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INTRODUCTION

L’analyse des données (AD), et plus généralement la fouille des données (FD), est constituée d’un en-
semble de techniques qui ont pour but de déterminer les structures possédées par l’ensemble des données.
Ces structures peuvent être de nature descriptive ( partition, hiérarchie, plan factoriel,...) ou explicative (
arbre de décision, analyse factorielle discriminante,...). L’analyse de données peut être considérée comme
une science expérimentale : propriétés démontrées après avoir été observées, indice empirique pour l’inter-
prétation des résultats, codages établis de façon heuristique.

Par ailleurs, les premiers résultats fournis par une analyse factorielle sont généralement évidents, alors
que les résultats suivants ne sont pas triviaux et sont souvent intéressants.

Les données peuvent se présenter sous différentes formes : tableaux individus × variables (dans un but
descriptif, l’interprétation établira des liens entre variables et groupes d’individus qui se ressemblent selon
ces variables), tableaux de distances ( représentation des individus dans un plan, sur une droite, etc ou
partitionement de l’ensemble des individus), tableaux de contingence ( ces tableaux croisent les ensembles
de modalités de deux caractères qualitatifs), tableaux de présence-absence (0/1), tableaux de notes, tableaux
de pourcentage...

Les techniques d’analyse de données se différencient non seulement par les outils mathématiques utilisés
( algèbre linéaire dans le cas de l’analyse factorielle, théorie des graphes et combinatoire pour certaines
méthodes de classification ) mais aussi par les buts poursuivis qui peuvent être un but descriptif ou un but
prévisionnel. Le but descriptif consiste à essayer d’obtenir une représentation simplifiée aussi proche que
possible des données initiales, le but prévisionnel consiste à expliquer et prévoir une ou plusieurs variables
en fonction d’autres variables. Dans ce cours, nous présenterons les techniques suivantes :
• Analyse en composantes principales (ACP) : rechercher des axes d’inertie d’un système de points

affectés de poids, ce qui permet d’en déduire des sous-espaces de dimensions réduites sur lesquels la
projection des points est la moins déformante.
• Analyse des correspondances (AC) : double ACP ayant un but à la fois descriptif et prévisionnel (

étude de liens existants entre lignes et colonnes d’un tableau).



CHAPITRE 1

NUAGES DE POINTS

1. Tableau de données

On observe p variables quantitatives mesurées sur un échantillon de taille n. Les données sont rassemblées
en un tableau ou matrice de n lignes et p colonnes. On note X ce tableau de données, son terme général
xji , situé à la ième et jème colonne, désigne la valeur prise par le ième individu pour la variable j.

On note I = [[1, n]] et J = [[1, p]] qui sont les ensembles d’indices désignant respectivement les n individus
et les p variables.

X = (xji )i∈I,j∈J ∈Mn,p(R).

Ainsi les valeurs prises par la variable xj pour les n individus se lisent sur la jème colonne et les valeurs
prise par l’individu i pour les p variables se lisent sur la ième ligne. On note xj la jème variable et xi le
ième individu :

∀(i, j) ∈ [[1, n]]× [[1, p]], xj =

x
j
1
...
xjn

 ∈ Rn et xi =

x
1
i
...
xpi

 ∈ Rp.

Ainsi

X = [x1, · · · , xp] =

x
′
1
...
x′n

 .

2. Nuages des individus et nuages des variables

On munit Rp de la base canonique, O étant l’origine de ce repère, on peut alors associé à chaque individu
i le point Mi tel que

∀i ∈ [[1, n]],
−−→
OMi = xi.

Chaque axe représente une variable. L’ensemble des pointsMX = {Mi, 1 ≤ i ≤ n} est appelé le nuage des
individus et Rp est l’espace des individus.

De même, on munit Rn de la base canonique, on peut alors associé à chaque variable le point N j tel que

∀j ∈ [[1, p]],
−−−→
ON j = xj .

Chaque axe représente un individu. L’ensemble des points NX = {N j , 1 ≤ j ≤ p} est appelé le nuage
des variables et Rn est l’espace des variables.

Les ensembles Rn et Rp sont considérés comme des espaces affines. Dans l’annexe A, on rappelle les
principales notions à connaitre pour ce cours.
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3. Métrique dans un espace euclidien, distance dans un espace affine

Définition 1.1 – Métrique

On considère E un espace euclidien de dimension n, où n est un entier naturel non nul, muni d’un
produit scalaire noté < ., . >. Soit B = (e1, · · · , en) une base de E. La matrice du produit scalaire
dans la base B est la matrice M carrée d’ordre n et de terme courant

∀(i, j) ∈ [[1, n]]
2
, mi,j =< ei, ej > .

On appellera M la métrique de E.

Proposition 1.2

Soit E un espace euclidien de dimension n, où n est un entier naturel non nul. Soit M la métrique
de E dans la base B = (e1, · · · , en). La matrice M est symétrique, définie et positive. De plus soit u
et v deux vecteurs de E, on note U et V les matrices représentant u et v dans B, on a

< u, v >= U ′MV = V ′MU.

On note le produit scalaire avec M en indice pour indiquer la métrique utilisée : < u, v >M .
Réciproquement, toute matrice d’ordre n symétrique, définie positive permet de définir un produit
scalaire dans E en utilisant la relation précédente.

Remarque 1.3. — La base B est orthonormée si et seulement si la matrice M est égale à l’identité.

Démonstration. — La matrice M est symétrique car le produit scalaire est symétrique. Par ailleurs, on a

u =

n∑
i=1

uiei v =

n∑
j=1

vjej .

Donc d’après les propriétés du produit scalaire de bilinéarité et symétrie, on a

< u, v >=

n∑
i=1

n∑
j=1

uivjmi,j = U ′MV = V ′MU.

On en déduit que pour toute matrice colonne U

U ′MU = ||u||2 ≤ 0,

donc M est positive. Enfin U ′MU = 0 implique u = 0 soit U = 0 donc M est définie positive.
Réciproquement soit M matrice d’ordre n symétrique, définie positive, on se place dans Rn muni de la

base canonique, pour tout vecteur u et v de Rn , on peut associer les matrices U et V respectivement à u
et v, on pose alors

φ(u, v) = U ′MV.

On vérifie que φ est un produit scalaire sur Rn.

Pour étudier la proximité entre deux individus d’un même nuage de points, on introduit une distance
notée d entre les individus.
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Définition 1.4 – Distance

Soit E un espace affine associé à l’espace euclidien E. Soit M1 et M2 deux points de E , la distance
entre M1 et M2 est égale à la norme du vecteur joignant ces deux points :

d(M1,M2) = ||
−−−−→
M1M2||.

Dans toute la suite de ce cours, nous noteronsM la métrique de l’espace des individus Rp. Si l’on suppose
que la matriceM est diagonaleM = diag(m1, · · · ,mp), alors la distance entre les individus i et i′ est donnée
par

d(xi, xi′) =

√√√√ p∑
j=1

mj(x
j
i − x

j
i′)

2.

Par ailleurs chaque individu i est muni d’une masse, appelée aussi poids, notée pi et telle que

∀i ∈ I, pi > 0 et
n∑
i=1

pi = 1.

On note Dp la matrice diagonale définie par

Dp = diag(p1, · · · , pn).

En général, les poids sont tous égaux à 1/n, mais ce n’est pas toujours le cas comme par exemple en Analyse
des Correspondances. Alors l’espace des variables Rn est muni de la métrique Dp. Par conséquent la distance
entre deux variables est

d(xj , xj
′
) =

√√√√ n∑
i=1

pi(x
j
i − x

j′

i )2.

4. Centre de gravité du nuage MX

Définition 1.5 – Centre de gravité

Le centre de gravité du nuage des individus Mi affecté du poids pi est le point G tel que

G =

n∑
i=1

piMi.

La jème coordonnée de G est donnée par

gj =

n∑
i=1

pix
j
i = xj .

Ainsi gj est la moyenne de la variable xj et les coordonnées du point G sont les p moyennes des p
variables.

Proposition 1.6

On note 1n le vecteur de Rn dont toutes les coordonnées sont égales à 1, on a

g =
−−→
OG =

g1

...
gp

 = X ′Dp1n.
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Démonstration. — Puisque Dp1n =

p1

...
pn

, on en déduit que

∀j ∈ [[1, p]], gj = xj
′
Dp1n,

ce qui donne le résultat.

Remarque 1.7. — Lorsque l’on se place dans Rn muni de la métrique Dp, le vecteur 1n est unitaire, soit
PVect(1n) la projection orthogonale sur Vect 1n, alors on a

∀u ∈ Rn, PVect(1n)(u) =< u, 1n > 1n = U ′Dp1n.

On en déduit que gj est l’abscisse de la projection orthogonale pour la métrique Dp de xj sur Vect(1n).

Il est naturel de centrer le nuage des individus sur le centre de gravité G ce qui revient à construire un
nouveau tableau Y tel que

∀(i, j) ∈ [[1, n]]× [[1, p]], yji = xji − xj ,
soit

∀i ∈ [[1, n]], yi = Mi −G.
Ainsi dans ce nouveau tableau de données, toutes les variables yj , 1 ≤ j ≤ p, sont de moyennes nulles.

Proposition 1.8

On a
Y = X − 1ng

′

Par ailleurs
yj = xj − gj1n = (Id− PVect(1n))(x

j),

ce qui signifie que yj est la projection de xj sur l’hyperplan orthogonal à 1n.

5. Support des nuages

Définition 1.9 – Support d’un nuage

On appelle support d’un nuage le plus petit sous-espace affine contenant les points du nuage. On
note

SX = supp(MX) et SY = supp(MY ).

Puisque le nuage MY est centré, le support SY contient l’origine et est assimilé à un sous-espace
vectoriel

SY = Vect(y1, · · · , yn) = ImY ′.

Proposition 1.10

Soit r le rang de la matrice Y , alors la dimension de SY est égale à r, le rang de Y .

Démonstration. — Une matrice et sa transposée ont même rang donc r est égale à la dimension de l’espace
vectoriel générée par les vecteurs lignes soit la famille (yi)1≤i≤n.
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6. Matrice Variance

Définition 1.11 – Matrice Variance

La matrice variance, notée V , des p variables pour les n individus est une matrice carré d’ordre p et
de terme courant vj,j′ donné par

∀(j, j′) ∈ [[1, p]]
2
, vj,j′ = Cov(xj , xj

′
) =

n∑
i=1

pi(x
j
i − gj)(x

j′

i − gj′) =< yj , yj
′
>Dp .

Proposition 1.12

En notation matricielle, on a
V = Y ′DpY.

ou encore
V = (X − 1ng

′)′Dp(X − 1ng
′) = X ′DpX − gg′.

La matrice V se décompose de la manière suivante

V =

n∑
i=1

pi yi y
′
i.

Démonstration. — C’est une preuve directe, soit (j, j′) ∈ [[1, p]]
2 le terme courant de Y ′DpY est

(Y ′DpY )jj′ =

n∑
i=1

yji piy
j′

i = vj,j′ .

D’où l’égalité. En remplaçant Y en fonction de X, on obtient

V = (X − 1ng
′)′Dp(X − 1ng

′).

Puis on développe cette expression donc

V = X ′DpX − g1′nDpX −X ′Dp1ng
′ + g1′nDp1ng

′.

Or 1n est un vecteur unitaire pour la métrique Dp et par symétrie du produit scalaire, on a

1′nDp1n = 1, et g1′nDpX = X ′Dp1ng
′ = gg′.

Il reste alors
V = X ′DpX − gg′.

La décomposition se prouve directement aussi : soit (j, j′) ∈ [[1, p]]
2 le terme courant de

n∑
i=1

pi yi y
′
i est

(

n∑
i=1

pi yi y
′
i)jj′ =

n∑
i=1

pi(yi y
′
i)j,j′ =

n∑
i=1

pi y
j
i y
j′

i = vj,j′ .

