)
IN = L _ -2
R = Frm Ir

Reégles d’interprétation
1. Proximité entre individus : deux individus se ressemblent s’ils ont choisi les mémes modalités.

2. Proximité entre deux modalités de variables différentes : ces modalités correspondent aux points
moyens des individus les ayant choisies et sont proches parce qu’elles concernent les mémes individus
ou des individus semblables.

3. Proximité entre deux modalités d’'une méme variable : par construction, elles s’excluent. Si elles sont
proches, c’est que les groupes des individus les ayant choisies se ressemblent.



APPENDICE A

ESPACE AFFINE

1. Définitions

Soit E un espace vectoriel, on dit que £ est un espace affine de direction F si il existe une application
f de € x € dans FE notée
W(A,B) € £ x £, f((A,B)) = 4B,
vérifiant les deux conditions suivantes
e Al : Relation de Chasles

V(A,B,C) € £ x Ex €, AB+ BC = AC,
e A2 : Pour tout A € &, Papplication f4 définie de £ dans F par
VM e &, fa(M)= AM est une bijection .

Les éléments de &£ sont appelés points et ceux de E vecteurs. On appelle dimension de £ la dimension
de F.

Remarque A.2. — Pour tout entier n non nul, R™ est un espace affine de direction R™ espace vectoriel.
T

Ainsi la notation | : | peut étre vu comme un vecteur de R™ ou un point de I’espace affine R™.
Tn

Notations : Soit A € £ et u € F, A+ u désigne I'unique point B de £ tel que zﬁ = u. Ainsi

V(A,B)€EXE, VueE, AB=u+= B=A+u< B—A=u.

On considére £ un espace affine de direction E, on dit que F est un sous-espace affine si il existe un
point A de £ et un sous-espace vectoriel F' de E tels que

F=A+F={Mcé& Juec FM=A+u}.

La dimension de F est celle de F.

Exemple A.4. — Une droite affine de £ est un sous-espace affine de dimension 1. Dans ce cas F' = Vect(u)
ot u est non nul, soit A un point de la droite affine, on note D4 ,, la droite affine passant par A de direction
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Vect(u). On dit encore que u est un vecteur directeur de la droite affine D4, on a
w={Me& FHeR, M=A+tu}.

On peut aussi définir une droite affine par deux points distincts A et B, alors la droite affine passant par
Aet Best D, 43

Exzemple A.5. — Un plan affine de £ est un sous-espace affine de dimension 2. Dans ce cas F' = Vect(u, v)
ol u et v sont des vecteurs non colinéaires, soit A un point du plan affine, on note Py (,.) le plan affine
passant par A de direction Vect(u,v). On a

Pauwy ={M €&, 3(t,s) €R?, M =A+tu+sv}.

On peut aussi définir un plan affine par trois points non alignés A, B et C, alors le plan affine passant
par A, B et C est ,PA,(E,,@)

Exemple A.6. — On considére le systéme linéaire
Z1
AX =bou AeM,,(R), X=| : | €eRP, beR"
Tp

On suppose qu’il existe une solution particuliére X, alors I'ensemble des solutions du systéme linéaire est
le sous-espace affine X + Ker A de R?, de dimension dim Ker A = p — rg(A), ou rg(A) est le rang de A.

Ezxzemple A.7. — Un hyperplan affine de £ est un sous-espace affine de dimension dimFE — 1.

Remarque A.8. — Lorsque l'on fixe un point O dans un espace affine £ de direction E, on vectorialise
I’espace affine, c’est-a-dire & l’aide de la fonction fop on construit une structure d’espace vectoriel sur &,
tout point M de &£ est assimilé au vecteur OM.

2. Barycentre

Définition A.9 — Barycentre

On considére £ un espace affine de direction F, soit M1, - -- , M,, n points de &, et pour tout 1 < i < n,
on affecte a chaque point M; un coefﬁment ou poids p; qui est un réel. Soit O une origine,

® si Z p; = 0, alors le vecteur szOM est indépendant de O.
i=1 p=ll
n

e si Zpi = p # 0, alors le point G défini par

=1

Z piM; = O + - Zplm est indépendant de O.

i=1 i=1
On dit que g est le barycentre des (M, p;)i1<i<n-

Exemple A.10. — Le milieu de deux points A et B est le barycentre de A et B affectés des poids 1/2 et
1/2.
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On considére £ un espace affine de direction E, soit M = {My,--- , M, } un ensemble de n points de
&, on note < M > I’ensemble des barycentres des points de M affectés de poids quelconques. Alors
< M > est un sous-espace affine de £. On dit que < M > est le sous-espace affine engendré par M.
C’est le plus petit sous-espace affine contenant M.

Le sous-espace affine engendre par M = {M,--- ,M,} est associé au sous-espace vectoriel
N b b

Vect(MlMé, i ,MlM,;). la dimension de < M > est au plus n — 1.

3. Applications affines

On considére £ un espace affine de direction F, soit f une application de £ dans £ . On dit que
f est une application affine si il existe un point O de £ tel que I’application f de F dans E qui a
tout vecteur u de E associé le vecteur f(O)f(O + u) est linéaire. On appelle f Papplication linéaire
associée a f.

Remarque A.1j. — Une application affine f est caractérisée par sa valeur en un point et son application
linéaire associée.

FEzxemple A.15. — Une translation de vecteur u est une application affine telle que
YMeé&, f(M)=M+u.

Ezxemple A.16. — Une projection orthogonale affine sur le sous-espace affine F est une application affine
telle qu’il existe un point O de F vérifiant

VM e &, f(M)=0+p(OM) ou p est la projection orthogonale linéaire sur F.

On considere £ un espace affine de direction E, soit f une application de £ dans € . Uapplication f
est une application affine si et seulement si f conserve les barycentres c’est-a-dire pour tout entier n

V(l‘i,ti) € & xR, avec Zti = 1, f(z ti.’ci) = thf(l‘l)
=il =il =il




APPENDICE B

ENDOMORPHISME SYMETRIQUE

Soit E un espace euclidien muni d’une métrique M, et f un endomorphisme de E, on dit que f est
un endomorphisme symétrique si pour tous x et y de E, on a l'égalité

<z, fly) >u=< f(x),y >um -

Tout endomorphisme symétrique est diagonalisable. De plus il existe une base orthonormale de E
constituées de vecteurs propres de f.

La matrice d’'un endomorphisme symétrique dans une base orthomormale quelconque de F est une matrice
symétrique & coefficients réels. On en déduit la version matricielle du théoréme spectral

Soit A une matrice symétrique a coefficients réels de M(R), alors A est diagonalisable, il existe donc
une matrice diagonale D et P une matrice inversible tels que

A=PDP .
De plus il est possible de choisir P orthogonale dans ce cas, l’égalité devient

A=PDP.
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