D’où l’égalité.

Remarque 1.13. — Si la matrice V est définie positive, elle fournit une métrique sur Rp, métrique induite
par Dp et Y . Si V n’est pas régulière, on aura seulement une pseudo métrique.

Proposition 1.14

Le rang de la matrice V est égal au rang de Y .
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Démonstration. — On montre directement que le noyau de Y est égal au noyau de V . En effet soit u de
KerY , alors Y u = 0. donc V u = Y ′DpY u = 0 ainsi u ∈ KerV . Réciproquement si u ∈ KerM , alors
Y ′DpY u = 0 soit u′Y ′DpY u = 0 ce qui donne ||Y u||Dp = 0 donc Y u = 0 et u ∈ KerY .

Ensuite on applique le théorème du rang et on conclut

rang(Y ) = p− dim(KerY ) = p− dim(KerV ) = rang(V ).

Proposition 1.15

Soient u =

u1

...
up

 et v =

v1

...
vp

 de Rp, on définit deux nouvelles variables z et t par

z =

p∑
j=1

ujx
j et t =

p∑
j=1

vjx
j .

Alors la covariance entre z et t est donnée par

Cov(z, t) = u′V v.

Si la matrice V est définie positive, V définit une métrique pour laquelle la covariance entre z et t
est le produit scalaire entre les vecteurs z et t et la variance de la variable z est le carré de la norme
de z soit

Cov(z, t) =< u, v >V et V(z) = ||u||2V .

Démonstration. — On a

Cov(z, t) = Cov(

p∑
j=1

ujx
j ,

p∑
j′=1

vj′x
j′),

= (

p∑
j=1

p∑
j′=1

ujvj′ Cov(xj , xj
′
), par bilinéarité de la covariance,

= u′V v.

7. Effet d’une transformation linéaire A du nuage des individus

On considère une application linéaire f de l’espace des individus Rp dans Rs où s est un entier naturel.
Le nuage de pointsMX est alors transformé en un autre nuage notéMZ . Si le paramètre s est inférieur à
p, le nouveau nuage de pointsMZ évolue alors dans un espace de dimension plus faible.

On note A la matrice qui représente l’application linéaire f . Ainsi A est une matrice de format s× p. On
note

MZ = {z1, · · · , zn} avec ∀i ∈ [[1, n]], zi = f(xi) = Axi.

On obtient ainsi une nouvelle matrice Z dont les lignes sont les z1, · · · , zn soit

Z ′ = AX ′ donc Z = XA′.
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Proposition 1.16

Le centre de gravité deMZ affectés des poids p1, · · · , pn noté gZ est

gZ = Ag.

La matrice de variance de Z noté V ar(Z) est

V ar(Z) = V ar(XA′) = AV A′.

Démonstration. — On a

gZ =

n∑
i=1

pizi =

n∑
i=1

piAxi = Ag.

On note Zc la matrice centrée

Zc = Z − 1ng
′
Z = XA′ − 1ng

′A′ = Y A′,

donc

V ar(Z) = Z ′cDpZc = AY ′DpY A
′ = AV A′.

8. Inerties

Dans tout ce chapitre, on se place dans Rp considéré comme un espace euclidien muni d’une métrique
notée M .

Définition 1.17 – Inertie par rapport à un point

Soit A un point, l’inertie du nuageM = (xi)1≤i≤n par rapport au point A est

IA(M) =

n∑
i=1

pi||xi −A||2M .

Si A = G le centre de gravité , IG(M) est appelée inertie totale du nuage :

IT (M) = IG(M).

Si l’on suppose que M = diag(m1, · · · ,mn) alors

IT (M) =

n∑
i=1

pi||yi||2M =

n∑
i=1

pi

p∑
j=1

mj(y
j
i )

2 =

p∑
j=1

mj V(yj),

où V(yj) représente la variance de yj . L’inertie totale est ainsi la somme pondérée des variances des variables
initiales, elle mesure la dispersion du nuage autour du centre de gravité.

Proposition 1.18 – Théorème de Huyghens

On a
IA(M) = IT (M) + ||A−G||2M .
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Démonstration. —

||xi −A||2M = ||xi −G+G−A||2M ,
= ||xi −G||2M + ||G−A||2M + 2 < xi −G,G−A >M .

On en déduit que

IA(M) =

n∑
i=1

pi||xi −A||2M ,

=

n∑
i=1

pi||xi −G||2M +

n∑
i=1

pi||G−A||2M + 2 <

n∑
i=1

pi(xi −G), G−A >M ,

= IT (M) + ||G−A||2M .

Définition 1.19 – Inertie par rapport à un sous-espace affine

Soit E un sous-espace affine de Rp et E le sous-espace vectoriel associé. Soit A un point de E et B
un point de Rp, la distance de B à E est

dM (B, E) = ||(Id− PE)(
−−→
AB)||M ,

où PE est la projection orthogonale sur E.
On appelle inertie du nuageM = (Mi)1≤i≤n par rapport au sous-espace affine E

IE(M) =

n∑
i=1

pid
2
M (Mi, E).

Remarque 1.20. — La définition de dM (B, E) ne dépend pas du point A de E . En effet soit C un point
de E distinct de A alors

(Id− PE)(
−−→
CB) = (Id− PE)(

−→
CA) + (Id− PE)(

−−→
AB),

or le vecteur
−→
CA est dans E donc sa projection sur E est lui-même, ainsi (Id− PE)(

−→
CA) = 0 donc

(Id− PE)(
−−→
CB) = (Id− PE)(

−−→
AB).

Ce qui montre que la définition ne dépend pas du choix du point A.

Remarque 1.21. — Si l’inertie est nulle IE(M) = 0, cela signifie que le nuage M est inclus dans le
sous-espace affine E .

Proposition 1.22

Soit EE un sous-espace affine de direction E et EG le sous-espace affine de direction E passant par
G, centre de gravité deM , alors pour tout point A de E, on a

IE(M) = IEG(M) + ||(Id− pE)(
−→
AG)||2M .
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Démonstration. —

IE(M) =

n∑
i=1

pid
2
M (Mi, E),

=

n∑
i=1

pi||(Id− PE)(
−−→
AMi)||2,

=

n∑
i=1

pi||(Id− PE)(
−→
AG+

−−→
GMi)||2,

=

n∑
i=1

pi||(Id− PE)(
−→
AG)||2 +

n∑
i=1

pi||(Id− PE)(
−−→
GMi))||2

+2 < (Id− PE)(
−→
AG),

n∑
i=1

pi(Id− PE)(
−−→
GMi) >M ,

= ||(Id− PE)(
−→
AG)||2 + IEG(M).

Ce résultat montre que parmi tous les sous-espaces affine parallèles à E, celui qui possède une inertie
minimale est celui qui passe par le centre de gravité du nuage.

Par la suite, on recherche le ou les sous-espaces affines de dimension k donnée par rapport auquel(s) le
nuage a une inertie minimale : c’est l’objectif de l’ACP.

On voit donc que ces sous-espaces optimaux passent nécessairement par G. C’est la raison pour laquelle
on supposera, en général, par la suite que le tableau X est centré. Si ce n’est pas le cas, on raisonnera sur
Y .

Proposition 1.23

On note E⊥ le sous espace affine passant par G et de direction E⊥, on a

IT = IE(M) + IE⊥(M).

On pose
JE(M) = IE⊥(M).

JE(M) est l’inertie totale de la projection deM sur E

Démonstration. — On a la relation PE + PE⊥ = Id, d’où en utilisant Pythagore

IE(M) + IE⊥(M) =

n∑
i=1

pi||(Id− PE)(
−−→
GMi)||2 +

n∑
i=1

pi||(Id− PE⊥)(
−−→
GMi)||2 = IT .

Pour le dernier point, il suffit d’appliquer la définition :

JE(M) =

n∑
i=1

pi||(Id− P⊥E )(
−−→
GMi)||2 =

n∑
i=1

pi||(PE)(
−−→
GMi)||2.

Ainsi la recherche de E qui minimise IE(M) est équivalent à rechercher E qui maximise JE(M).

Remarque 1.24. — Si JE(M) = 0, alors le nuageM est inclus dans E⊥.



8. INERTIES 10

Proposition 1.25 – Cas particulier d’une droite affine passant par G

Soit ε1 un vecteur unitaire pour la métrique M de Rp. Soit E1 la droite affine passant par G associée
à Vect(ε1). On a

JE1(M) = ε′1MVMε1 =< ε1, V Mε1 >M .

Démonstration. — Puisque pour tout vecteur u de Rp, on a

PVect(ε1)(u) =< u, ε1 >M ε1.

On en déduit que

JE1(M) =

n∑
i=1

pi||(PE)(
−−→
GMi)||2,

=

n∑
i=1

pi < yi, ε1 >
2
M ,

=

n∑
i=1

piε
′
1Myiy

′
iMε1,

= ε′1MVMε1.

Remarque 1.26. — Si JE1(M) = 0, alors le nuageM est inclus dans Vect(ε1)⊥.

Proposition 1.27 – Décomposition de l’inertie

On considère EG un sous-espace affine de Rp de direction E passant par G. Soit (ε1, · · · , εk) une
base orthonormale de E pour la métrique M , on complète cette base en une base orthonormale de
Rp soit (ε1, · · · , εk, εk+1, · · · , εp). On a

IEG(M) =

p∑
l=k+1

JEl(M),

où El est la droite affine passant par G de direction Vect(εl).

Démonstration. — On a pour tout vecteur u

PE(u) =

k∑
i=1

< u, εi >M εi,

on en déduit que pour i fixé

||(Id− PE)(
−−→
GMi))||2 = ||

p∑
l=k+1

<
−−→
GMi, εl >M εl||2,

ce qui donne

||(Id− PE)(
−−→
GMi))||2 =

p∑
l=k+1

<
−−→
GMi, εl >

2
M ,

et matriciellement

||(Id− PE)(
−−→
GMi))||2 =

p∑
l=k+1

ε′lMyiy
′
iMεl.
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Par conséquent on obtient par interversion de somme

IEG(M) =

n∑
i=1

pi

p∑
l=k+1

ε′lMyiy
′
iMεl,

=

p∑
l=k+1

ε′lM

(
n∑
i=1

piyiy
′
i

)
Mεl,

=

p∑
l=k+1

ε′lM V Mεl,

=

p∑
l=k+1

JEl(M).

Proposition 1.28 – Calcul de l’inertie totale

On a
IT = tr(VM).

Démonstration. — On applique la proposition précédente en remarquant que l’inertie totale est l’inertie
par rapport à l’espace Rp lui-même. Comme VM est une matrice associé à un endomorphisme symétrique,
on choisit comme base orthonormale une base constituée de vecteurs propres de VM soit (u1, · · · , up), on a

∀j ∈ [[1, p]], V Muj = λj uj .

IT = I(Rp)⊥(M),

=

p∑
j=1

u′jMVMuj ,

=

p∑
j=1

λj ||uj ||2M ,

=

p∑
j=1

λj ,

= tr(VM).
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On peut aussi raisonner directement : puisque la trace de AB est égal à la trace de BA, on en déduit

IT =

n∑
i=1

pi||yi||2M ,

=

n∑
i=1

piy
′
iMyi,

= tr(

n∑
i=1

piy
′
iMyi),

=

n∑
i=1

pi tr(y′iMyi),

=

n∑
i=1

pi tr(Myiy
′
i),

= tr(M

n∑
i=1

pjyiy
′
i),

= tr(MV ) = tr(VM).



CHAPITRE 2

ANALYSE EN COMPOSANTES PRINCIPALES

Soit N = {xi, i ∈ I} ⊂ Rp un nuage de points de l’espace Rp muni de la métrique M . Chaque point xi
est muni de la masse pi > 0 avec

∑
i∈I

pi = 1.

1. Recherche du meilleur sous-espace de dimension k représentant N

L’objectif de l’ACP est de rechercher pour un entier k fixé le ou les sous-espaces affine de dimension
k par rapport auquel(s) le nuage a une inertie minimale. D’après ce qui précède, on sait que le meilleur
sous-espace Ek passe par G le centre de gravité de N . On peut donc prendre l’origine en O = G et il est
équivalent de rechercher un sous-espace vectoriel Ek de dimension k tel que l’inertie In(Ek) soit minimale.
Comme

IT = IEk + JEk ,

il est équivalent de rechercher Ek tel que JEk soit maximale.
Le théorème suivant décrit l’espace qui maximise JEk parmi tous les sous-espaces vectoriels de dimension

k.

Théorème 2.1 – ACP

La matrice VM est une matrice M -symétrique, positive. On en déduit que VM est diagonalisable,
que ses valeurs propres sont des réels et il existe une base M -orthonormale (u1, · · ·up) constituée de
vecteurs propres de VM associés aux valeurs propres respectives

λ1 ≥ · · · ≥ λp ≥ 0.

On pose
∀k ∈ [[1, p]], Ek = Vect(u1, · · · , uk).

Alors on a

∀k ∈ [[1, p]], JEk =

k∑
i=1

λi = max
Ee.v.dimE=k

(JE).

Réciproquement si F est un sous-espace vectoriel de dimension k tel que JF =

k∑
i=1

λi, alors il existe

une base orthonormale (v1, · · · vp) constituée de vecteurs propres de VM associé aux valeurs propres
respectives λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0, telle que

F = Vect(v1, · · · , vk).
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Démonstration. — Pour le premier point, on a pour tout vecteur u et v de Rp :

< u, VMv >M = u′MVMv,

= (VMu)′Mv,

= < VMu, v >M .

donc la matrice VM est une matrice M -symétrique. De plus

< VMu, u >M= u′MVMu.

or u′MVMu est la variance d’une combinaison linéaire des variables initiales donc est positif. Ainsi la
matrice VM est une matrice M -symétrique, positive.

Pour le second point, soit k un entier entre 1 et p, on a

JEk =

k∑
j=1

< uj , V Muj >M=

k∑
j=1

λj .

Puis on considère un sous-espace vectoriel E de Rp de dimension k. Soit (h1, · · · , hk) une base orthonor-
male de E, on a

JE =

k∑
i=1

< hi, V Mhi >M .

On décompose le vecteur hi dans la base (u1, · · ·up), on a

∀i ∈ [[1, k]], hi =

p∑
j=1

< hi, uj >M uj .

On en déduit que

∀i ∈ [[1, k]], V Mhi =

p∑
j=1

< hi, uj >M λj uj .

D’où

JE =

k∑
i=1

p∑
j=1

λj < hi, uj >
2
M=

p∑
j=1

λj qj

avec

qj =

k∑
i=1

< hi, uj >
2
M .

Or en notant PE la projection orthogonale sur E, on a

0 ≤ qj = ||PE(uj)||2 ≤ ||uj ||2 = 1,

ainsi que
p∑
j=1

qj =

k∑
i=1

 p∑
j=1

< hi, uj >
2
M

 =

k∑
i=1

||hi||2M = k.

On en déduit donc

JE −
k∑
j=1

λj =

p∑
j=1

λj qj −
k∑
j=1

λj ,

=

k∑
j=1

λj (qj − 1) +

p∑
j=k+1

λj qj ,

≤
k∑
j=1

λk (qj − 1) +

p∑
j=k+1

λk qj ,

= λk k − k λk = 0.
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Par conséquent

JE ≤
k∑
j=1

λj = JEk .

Réciproquement, on considère un sous-espace vectoriel E réalisant l’égalité, on note (h1, · · · , hk) une base
orthonormale de E. De l’égalité

JE =

k∑
j=1

λj

on déduit que

k∑
j=1

λj (qj − 1) +

p∑
j=k+1

λj qj =

k∑
j=1

λk (qj − 1) +

p∑
j=k+1

λk qj ,

soit
k∑
j=1

(λj − λk) (qj − 1) =

p∑
j=k+1

(λk − λj) qj .

Le premier membre de l’égalité est négatif tandis que le second membre est positif puisque les valeurs propres
sont dans l’ordre décroissant. Par conséquent

k∑
j=1

(λj − λk) (qj − 1) = 0 et
p∑

j=k+1

(λk − λj) qj = 0.

Ce que l’on peut écrire

∀j ∈ [[1, k]], (λj − λk) (qj − 1) = 0 et ∀j ∈ [[k + 1, p]], (λk − λj) qj = 0.

On considère les deux indices j0 et j1 tels que

λ1 ≥ λ2 ≥ · · · ≥ λj0 > λj0+1 = · · · = λk = · · · = λj1−1 > λj1 ≥ · · · ≥ λp ≥ 0.

On a donc

∀j ∈ [[1, j0]], qj = 1 et ∀j ∈ [[j1, p]], qj = 0.

Or qj représente la norme au carré de la projection orthogonale de uj sur E. Lorsque qj vaut 1, la norme
de uj , cela signifie que le vecteur uj est dans E. De même lorsque qj = 0, alors uj est dans l’orthogonale de
E. On en conclut que

vect(u1, · · · , uj0) ⊂ E et vect(uj1 , · · · , up) ⊂ E⊥,

soit

vect(u1, · · · , uj0) ⊂ E ⊂ vect(u1, · · · , uj1−1).

On peut donc construire une base orthonormale de E à partir de (u1, · · · , uj0) en rajoutant des vecteurs
du sous-espace propre associé à λk. Ainsi E admet une base orthonormale constitué de vecteurs propres de
VM selon le théorème.

On peut introduire les définition suivantes :
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Définition 2.2

Soit (u1, · · ·up) une base orthonormale de vecteurs propres de VM associé aux valeurs propres
respectives

λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0,

pour tout entier 1 ≤ α ≤ p,
• l’axe Vect(uα) est appelé le αième axe factoriel du nuage de points N .
• ϕα = Muα est appelé le αième facteur,
• ∀i ∈ [[1, n]], ψα,i =< yi, uα >M= y′iMuα = y′iϕα est l’abscisse de la projection de yi sur

Vect(uα) :

ψα =

ψα,1...
ψα,n

 = Y ϕα = YMuα est appelée α ième composante principale.

• le taux d’inertie expliquée par le αième axe factoriel, noté τα, est la quantité

τα =
λα
IT

=
λα
p∑
i=1

λi

.

• le taux d’inertie expliquée par Eα, noté τ1···α, est la quantité

τ1···α =
λ1 + · · ·+ λα

IT
=

α∑
i=1

τi.

2. Axes de totale M-symétrie

Définition 2.3 – Axe de totale M-symétrie

Un axe ∆ est un axe de totale M symétrie pour le nuage N = {xi, 1 ≤ i ≤ n} s’il y a symétrie
des points et des poids c’est-à-dire, en notant s∆ la symétrie orthogonale par raport à l’axe ∆, pour
tout entier i compris entre 1 et n, on a
• s∆(xi) ∈ N ,
• s∆(xi) et xi ont le même poids pi.

Proposition 2.4

Tout axe de totale M -symétrie est un axe factoriel dans l’ACP du nuage N .

Démonstration. — On note g le centre de gravité du nuage N . On a

s∆(g) =

n∑
i=1

pi s∆(xi) =

n∑
i=1

pi xi′ =

n∑
i=1

pi′ xi′ = g.

Donc g est sur l’axe ∆. On en déduit que l’axe ∆ est toujours un axe de totale M -symétrie pour le nuage
centré.

En notant Π∆ la projection orthogonale sur ∆, on a la relation

s∆ = 2Π∆ − Id.

De plus soit u un vecteur unitaire de l’axe ∆, on a pour tout 1 ≤ i ≤ n

< yi, u >M=< s∆(yi), u >M et yi + s∆(yi) = 2 < yi, u >M u ∈ ∆.
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Avec ces propriétés, on prouve que u est un vecteur propre de VM , en effet

VMu =

(
n∑
i=1

pi yi y
′
i

)
Mu,

=

n∑
i=1

pi yi < yi, u >M ,

=

n∑
i=1

pi < yi, u >M yi,

=
∑

i, yi∈∆

pi < yi, u >M yi +
∑

i, yi /∈∆

pi < yi, u >M yi,

=
∑

i, yi∈∆

pi < yi, u >M yi +
∑

i, yi /∈∆

pi < yi, u >M (yi + s∆(yi))/2,

=

n∑
i=1

pi < yi, u >M (yi + s∆(yi))/2,

=

(
n∑
i=1

pi (< yi, u >M )2

)
u.

Par conséquent ∆ est un axe factoriel associé à la valeur propre
n∑
i=1

pi (< yi, u >M )2.

3. Représentations des individus

Un individu i du nuage N possède de nouvelles coordonnées dans la base (u1, · · ·up) qui est une base
orthonormale de vecteurs propres de VM associé aux valeurs propres respectives

λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0.

Les nouvelles coordonnées de l’individu i sont données par les composantes principales :

ψ1,i

...
ψα,i
...

ψp,i


.

Proposition 2.5 – Support du nuage des individus

Soit r le rang de Y . Alors seules les r premières valeurs propres sont non nulles

λ1 ≥ · · · ≥ λr > 0 = λr+1 = · · · = λp.

Ainsi le nuage N centré a pour support Er = Vect(u1, · · · , ur).

Démonstration. — Comme V et VM ont même rang puisque M est inversible, le rang de VM est celui de
V qui est aussi celui de Y donc r, cela implique que VM possède exactement r valeurs propres non nulles
donc

λ1 ≥ · · · ≥ λr > λr+1 = · · · = λp = 0.

Or une valeur propre λα est aussi JVect(uα)(N ) et comme

∀α ∈ [[r + 1, p]], JVect(uα)(N ) = 0,
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on en déduit que le nuage N centré est inclus dans Vect(ur+1, · · · , up)⊥ soit Er = Vect(u1, · · · , ur).

Ainsi lorsque Y est de rang r, un individu i a p− r coordonnées nulles donc est caractérisé par r valeurs
ψi,1, · · · , ψi,r au lieu des p coordonnées initiales dans la base canonique. Les nouvelles coordonnées de
l’individu i sont données par les composantes principales :

ψ1,i

...
ψr,i
0
...
0


.

Si le taux τ1,2 est proche de 1, on visualise le nuage N dans le plan Vect(u1, u2), noté plan 1× 2. Sinon
on complète cette représentation par les projections sur les plans 1× 3, 2× 3, voire si τ1,2,3 est trop faible,
sur les plans 1× 4, 2× 4, etc.

Définition 2.6 – Qualité de représentation

La qualité de la représentation de l’individu i sur Ek est

QLT (yi, Ek) = cos2(θi,Ek),

où θi,Ek est l’angle entre yi et Ek.

Proposition 2.7

On a

QLT (yi, Ek) =

k∑
α=1

QLT (yi,Vect(uα)) =

k∑
α=1

(
ψα,i
||yi||M

)2.

Démonstration. — On note P la projection orthogonale sur Ek, on a

< yi, P (yi) >M= ||yi|| ||P (yi)|| cos(θi,Ek).

Or on a

P (yi) =

k∑
α=1

< yi, uα >M uα et ||P (yi)||2M =

k∑
α=1

< yi, uα >
2
M .

donc

< yi, P (yi) >=

k∑
α=1

< yi, uα >
2=

k∑
α=1

ψ2
α,i = ||P (yi)||2M .

On en conclut que

cos2(θi,Ek) =

(
<

yi
||yi||

,
P (yi)

||P (yi)||
>M

)2

=

k∑
α=1

(
ψα,i
||yi||M

)2.

Plus ce facteur de qualité se rapproche de 1, mieux est représenté l’individu i. S’il vaut 1, alors yi est
dans Ek.

On note parfois sur les listings, CORα(i) pour désigner 1000 × cos2(θi,Vect(uα)) et aussi QLTEk(i) =

1000× cos2(θi,Ek).
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4. Représentation des variables

Les variables yj sont représentés par les vecteurs de l’espace Rn muni de la métrique Dp. Pour cette
métrique, la norme d’un vecteur est l’écart-type de la variable et le produit scalaire entre deux vecteurs est
la covariance entre les deux variables. La composante principale ψα est un vecteur de Rn.

Proposition 2.8

La composante principale ψα associée à la valeur propre λα est centrée, de variance égale à la valeur
propre λα et les composantes principales ne sont pas corrélées entre elles :

∀(α, β) ∈ [[1, p]]
2
, Cov(ψα, ψβ) =< ψα, ψβ >Dp=

{
λα si α = β,

0 si α 6= β

Démonstration. — Toute composante principale est une combinaison linéaire des variables yj qui sont
toutes centrées donc ψα est centrée. De plus on a

< ψα, ψβ >Dp = ψ′αDpψβ ,

= u′αMY ′DpYMuβ ,

= u′αMVMuβ ,

= λβ < uα, uβ >M .

D’où le résultat.

Proposition 2.9

Soit r le rang de Y . Alors seules les r premières valeurs propres sont non nulles

λ1 ≥ · · · ≥ λr > 0 = λr+1 = · · · = λp.

On pose

∀α ∈ [[1, r]], vα =
ψα√
λα
.

La famille (v1, · · · , vr) est une base orthonormale de Vect(y1, · · · , yp) = ImY , la αème coordonnée
de yj est donnée par

∀1 ≤ α ≤ r, ηα,j =< yj ,
ψα√
λα

>Dp .

On a

ηα =

ηα,1...
ηα,p

 =
√
λαuα et ||ηα||2M = λα.

Démonstration. — Le premier point a déjà été démontré. Puis pour tout 1 ≤ k ≤ r, le vecteur vk est une
combinaison linéaire des variables yj , 1 ≤ j ≤ p, on en déduit que Vect(v1, · · · , vr) est inclus dans ImY .
Par ailleurs ces deux espaces ont même dimension r donc ils sont égaux. On en conclut que (v1, · · · , vr) est
une base orthonormale de Vect(y1, · · · , yp) = ImY . Puis on a

ηα,j =
1√
λα
yj

′
DpYMuα

donc
ηα =

1√
λα
Y ′DpYMuα =

√
λαuα.
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On représente donc la variable yj dans ce nouveau repère et les nouvelles coordonnées de yj sont

η1,j

...
ηα,j
...
ηr,j


.

Définition 2.10 – Qualité de représentation

La qualité de la représentation de la variable yj sur Fk = Vect(v1, · · · , vk), avec 1 ≤ k ≤ r est

QLT (yj , Fk) = cos2(θj,Fk),

où θj,Fk est l’angle entre yj et Fk.

Proposition 2.11

On a

QLT (yj , Fk) =

k∑
α=1

QLT (yj ,Vect(vα)) =

k∑
α=1

<
yj

||yj ||
, vα >

2
Dp=

k∑
α=1

r2
i,α.

où rj,α désigne la corrélation entre yj et vα puisque ces deux variables sont centrées.

Démonstration. — On note P la projection orthogonale sur Fk, on a

< yj , P (yj) >Dp= ||yj || ||P (yj)|| cos(θj,Fk).

Or on a

P (yj) =

k∑
α=1

< yj , vα >Dp vα et ||P (yj)||2Dp =

k∑
α=1

< yj , vα >
2
Dp .

donc

< yj , P (yj) >=

k∑
α=1

< yj , vα >
2= ||P (yj)||2Dp .

On en conclut que

cos2(θi,Fk) =

(
<

yj

||yj ||
,
P (yj)

||P (yj)||
>Dp

)2

=

k∑
α=1

<
yj

||yj ||
, vα >

2
Dp=

k∑
α=1

r2
i,α.

5. Décompositions de l’inertie

5.1. Décomposition de l’inertie selon les individus. — Puisque l’inertie totale IT est égale à la
somme des valeurs propres et comme chaque valeur propre λα est le carré de la norme de la composante
principale associée ψα pour la métrique Dp, on a

IT =

r∑
α=1

λα =

r∑
α=1

||ψα||2Dp =

r∑
α=1

n∑
i=1

pi(ψα,i)
2 =

n∑
i=1

pi||yi||2M , et λα =

n∑
i=1

pi(ψα,i)
2.

On en déduit la définition suivante :
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Définition 2.12 – Contribution relative

La contribution relative de l’individu yi à l’inertie totale est

INR(i) =
pi||yi||2M
IT

.

La contribution relative de l’individu yi à l’inertie de l’axe α est

CTRα(i) =
pi(< yi, uα >M )2

λα
=
pi(ψα,i)

2

λα
,

Remarque 2.13. — De même puisque ||yi||2M =

p∑
α=1

ψ2
α,i, on peut définir la contribution relative de l’axe

α à l’inertie de l’individu yi de la manière suivante

CTRi(α) =
(ψα,i)

2

p∑
α=1

(ψα,i)
2

= cos2(θα,i) = CORα(i),

où θi,α est l’angle entre yi et uα.
Sur les listings, CTRα(i) et CORα(i) sont souvent multipliés par 1000.

5.2. Décomposition de l’inertie selon les variables. — On suppose que la matrice M est diagonale :

M = diag(m1, · · · ,mp) où les réels mj , 1 ≤ j ≤ p, sont strictement positifs.

Puisque l’inertie totale IT est dans ce cas égale à la somme des variances de chaque variable pondéré par
mj

IT =

p∑
j=1

mj ||yj ||2Dp ,

et puisque chaque valeur propre λα est le carré de la norme de ηα pour la métrique M , on a

λα = ||ηα||2M =

p∑
j=1

mj(ηα,j)
2,

on en déduit la définition suivante :

Définition 2.14 – Contribution relative

La contribution relative de la variable yj à l’inertie totale est

INR(j) =
mj ||yj ||2Dp

IT
.

La contribution relative de la variable yj à l’inertie de l’axe α est

CTRα(j) =
mj(< yj , vα >Dp)2

λα
= mju

2
α,j ,

Remarque 2.15. — De même on peut définir la contribution relative de l’axe α à l’inertie de la variable
yj par

CORα(j) = r2
i,α = cos2(θj,α),

où θj,α est l’angle entre yj et vα.
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Sur les listings, CTRα(j) et CORα(j) sont souvent multipliés par 1000.

Remarque 2.16. — Il est possible de retrouver cette formule en remarquant que pour tout 1 ≤ α ≤ p, le

vecteur uα est unitaire pour la métrique M donc
p∑
j=1

mju
2
α,j = 1, soit en multipliant par λα

λα =

p∑
j=1

λαmju
2
α,j .

On retrouve les formules de contributions relatives pour une variable yj .

5.3. Eléments supplémentaires. — On peut prendre comme éléments supplémentaires une observation
douteuse, un élément aberrant, un cas nouveau, le centre de gravité d’un groupe ("homme", "femme"), des
éléments de nature différente ( opinion/CSP).

Un individu supplémentaire est un individu ys de Rp n’ayant pas participé à l’analyse. L’abscisse ψα,s
de sa projection sur Vect(uα) vérifie

ψα,s = ys′Muα.

Il est clair que ψα,s s’obtient en effectuant l’analyse factorielle du tableau X1 =

(
X

x′s

)
et en donnant un

poids nul à s. En effet dans ce cas, les seuls points ayant une inertie non nulle sont les xi pour 1 ≤ i ≤ n.
De même, une variable supplémentaire est une variable xs de Rn n’ayant pas participé à l’analyse. Elle

peut être représentée par ses projections sur les nouveaux axes vα, on note ys la variable centrée

ηα,s =< ys,
ψα√
λα

>M .

Exercice de manipulation 2.1. — : Montrer que l’on peut exprimer ψα,s en fonction de ψα,i selon la
formule :

ψα,s =
1

λα

n∑
i=1

ws,ipiψα,i avec ws,i =< ys, yi >M .

solution :
n∑
i=1

ws,ipiψα,i =

n∑
i=1

pi < ys, yi >M ψα,i,

= < ys,

n∑
i=1

piψα,iyi >M ,

= < ys,

n∑
i=1

pi < yi, uα > yi >M ,

= < ys,

n∑
i=1

piyi < yi, uα >>M ,

= < ys,

n∑
i=1

piyiy
′
i,Muα >M ,

= < ys, V Muα >M ,

= λαψα,s.

6. Analyse en composantes principales

Etant donnée un nuage de n points, muni chacun d’un poids, dans Rp muni de la métrique M , effectuer
une Analyse en Composantes Principales, ACP, du tableau X associé avec les métriques M et Dp pour les
espaces Rp et Rn, consiste à rechercher les composantes principales associées aux axes factoriels. Pour cela,
on diagonalise la matrice VM , ce qui fournit les valeurs propres et les axes factoriels.
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Définition 2.17 – ACP sur matrice variance

Effectuer une ACP sur matrice variance du tableau X consiste à prendre comme métrique

M = Ip et Dp = diag(p1, · · · , pn).

Dans ce cas, la matrice VM est la matrice de variance-covariance.

On effectue souvent la représentation des variables dans le cercle de corrélations c’est-à-dire au lieu de
représenter les variables selon leurs covariances avec les axes vα, on les représente par leurs corrélations avec
les axes vα. Cette opération revient à représenter non pas le vecteur yj mais yj

||yj || . Dans ce cas, toutes les
variables sont des vecteurs unitaires et les extrémités des variables sont sur la sphère unité de Rn.

Lorsque l’on projette une variable sur un plan factoriel, la sphère unité est projeté sur le cercle unité,
appelé cercle de corrélations, et les projections des variables sont des vecteurs de norme inférieure à 1 donc
dans le cercle unité. Mais si une variable est sur le cercle de corrélations, alors le vecteur yj

||yj || est égal à sa
projection ce sui signifie que la variable est parfaitement représentée, donc expliquée, par les deux facteurs
associés.

6.1. ACP sur matrice de corrélation ou ACP normée. —

Définition 2.18 – ACP normée

Effectuer une ACP normée du tableau X consiste à prendre comme métrique

M = ∆2 = diag(
1

v11
, · · · , 1

vpp
) et Dp = diag(p1, · · · , pn),

avec ∆ = diag( 1√
v11
, · · · , 1√

vpp
) où vjj est la variance de yj .

Proposition 2.19

Etant donné un tableau X, on centre et on divise chaque variable par son écart-type, on obtient un
nouveau tableau Z dont les variables sont toutes centrées et réduites. On a

Z = Y∆ où ∆ = diag(
1
√
v11

, · · · , 1
√
vpp

).

On réalise une ACP normée sur X en effectuant une ACP sur Z avec M = Ip.

Démonstration. — Il s’agit de prouver que l’on retrouve les même composantes principales dans les deux
ACP. Dans le cas de l’ACP normée, on diagonalise VM = Y ′DpYM . On note uα un axe factoriel associé
à la valeur propre λα :

VMuα = λα uα.

Par ailleurs, l’ACP sur la matrice Z revient à diagonaliser Z ′DpZIp = Z ′DpZ qui est la matrice de corré-
lations. On exprime cette matrice en fonction de V :

Z ′DpZ = ∆Y ′DpY∆ = ∆V ∆.

Or on remarque que
Z ′DpZ(∆uα) = ∆V∆2uα = ∆VMuα = λα∆uα.

De plus le vecteur ∆uα est non nul puisque de norme 1 :

||∆uα||2Ip = (∆uα)′∆uα = u′αMuα = 1,
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ainsi ∆uα est un axe factoriel dans l’analyse de Z associé à la valeur propre λα. De plus pour α 6= β, on a

< ∆uα,∆uβ >Ip= (∆uα)′∆uβ = u′αMuβ = 0.

On note ψα la composante principale associée à λα dans l’ACP normée, on a

ψα = YMuα = Y∆ ∆uα = Z∆uα,

or Z∆uα est la composante principale associée à λα dans l’ACP sur Z avec MIp.
On en conclut que les deux ACP sont équivalentes.

Proposition 2.20 – Inertie totale d’une ACP

Dans le cas d’une ACP normée, l’inertie totale du nuage est égal à p, le nombre de variables.

Démonstration. — Dans ce type d’ACP, on diagonalise la matrice des corrélations. Or cette matrice ne
comporte que des 1 sur la diagonale ( car la corrélation d’une variable avec elle-même est 1). Dès lors
l’inertie totale est la trace de cette matrice et vaut p.

7. Analyse factorielle d’un système de points munis de poids et de distances

On considère un système de points Mi, i ∈ I, munis de poids pi dans un espace affine. On identifie les
points Mi à leurs vecteurs de coordonnées xi dans un espace euclidien muni de la métrique M .

Théorème 2.21 – Tableau de distances

Dans un espace affine Rp de métrique M , on considère le nuage NX constitué de n points Mi,
1 ≤ i ≤ n. Le tableau de distance noté D entre les points du nuage est une matrice carrée d’ordre n
de terme courant d(i, i′) avec

∀(i, i′) ∈ [[1, n]]
2
, d(i, i′) = d2(Mi,Mi′) = ||xi − xi′ ||2M = ||yi − yi′ ||2M .

La représentation du nuage NX des pointsMi affectés des poids pi dans le système des axes factoriels
ne dépend que des poids pi et de la matrice D.

Démonstration. — Soit ψα la composante principale associée au αième axe factoriel uα, on a

YMY ′Dpψα = YMY ′DpYMuα = YMVMuα = λαYMuα = λαψα,

où Y est le tableau centré associé à X. Ceci montre que la diagonalisation de la matrice YMY ′Dp fournit
les valeurs propres de l’ACP et pour chaque valeur propre non nulle, tout vecteur propre de norme égale à√
λα est une composante principale.
Pour démontrer le résultat, il s’agit donc de prouver que l’on peut construire la matrice YMY ′ à partir

des poids pi et des distances d2(Mi,Mi′). On pourra alors en déduire YMY ′Dp.
La matrice YMY ′ est une matrice carrée d’ordre n et le terme courant de cette matrice est

∀(i, i′) ∈ [[1, n]]
2
, (YMY ′)ii′ =< yi, yi′ >M .

Une telle matrice s’appelle matrice de Gram associée à la famille de vecteurs (yi)1≤i≤n. On pose

∀i ∈ [[1, n]], d(·, i) =

n∑
i′=1

pi′d(i, i′), et d(·, ·) =

n∑
i=1

pid(·, i).

On exprime le produit scalaire en fonction de la norme soit

∀(i, i′) ∈ [[1, n]]
2
, < yi, yi′ >M=

−1

2
(||yi − yi′ ||2M − ||yi||2M − ||yi′ ||2M ).
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On somme de i′ = 1 à n en pondérant par pi′ d’où

∀i ∈ [[1, n]],

n∑
i′=1

pi′ < yi, yi′ >M=
−1

2
(

n∑
i′=1

pi′ ||yi − yi′ ||2M −
n∑

i′=1

pi′ ||yi||2M −
n∑

i′=1

pi′ ||yi′ ||2M ).

On note IT l’inertie totale : IT =

n∑
i=1

pi||yi||2M . Par ailleurs,
n∑

i′=1

pi′yi′ = 0 donc

0 =
−1

2
(d(·, i)− ||yi||2M − IT ) =⇒ ||yi||2M = d(·, i)− IT ,

Puis on somme de i = 1 à n en pondérant par pi d’où

IT = d(·, ·)− IT .

De cette dernière relation, on déduit que

IT =
1

2
d(·, ·).

Par conséquent

∀(i, i′) ∈ [[1, n]]
2
, < yi, yi′ >M=

−1

2
(d(i, i′)− d(·, i) + IT − d(·, i′) + IT ),

donc

∀(i, i′) ∈ [[1, n]]
2
, < yi, yi′ >M=

−1

2
(d(i, i′)− d(·, i)− d(·, i′) + d(·, ·)).

8. Reconstruction du nuage

Cette proposition donne une décomposition du tableau centré Y et montre comment à partir de la
connaissance des composantes principales et des axes factoriels uα on peut reconstruire le tableau centré Y .

Proposition 2.22

On effectue une ACP sur le tableau X avec comme métrique M pour Rp et Dp pour Rn. On note r
le rang de Y , on a la relation suivante avec les notations habituelles

Y =

r∑
α=1

√
λα vα u

′
α =

r∑
α=1

ψα u
′
α.

Démonstration. — On pose

T =

r∑
α=1

ψα u
′
α.

Soit 1 ≤ β ≤ p, on a

TMuβ =

r∑
α=1

ψα u
′
αMuβ = ψβ = YMuβ.

Puisque (uβ)1≤β≤p est une base de Rp, on en déduit que TM = YM et comme M est inversible on en
conclut que T = Y .

Remarque 2.23. — Dans cette reconstruction, on pourrait négliger les termes de la somme associées aux
plus faibles valeurs propres, et dans ce cas on obtiendrait un tableau Ŷ qui serait une approximation de Y .
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Il y a une réciproque à la proposition précédente c’est-à-dire :

Proposition 2.24

Soit Y un tableau centrée, s’il existe une famille (uα)1≤α≤r orthonormale de Rp muni de la métrique
M et une famille (vα)1≤α≤r orthonormale de Rn muni de la métrique Dp et r réels strictements
positifs (λα)1≤α≤r vérifiant

Y =

r∑
α=1

√
λα vα u

′
α.

Alors le rang de Y est r, les vecteurs(uα)1≤α≤r sont les axes factoriels non triviaux associés aux
valeurs propres (λα)1≤α≤r et les composantes principales sont ψα =

√
λαvα, 1 ≤ α ≤ r.

Démonstration. — Avec la décomposition on a

VMuα = Y ′DpYMuα,

=

 r∑
β=1

√
λβ vβ u

′
β

′Dp

(
r∑

γ=1

√
λγ vγ u

′
γ

)
Muα,

=

 r∑
β=1

√
λβ uβ v

′
β

Dp

r∑
γ=1

√
λγ vγ u

′
γMuα,

=

r∑
β=1

r∑
γ=1

√
λβ λγ uβ < vβ , vγ >Dp u

′
γMuα,

=

r∑
β=1

λβ uβ < uβ , uα >M ,

= λαuα.

On en conclut que les vecteurs uα, 1 ≤ α ≤ r, sont des axes factoriels de l’ACP de Y associées aux valeurs
propres λα. De plus

ψα = YMuα =
√
λαvα,

on retrouve donc les composantes principales de l’ACP de Y . Enfin le rang de Y est r, puisque pour tout
vecteur x de Rp, Y x est une combinaison linéaire des vecteurs vα, 1 ≤ α ≤ r. Comme chaque vecteur vα
est dans l’image de Y en tant que vecteur propre associé à une valeur propre non nulle, on en conclut que
l’image de Y est l’espace généré par la famille (vα)1≤α≤r donc la dimension de l’image de Y est r.

Ce que montre cette proposition est que si l’on arrive à décomposer le tableau Y sous la forme donnée
dans la proposition précédente les résultats de l’ACP se lisent directement. Or cette décompostion est
connue sous le nom de décomposition en valeurs singulières notée SVD en utilisant les métriques canoniques
c’est-à-dire M = Ip et Dp = In, nous rappelons ce résultat
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Théorème 2.25 – Décomposition en Valeurs Singulières, SVD

Soit Y une matrice de format n× p à coefficients réels. On note r le rang de Y , r ≤ s = min(n, p).
Les espaces Rn et Rp sont munis d’une structure euclidienne canonique. Alors il existe

1. (u1, · · · , un) une base orthonormale de Rn,
2. (v1, · · · , vp) une base orthonormale de Rp,
3. r réels positifs : σ1 ≥ σ2 ≥ · · · ≥ σr > 0,

tel que

Y =

r∑
i=1

σiuiv
′
i.

Les r réels σi sont uniques. On les appelle valeurs singulières de Y .
Matriciellement, on pose

U = [u1, · · · , ur] et V = [v1, · · · , vr], Σ = Diag(σ1, · · · , σr),

L’équation précédente s’écrit

Y = UΣV ′,

ou encore on peut poser
U = [u1, · · · , un] et V = [v1, · · · , vn],

et Σ est une matrice n × p dont les coefficients diagonaux sont des réels positifs ou nuls et tous les
autres sont nuls. Les termes diagonaux de Σ sont rangés par ordre décroissant . Les matrices U et
V sont deux matrices orthogonales d’ordre respectif n et p ( U ′U = UU ′ = In et V V ′ = V ′V = Ip)
Dans les deux cas, la matrice Σ est unique.

Exemple 2.26. — On considère le tableau de données suivant associé aux résultats de trois variables x,
y et z mesurées sur un échantillon I de six individus.

I \ J x y z

1 1 6 5

2 2 5 3

3 3 1 -2

4 4 3 -1

5 2 2 0

6 6 1 -5

On suppose que chaque individu i de I (1 ≤ i ≤ 6) est muni de la masse 1/6 donc Dp = 1
6I6 et M = I3.

On note X le tableau associé. Le tableau centré est

Y =



−2 3 5

−1 2 3

0 −2 −2

1 0 −1

−1 −1 0

3 −2 −5


Puis on applique la décomposition en valeurs singulières de la matrice Y à l’aide de la commande svd de

R, on obtient
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Y = UΣV ′

avec

U =



−0.627137895 0.1483193 0.676592730

−0.377938565 0.2072554 −0.695626901

0.257478469 −0.5323830 0.124438341

0.120460096 0.3251276 0.065324265

0.008279139 −0.5913191 −0.003105094

0.618858757 0.4429998 0.196376400


et Σ =

9.813206 0 0

0 2.387675 0

0 0 0



V =

 0.3669516 0.72939234 0.5773503

−0.4481965 0.68248558 −0.5773503

−0.8151481 −0.04690676 0.5773503

′

On en déduit que les résultats d’une ACP sur Y avec comme métrique Dp = 1/6I6 et M = I3 sont
• Pour les valeurs propres, ce sont les carrés des termes de la matrice diagonale

λ1 = 96 > λ2 = 5.7 > λ3 = 0.

• Pour les axes factoriels ce sont les colonnes de V .
• Pour les vecteurs vα, il faut rendre la matrice U Dp orthogonale alors qu’elle est orthogonale pour la

métrique I3, il suffit donc de multiplier par
√

6 car
√

6V Dp

√
6V ′ = V V ′ = I3.

Ces résultats ont été obtenus en utilisant la commande svd de R
Programme en R.

> X=matrix(c(1,2,3,4,5,6,6,5,4,3,2,1,0,1,2,2,1,0),6,3)
> moy=apply(X,MARGIN=2,mean)
> Y=X-t(moy\%*\%matrix(c(1,1,1,1,1,1),1,6))
> s=svd(Y)



CHAPITRE 3

ANALYSE FACTORIELLE DES CORRESPONDANCES

1. Introduction

L’analyse Factorielle des Correspondances (AFC) a été introduite pour analyser les tableaux de contin-
gence. Un tableau de contingence croise les ensembles I et J de deux variables qualitatives X et Y . Un tel
tableau peut se noter kIJ et a alors pour terme général le nombre k(i, j) d’individus qui ont pris simulta-
nément la modalité i pour la variable X et la modalité j pour la variable Y .

L’AFC consiste à effectuer deux ACP, l’une sur le tableau des profils lignes, l’autre sur celui des profils
colonnes de kIJ .

L’AFC peut être appliquée à des tableaux de nombres positifs de types divers : tableaux de contingence,
tableaux homogènes de nombres positifs, tableaux d’échanges, tableau de rangs, tableaux de présence /ab-
sence, tableau disjonctifs complets,....

2. Définition des nuages étudiés par l’AFC

2.1. Notations. — On étudie deux variables qualitatives X et Y , X a p modalités et Y q modalités.
Le tableau de contingence kIJ est une matrice de format p × q. On pose I = {1, · · · p} = [[1, p]] et J =

{1, · · · q} = [[1, q]].
On note

kI = (k(i, ·))i∈I ∈ Rp avec k(i, ·) =

q∑
j=1

k(i, j),

kJ = (k(·, j)j∈J ∈ Rq avec k(·, j) =

p∑
i=1

k(i, j),

k =

q∑
j=1

p∑
i=1

k(i, j).

Ces définitions dans le tableau ci-dessous :

1 · · · j · · · q total
1 k(1, 1) · · · k(1, j) · · · k(1, q) k(1, ·)
... · · · · · · · · · · · · · · ·
i k(i, 1) · · · k(i, j) · · · k(i, q) k(i, ·)
... · · · · · · · · · · · · · · ·
p k(p, 1) · · · k(p, j) · · · k(p, q) k(n, ·)

total k(·, 1) · · · k(·, j) · · · k(·, p) k
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On transforme les effectifs en fréquences : on obtient un nouveau tableau FIJ ou F de terme courant

∀(i, j) ∈ I × J, fi,j =
k(i, j)

k
.

On a les lois marginales :

fI = (fi·)i∈I ∈ Rp avec fi· =

q∑
j=1

fi,j =
k(i·)
k

,

fJ = (f·j)j∈J ∈ Rq avec f·j =

p∑
i=1

fi,j =
k(·j)
k

.

fI est la loi marginale sur I et fj sur J . Ainsi fI et fJ sont des distributions de probabilités donc

∑
i∈I

∑
j∈J

fi,j =
∑
i∈I

fi· =
∑
j∈J

f·j = 1.

On peut aussi introduire la loi conditionnelle sur I sachant j appelé profil de la colonne j :

fJI = (f ji )i∈I,j∈J avec f ji =
fi,j
f·j

=
k(i, j)

k(·, j)
,

Ainsi fJI est une matrice de format p× q et f jI est le jième vecteur colonne de Rp.
De même on a la loi conditionnelle sur J sachant i appelé profil de la ligne i :

f IJ = (f ij)i∈I,j∈J avec f ij =
fi,j
fi·

=
k(i, j)

k(i, ·)
,

Ainsi f IJ est une matrice de format q × p et f iJ est le ième vecteur de Rq.
Puisque f jI et f iJ sont des distributions de probabilités, on a

∑
i∈I

f ji =
∑
j∈J

f ij = 1.

S’il n’y a pas d’ambiguité, on note fi pour fi·, fj pour f·j , k(i) pour k(i, ·) et k(j) pour k(·, j).
On suppose qu’aucune ligne ou colonne de KI,J n’est nulle. Donc fi et fj sont non nulles et f ji et f ij sont

bien définies.

2.2. Nuages et métriques. —
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Définition 3.1 – AFC

L’AFC consiste à effectuer deux ACP sur deux nuages différents mais présentant une certaine symé-
trie. On note

DfI = Diag(fi)i∈I ∈Mp(R) et DfJ = Diag(fj)j∈J ∈Mq(R).

On a
D−1
fI

= Diag(1/fi)i∈I = D1/fI et D−1
fJ

= Diag(1/fj)j∈J = D1/fJ .

On dit que D1/fI (respectivement D1/fJ ) est la métrique du chi-deux de centre fI (respectivement
fJ).
On considère les nuages suivants :
• N (J) = {f jI , j ∈ J}, appelé nuage des profils colonnes, où chaque point f jI de Rp est

muni du poids fj et Rp est muni de la métrique D1/fI .
• N (I) = {f iJ , i ∈ I}, appelé nuage des profils lignes, où chaque point f iJ de Rq est muni

du poids fi et Rq est muni de la métrique D1/fJ .
On note

F1 = fJI = (f1
I , · · · , f

q
I ) et F2 = f IJ = (f1

J , · · · , f
p
J ).

F1 est le tableau des profils colonnes et F2 des profils lignes. On peut remarquer que F ′1 et F ′2 sont
les matrices correspondantes à X.

Proposition 3.2

On a
F1 = FD1/fJ et F2 = F ′D1/fI .

On en déduit que le rang de F est égal au rang de F1 et à celui de F2.

Démonstration. — Les matrices D1/fJ et D1/fI sont inversibles d’où le résultat.

3. Nuage N (J)

3.1. Support, centre de gravité. — Puisque l’on a pour tout j ∈ J∑
i∈I

f ji = 1,

on en déduit que tous les points du nuage N (J) sont dans l’hyperplan affine de Rp d’équation∑
i∈I

xi = 1.

Proposition 3.3 – Centre de gravité

Le centre de gravité du nuage N (J) est fI .
Le support du nuage N (J) est inclus dans l’hyperplan affine passant par fI et D1/fI -orthogonal à
fI .

Démonstration. — En effet soit GI ce centre de gravité, on a

GI = fJI DfJ1q = F1q = fI .
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Par ailleurs

< f jI − fI , fI >D1/fI
= (f jI − fI)

′D1/fIfI = (f jI − fI)
′1p = 0.

3.2. Effet du non centrage. — On effectue une ACP sur la matrice F ′1 avec les métriques M = D1/fI

et Dp = DfJ . Le centre de gravité des individus pondérés par Dp est fI , et la matrice de variance V est

V = (F1 − fI1′q)DfJ (F1 − fI1′q)′ = F1DfJF
′
1 − fIf ′I .

Le support de N (J) est inclus dans l’hyperplan affine d’équation
∑
i∈I

xi = 1, ce qui se traduit par

F ′11p = 1q.

Proposition 3.4

La matrice VM = V D1/fI et la matrice F1DfJF
′
1D1/fI ont les mêmes vecteurs propres et

Spectre(V D1/fI ) = {λp = 0 ≤ λp−1 · · · ≤ λ1} et Spectre(V D1/fI ) = {1, λp−1, · · · , λ1}.

Démonstration. — En effet on a

F1DfJF
′
1D1/fIfI = F1DfJF

′
11p = F1DfJ1q = fI , et fIf ′ID1/fIfI = fIf

′
I1p = fI .

On en déduit que fI est un vecteur propre associé à la matrice V D1/fI et à la matrice F1DfJF
′
1D1/fI avec

les valeurs propres 0 et 1 respectivement. Comme ces matrices représentent des endomorphismes D1/fI -
symétriques, l’orthogonal de Vect(fI) est stable pour ces deux matrices. Or soit u un vecteur de Vect(fI)

⊥,
on a

fIf
′
ID1/fIu =< fI , u >D1/fI

fi = 0.

Ainsi

∀u ∈ Vect(fI)
⊥, V D1/fIu = F1DfJF

′
1D1/fIu,

par conséquent la restriction à Vect(fI)
⊥ des endomorphismes représentés par V D1/fI et par F1DfJF

′
1D1/fI

sont identiques donc les deux matrices ont mêmes valeurs propres et même vecteurs propres.

On en déduit que pour obtenir les axes factoriels de l’ACP, le centrage n’est pas nécéssaire. Pour le calcul
des composantes principales, il n’est pas nécessaire de centrer non plus :

Remarque 3.5. — Soit uI un axe factoriel orthogonal à fI , la composante principale ψJ associée à l’axe
uI est

∀j ∈ J, ψj =< (f jI − fI), uI >=< f jI , uI > .

A l’axe factoriel trivial fI , on associe la composante triviale ψo = F ′1D1/fIfI = 1q.

3.3. Axes Factoriels, facteurs et composantes principales. — On le résultat suivant
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Proposition 3.6 – Axes Factoriels, facteurs et composantes principales

L’ACP du nuage N (J) consiste à diagonaliser F1F2.
Les axes factoriels sont solutions de

F1F2u
α
I = λαu

α
I ,

< uαI , u
β
I >D1/fI

= δα,β ,

< uαI , fI >D1/fI
= 0.

Les facteurs ϕIα sont solutions de 
F ′2F

′
1ϕ

I
α = λαϕ

I
α,

< ϕIα, ϕ
I
β >DfI = δα,β ,

< ϕIα, 1I >DfI = 0.

Les composantes principales ψJα sont solutions de
F ′1F

′
2ψ

J
α = λαψ

J
α,

< ψJα, ψ
J
β >DfJ = λαδα,β ,

< ψJα, 1J >DfJ = 0.

Toutes les valeurs propres λα sont positives et inférieures à 1.

Démonstration. — On réalise l’ACP de N (J) donc X = F ′1 pour que les individus soient en ligne, la matrice
des poids Dp est DfJ et la matrice M est D1/fI .

Pour trouver les axes factoriels, on diagonalise la matrice sans le centrage de F ′1 soit X ′DpXM ce qui
donne

F1DfJF
′
1D1/fI ,

or F1 = FD1/fJ , on a
F1DfJF

′
1D1/fI = F1DfJD1/fJF

′D1/fI ,= F1F2.

Les facteurs sont vecteurs propres de MV . En effet le facteur φα est par définition Muα donc

MV φα = MVMuα = λαMuα = λαφα.

Pour la même raison que dans la propriété sur le non centrage, il n’est pas nécessaire de centrer

D1/fIF1DfJF
′
1 = F ′2F

′
1 puisque F2 = F ′D1/fI .

Enfin les composantes principales sont vecteurs propres de YMY ′Dp et comme le centrage n’est pas
nécessaire, on a

F ′1D1/fIF1DfJ = F ′1F
′
2.

Enfin les valeurs propres sont positives. De plus le terme courant (j, k) de F ′1F ′2 est
p∑
i=1

f ji f
i
k

donc l’égalité F ′1F ′2ψ = λψ devient
q∑

k=1

p∑
i=1

f ji f
i
kψ(k) = λψ(j),

en notant ψ(j0) la plus grande coordonnée de ψ, on a

λψ(j) ≤
q∑

k=1

p∑
i=1

f ji f
i
k ψ(j0) = ψ(j0),

on en déduit que 0 ≤ λ ≤ 1.
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4. Le nuage N (I)

L’étude de N (I) se déduit de celle de N (J) en intervertissant les rôles de I et de J . Ainsi le centre de
gravité de N (I) est fJ , le support de N (I) est inclus dans l’hyperplan affine d’équation

∑
j∈J

xj = 1. On

échange F1 et F2, donc pour trouver les axes factoriels on diagonalise F2F1, les facteurs, on diagonalise
F ′1F

′
2 et les composantes principales, on diagonalise F ′2F ′1. On a donc

Proposition 3.7

L’ACP du nuage N (I) consiste à diagonaliser F2F1.
Les axes factoriels sont solutions de

F2F1u
α
J = λαu

α
J ,

< uαJ , u
β
J >D1/fJ

= δα,β ,

< uαJ , fJ >D1/fJ
= 0.

Les facteurs ϕJα sont solutions de 
F ′1F

′
2ϕ

J
α = λαϕ

J
α,

< ϕJα, ϕ
J
β >DfJ = δα,β ,

< ϕJα, 1J >DfJ = 0.

Les composantes principales ψIα sont solutions de
F ′2F

′
1ψ

I
α = λαψ

I
α,

< ψIα, ψ
I
β >DfI = λαδα,β ,

< ψIα, 1I >DfI = 0.

Toutes les valeurs propres λα sont positives et inférieures à 1.

La proposition suivante établit des relations entre les deux ACP :

Proposition 3.8 – Formules de transition

On a
ψJα = F ′1ϕ

I
α =

√
λα ϕ

J
α, et ψIα = F ′2ϕ

J
α =

√
λαϕ

I
α.

Démonstration. — Soit λα une valeur propre non nulle de F ′2F ′1

F ′2F
′
1ϕ

I
α = λαϕ

I
α,

en multipliant par F ′1, on obtient que F ′1ϕIα est non nul et est donc un vecteur propre de F ′1F ′2. On normalise
ce vecteur propre, pour cela on calcule sa norme

||F ′1ϕIα||2 = ϕIαF1DfJF
′
1ϕ

I
α,

= ϕI,αFF
′
1ϕ

I
α,

= ϕI,αDfIF
′
2F
′
1ϕ

I
α,

= λα||ϕIα||2,
= λα.

Par conséquent
1√
λα
F ′1ϕ

I
α est un vecteur propre unitaire de F ′1F ′2 associé à la valeur propre λα.
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De plus soit k et l deux indices distincts, on a

<
F ′1ϕ

I
k√

λk
,
F ′1ϕ

I
l√

λl
> =

1√
λkλl

ϕI,k F1DfJF
′
1ϕ

I
l ,

=
1√
λkλl

ϕI,k DfID1/fIFD1/fJF
′ϕIl ,

=
1√
λkλl

ϕI,k DfIF
′
2F
′
1ϕ

I
l ,

= 0.

On note r le nombre de valeurs propres non nulles de F ′2F ′1, c’est-à-dire le rang de F ′2F ′1. Ainsi l’image par
F ′1 de la base orthonormale (ϕI1, · · · , ϕIr , ϕIr+1, · · · , ϕIp) de Rp muni de la métrique DfI donne une famille

orthogonale que l’on peut normaliser soit (
F ′

1ϕ
I
1√

λ1
, · · · , F

′
1ϕ
I
r√

λr
), ce qui donne une famille orthonormale de Rq

muni de la métrique DfJ constituée de vecteurs propres de F ′1F ′2.
On en déduit que le rang de F ′1F ′2 est supérieure à r. Par symétrie entre les deux analyses, on en déduit

que F ′1F ′2 et F ′2F ′1 ont même rang et donc les mêmes valeurs propres non nulles.
Par conséquent pour toute valeur propre non nulle, on a

F ′1ϕ
I
α =

√
λα ϕ

J
α,

d’où les formules de transition.
Pour une valeur propre nulle, λα = 0, le calcul de la norme de F ′1ϕIα montre que

F ′1ϕ
I
α = 0.

Les formules de transition sont encore satisfaites.

Remarque 3.9. — Il existe diverses formulations des relations de transition. Par exemple si la valeur
propre λα est non nulle, on peut écrire

ψJα =
1√
λα
F ′1ψ

I
α.

On en déduit

∀j ∈ J, ψjα =
1√
λα

∑
i∈I

f ji ψ
i
α

De même en inversant i et j, on a aussi

∀i ∈ I, ψiα =
1√
λα

∑
j∈J

f ijψ
j
α.

On a aussi les même relations de transition pour les facteurs.

Représentation simultanée. En AFC, on effectue une représentation simultanée des modalités i ∈ I
et j ∈ J . Plus précisément, sur chaque axe α, on représente i ∈ I par le point d’abscisse ψiα et j ∈ J par le
point d’abscisse ψjα. Autrement dit, on superpose les représentations des nuages N (I) et N (J) dans leurs
systèmes d’axes respectifs. D’après les formules de transitions, il en résulte qu’au facteur 1√

λα
près, le point

j est le barycentre des points i affectés des poids f ji . De même le point i est le barycentre des points j
affectés des poids f ij .

5. Inerties

5.1. Inertie totale. — On a le résultat suivant :
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Proposition 3.10 – Inertie totale

Les nuages N (I) et N (J) ont même inertie totale égale à

IT =
∑
i∈I

∑
j∈J

(fi,j − fifj)2

fifj
.

Démonstration. — On a

IT =
∑
j∈J

fj ||f jI − fI ||
2
D(1/fI),

=
∑
j∈J

fj
∑
i∈I

1

fi
(f ji − fi)

2,

=
∑
j∈J

∑
i∈I

fj
fi

(
fi,j
fj
− fi)2,

=
∑
i∈I

∑
j∈J

(fi,j − fifj)2

fifj
.

Remarque 3.11. — En écrivant :

(fi,j − fifj)2 = f2
i,j − 2fifjfi,j + f2

i f
2
j ,

et en remarquant que
−2fifjfi,j + f2

i f
2
j

fifj
= −2fi,j + fifj ,

on en déduit que∑
i∈I

∑
j∈J

−2fifjfi,j + f2
i f

2
j

fifj
= −2

∑
i∈I

∑
j∈J

fi,j +
∑
i∈I

fi
∑
j∈J

fj = −2 + 1 = −1.

Par conséquent, on a

IT =
∑
i∈I

∑
j∈J

f2
i,j

fifj
− 1.

5.2. Interprétation de l’inertie totale dans le cas d’un tableau de contingence. — On suppose
que K est un tableau de contingence, et plus précisément que I (resp. J) est l’ensemble des modalités d’une
variable qualitative X (resp. Y). Ainsi K donne les effectifs de co-occurence des couples de modalités (i, j)

sur un échantillon de taille k. Donc F est un estimateur de la mesure de probabilité théorique pI,J (loi jointe
de (X,Y )). On sait alors que asymptotiquement, i.e. pour k tendant vers l’infini, on a

k
∑
i∈I

∑
j∈J

(fi,j − pij)2

pij
→ χ2

pq−1,

où p = Card(I) et q = Card(J).
Lorsque l’on teste l’hypothèse :

H0 : pIJ = pIpJ ,

H0 représente l’hypothèse d’indépendance des variables aléatoires X et Y , on est amené à estimer les lois
marginales pI par fI et pJ par fJ . Pour pI , on estime p− 1 paramètres puisque la somme des pi vaut 1, de
même pour pJ on estime q − 1 paramètres. Il en résulte que

k
∑
i∈I

∑
j∈J

(fi,j − fifj)2

fifj
→ χ2

µ,
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avec

µ = pq − 1− (p− 1)− (q − 1) = (p− 1)(q − 1).

On en conclut que la quantité

kIT = k
∑
i∈I

∑
j∈J

(fi,j − fifj)2

fifj

permet de tester l’hypothèse d’indépendance des variables X et Y .
Dans le cas d’indépendance, kIT aura tendance à être faible (kIT ≤ cα), et par conséquent, puisque IT

est la somme des valeurs propres, plus les valeurs propres sont faibles moins les facteurs sont interprétables.
Si X et Y ne sont pas indépendants, l’AFC permet de voir comment fIJ s’écarte de l’indépendance, les

axes factoriels associés aux plus grandes valeurs propres traduisant les liaisons entre X et Y .

5.3. Décomposition de l’inertie, Contributions. — On exprime IT en fonction des composantes prin-
cipales des deux ACP, on note r le nombre de valeurs propres non nulles, on a

IT =

r∑
α=1

∑
j∈J

fj(ψ
j
α)2 =

r∑
α=1

∑
i∈I

fi(ψ
i
α)2.

De plus la norme d’une composante principale valant la valeur propre, on a

λα =
∑
j∈J

fj(ψ
j
α)2 =

∑
i∈I

fi(ψ
i
α)2.

En intervertissant les sommes

IT =
∑
j∈J

fj

r∑
α=1

(ψjα)2 =
∑
j∈J

fjρ
2(j),

où ρ2(j) est la distance au carré entre f jI et fI .
De même

IT =
∑
i∈I

fi

r∑
α=1

(ψiα)2 =
∑
i∈I

fiρ
2(i),

où ρ2(i) est la distance au carré entre f iJ et fJ . On en déduit les définitions suivantes :

Définition 3.12

La contribution de j et i à l’inertie de l’axe α sont respectivement :

CTRα(j) =
fj(ψ

j
α)2

λα
et CTRα(i) =

fi(ψ
i
α)2

λα
.

La contribution de l’axe α à l’inertie de j et de i sont

CORα(j) =
(ψjα)2

ρ2(j)
= cos2(θj,α) et CORα(i) =

(ψiα)2

ρ2(i)
= cos2(θi,α),

où θi,α et θj,α désignent respectivement les angles formés entre f iJ − fJ et uαJ d’une part et entre
f jI − fI et uαI d’autre part.

Exemple 3.13. — Montrer que les relations suivantes sont vérifiées :

cos2(θj,α) = corr2(f Ij , ϕ
I
α) et cos2(θi,α) = corr2(fJi , ϕ

J
α),

où corr2(f Ij , ϕ
I
α) et corr2(fJi , ϕ

J
α) sont calculées respectivement avec les mesures de probabilté fi et fJ .
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6. Principe d’équivalence distributionnelle

Proposition 3.14 – Principe d’équivalence distributionnelle

Si deux lignes i1 et i2 (resp. colonnes j1 et j2) du tableau fIJ ou kIJ sont proportionnelles, alors
on ne change pas les résultats de l’analyse des correspondances en remplaçant ces deux lignes (resp.
colonnes) par leur somme i0 (resp. j0) affectée de la somme de leurs poids :

∀j ∈ J, fi0j = fi1j + fi2j .

Démonstration. — On suppose que les deux lignes i1 et i2 du tableau fIJ ou kIJ sont proportionnelles,
alors il existe un réel a tel que

∀j ∈ J, fi1j = a× fi2j ,
on en déduit que

fi1· =
∑
j∈J

fi1j = a×
∑
j∈J

fi2j = afi2·.

Ainsi dans le nuage N (I), les deux profils lignes i1 et i2 sont confondus :

∀j ∈ J, f i1j =
fi1j
fi1·

=
afi2j
afi2·

= f i2j .

Par conséquent l’ACP du nuage N (I) n’est pas modifié si l’on réunit les deux individus i1 et i2 en un
individu i0 affecté du poids fi0· = fi1· + fi2· :

f i0J = f i1J = f i2J .

Ainsi pour tout j ∈ J ,

fi0j = fi0·f
i0
j ,

= fi1·f
i0
j + fi2·f

i0
j ,

= fi1·f
i1
j + fi2·f

i2
j ,

= fi1j + fi2j .

Pour le nuage N (J) initial, les distances entre les colonnes j et j′ sont

d2(j, j′) =
∑
i∈I

1

fi·
(f ji − f

j′

i )2,

et pour le nuage en tenant compte du regroupement des lignes, on a

d2(j, j′) =
∑

i∈I\{i1,i2}

1

fi·
(f ji − f

j′

i )2 +
1

fi0·
(f ji0 − f

j′

i0
)2.

Or

1

fi0·
(f ji0 − f

j′

i0
)2 = fi0·(

f ji0 − f
j′

i0

fi0·
)2,

= (fi1· + fi2·)(
f i0j
f·j
−
f i0j′

f·j′
)2,

= fi1·(
f i0j
f·j
−
f i0j′

f·j′
)2 + fi2·(

f i0j
f·j
−
f i0j′

f·j′
)2,

= fi1·(
f i1j
f·j
−
f i1j′

f·j′
)2 + fi2·(

f i2j
f·j
−
f i2j′

f·j′
)2.

Par conséquent les distances entre les individus j et j′ sont les mêmes dans les situations, donc l’ACP de
N (J) est identique dans les deux situations.
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Remarque 3.15. — Cette propriété garantit une invariance des résultats vis à vis du choix de la mo-
menclature pour la construction des modalités d’une variable, sous réserve de regrouper des modalités aux
profils similaires.

7. Tableau de Burt

Définition 3.16 – Tableau de Burt pour un tableau de contingence

On appelle tableau de Burt associé à un tableau de contingence kIJ le tableau B

∀(j, j′) ∈ J2, bjj′ =
∑
i∈I

kijkij′

ki·
.

Matriciellement, on a
B = K ′D1/kIK.

Proposition 3.17

L’AFC de B donne les mêmes axes factoriels uαJ et les mêmes facteurs de variance ϕJα que ceux
obtenus dans l’AFC de kIJ . Les valeurs propres de l’AFC de B sont les carrés des valeurs propres
de L’AFC de kIJ .

Démonstration. — Pour l’AFC de B, on remarque que par interversion de somme
q∑

j′=1

bjj′ =
∑
i∈I

kij

q∑
j′=1

kij′

ki·
= k(·, j) et

q∑
j=1

q∑
j′=1

bjj′ = k.

Ainsi ce qui joue le rôle de F dans l’AFC de B est la matrice notée G

G =
1

k
B.

La matrice G est symétrique donc les deux marges sont égales. On note gJ cette marge commune, on a
d’après le calcul précédent

∀j ∈ J, g·j = gj· = f·j .

Donc gJ = fJ . Les matrices profil ligne et profil colonne, G1 et G2 sont

G1 = GD1/fJ = F ′D1/fIFD1/fJ = F2F1 et G2 = G′D1/fJ = G1.

Par conséquent l’AFC de B revient à diagonaliser G1G2 = (F2F1)2. On conclut avec des résultats classique
de diagonalisation.

Remarque 3.18. — Si l’on veut représenter l’ensemble I, il suffit de rajouter fIJ en supplémentaire au
tableau gII = G. On obtient la même représentation que dans l’AFC de fIJ .

Soit G = (gjj′)j,j′∈J le tableau défini par

G = F ′D1/fIF.

On a
∀(j, j′) ∈ J2, gjj′ =

∑
i∈I

fijfij′

fi·
.



CHAPITRE 4

ANALYSE DES CORRESPONDANCES MULTIPLES

1. Notations-Tableau disjonctif complet-tableau de Burt

1.1. Notations et définitions. — On note :

Q : ensemble de questions ou de variables qualitatives,

I : ensemble des individus qui ont répondu aux questions, avec n = | I |,
J : ensemble de toutes les modalités de réponse à toutes les questions, avec p = | J |,
Jq : ensemble de toutes les modalités de réponse à la question q,

kIJ : tableau de taille n× p défini par

k(i, j) =

{
1 si l’individu i a adopté la modalité j de J,
0 sinon.

Définition 4.1

Le tableau kIJ est dit disjonctif si chaque individu choisit au plus une modalité par question (deux
modalités d’une même question s’excluent mutuellement). Le tableau kIJ est dit complet si chaque
individu choisit au moins une modalité par question.

Proposition 4.2

Un tableau kIJ est disjonctif complet (TDC) si et seulement si :∑
j∈Jq

k(i, j) = 1 pour toute question q ∈ Q et tout individu i ∈ I.

Démonstration. — En effet si le tableau kIJ est disjonctif complet, alors soit q une question, alors tout
individu i doit choisir une modalité et une seule parmi les modalités de la question q. Ainsi la réponse de
l’individu i est une suite de 0 avec un seul 1, on en déduit que la somme

∑
j∈Jq

k(i, j) = 1.

Réciproquement, si pour toute question q et tout individu i, on a l’égalité
∑
j∈Jq

k(i, j) = 1, alors comme

k(i, j) est un entier qui vaut 0 ou 1, on en déduit que pout tout individu i, il existe un seul entier j0 de Jq
tel que k(i, j0) = 1 et k(i, j) = 0 pour tout j de Jq différent de j0. Donc l’individu i a choisi la modalité j0
de Jq et n’a pas choisi les autres. Le tableau est donc disjonctif complet.
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Définition 4.3 – ACM

Une analyse des correspondances multiples d’un tableau kIJ disjonctif, complet est une analyse
factorielle des correspondances du tableau kIJ .

1.2. Propriétés des tableaux disjonctifs complets. —

Proposition 4.4

Pour tout individu i ∈ I, toute modalité j ∈ J et toute question q ∈ Q, on a :

k(i) = CardQ,

k(j) =
∑
i∈I

k(i, j) = nombre d’individus ayant choisi la modalité j,∑
j∈Jq

k(j) = n,

k = n CardQ.

Démonstration. — On a

k(i) =
∑
j∈J

k(i, j) =
∑
q∈Q

∑
j∈Jq

k(i, j) =
∑
q∈Q

1 = CardQ.

Par définition on a

k(j) =
∑
i∈I

k(i, j) = nombre d’individus ayant choisi la modalité j.

Puis on a ∑
j∈Jq

k(j) =
∑
i∈I

∑
j∈Jq

k(i, j) =
∑
i∈I

1 = n.

Enfin

k =
∑
i∈I

∑
j∈J

k(i, j) =
∑
i∈I

k(i) = n CardQ.

Exemple 4.5. — On suppose que l’on a 3 questions avec 2 modalités pour la première, 3 pour la seconde
et 4 pour la troisième. Si l’on interroge n individus, le tableau K sera une matrice de format n × 9, car 9
est le nombre de modalités pour toutes les questions, et sera du type

J1 J2 J3 total
1
...
i 0 1 0 0 1 0 0 1 0 k(i) = CardQ = 3
...
n

total k(j) k = 3n
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2. Tableau de Burt

Définition 4.6 – Tableau de Burt pour un tableau disjonctif complet

Le tableau de Burt associé à un tableau disjonctif complet kIJ , noté BJJ , est défini pour tout j, j′ ∈ J
par :

B(j, j′) =
∑
i∈I

k(i, j) k(i, j′) = nombre d’individus qui ont choisi les modalités j et j′.

Si j, j′ ∈ Jq, alors

B(j, j′) =

{
0 si j 6= j′

k(j) sinon.
Matriciellement, on a

B = K ′K.

Proposition 4.7

Pour toute modalité j ∈ J et toute question q ∈ Q, on a :∑
j′∈Jq

B(j, j′) = k(j),

B(j) =
∑
j′∈J

B(j, j′) = k(j) CardQ,

B = n(CardQ)2.

Démonstration. — On a ∑
j′∈Jq

B(j, j′) =
∑
j′∈Jq

∑
i∈I

k(i, j) k(i, j′),

=
∑
i∈I

k(i, j)
∑
j′∈Jq

k(i, j′),

=
∑
i∈I

k(i, j),

= k(j).

Puis

B(j) =
∑
j′∈J

B(j, j′),

=
∑
q∈Q

∑
j′∈Jq

B(j, j′),

=
∑
q∈Q

k(j),

= k(j) CardQ.

Enfin
B =

∑
j∈J,j′∈J

B(j, j′) =
∑
j∈J

k(j) CardQ = k CardQ = n(CardQ)2.

Exemple 4.8. — On reprend l’exemple précédent, le tableau de Burt est alors un tableau de tableaux
de contingence où toutes les questions sont croisées deux à deux. Dans ce cas, le tableau de Burt est une
matrice 9× 9 du type :
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J1 J2 J3 total

J1

(
k(1) 0

0 k(2)

) (
B(1, 3) B(1, 4) B(1, 5)

B(2, 3) B(2, 4) B(2, 5)

) (
B(1, 6) B(1, 7) B(1, 8) B(1, 9)

B(2, 6) B(2, 7) B(2, 8) B(2, 9)

)
3k(1)

3k(2)

J2

B(3, 1) B(3, 2)

B(4, 1) B(4, 2)

B(5, 1) B(5, 2)

 k(3)) 0 0

0 k(4) 0

0 0 k(5)



J3


k(6)) 0 0 0

0 k(7) 0 0

0 0 k(8) 0

0 0 0 k(9)

 B(j) = 3k(j)

total B = 9n

On remarque que lorsqu’une question est croisée avec elle-même, le tableau de contingence correspond à
une matrice diagonale.

Proposition 4.9

L’AFC du tableau disjonctif complet kIJ équivaut à l’AFC du tableau de Burt BJJ .

Démonstration. — Puisque k(i) = CardQ, avec la définition 7 de tableau de Burt, on constate que

K ′D1/kIK =
1

CardQ
B.

L’AFC du tableau selon la définition 3.15 et celle du tableau de Burt sont les mêmes. D’après la proposition
7, on peut conclure à l’équivalence des deux AFC.

3. Propriétés de l’AFC d’un questionnaire

Proposition 4.10

Soit F Iα (resp. GJα) les projections des profils-lignes (resp. profils-colonnes) sur l’axe de rang α issu
de l’AFC de kIJ . Soit F JBα (resp. GJBα) les projections des profils-lignes (resp. profils-colonnes) sur
l’axe de rang α issu de l’AFC de BJJ . On a :

F JBα = GJBα =
√
λαG

J
α.

Par ailleurs, pour tout i ∈ I, on a :

Fα(i) =
1√
λα

∑
j∈J

k(i, j)

CardQ
Gα(j).

En notant q(i) la modalité j de la question q ∈ Q choisie par l’individu i, on obtient :

Fα(i) =
1

CardQ

∑
q∈Q

Gα(q(i))√
λα

.

Remarque 4.11. — La dernière égalité de cette proposition exprime que Fα(i) est égal à la moyenne des
G
q(i)
α√
λα

, coordonnées "normalisées" des modalités qui ont été choisies par l’individu i. Autrement dit encore,
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sur chaque axe, la représentation de chaque individu coïncide avec la moyenne des modalités qu’il a choisies
à 1/
√
λα près.

Démonstration. — On note F1 la matrices des profils colonnes et F2 des profils lignes de kIJ et B1 la
matrices des profils colonnes et B2 des profils lignes de BJJ . Le tableau étant disjonctif et complet, on a

F1 = FD1/fJ et F2 = F ′D1/fJ = nF ′.

Puisque le tableau de Burt est une matrice symétrique, on en déduit que B1 = B2. De plus, on constate que
B(j)

B
=

k(j)

nCardQ
=
k(j)

k
.

La marge selon J du tableau kIJ est égale à la marge selon J du tableau BJJ . Donc les métriques des AFC
de kIJ et BJJ dans l’espace RJ sont identiques. On en déduit que

B1 = B2 =
B

nCardQ2
D1/fJ =

K ′K

nCardQ2
D1/fJ =

k2

nCardQ2
F ′FD1/fJ = nF ′FD1/fJ = F2F1.

Ainsi pour réaliser l’AFC de kIJ on diagonalise F2F1 et pour réaliser l’AFC de BJJ on diagonalise B1B2 =

(F2F1)2. Par conséquent tout vecteur propre de F2F1 est vecteur propre de (F2F1)2 et les valeurs propres de
(F2F1)2 sont celles de F2F1 élevées au carré. De plus les métriques étant identiques, les vecteurs unitaires
représentant les axes factoriels sont les mêmes dans les deux AFC. Pour les composantes principales du
nuages des profils colonnes de kIJ , ce sont des vecteurs propres de F ′1F ′2 = (F2F1)′, la métriques étant
identiques on a que F JBα et GJα sont colinéaires et comme

||F JBα||DfJ = λα et ||GJα||DfJ =
√
λα.

On en déduit
F JBα = GJBα =

√
λαG

J
α.

Les formules de transition entraînent que, pour tout i ∈ I, on a :

Fα(i) =
1√
λα

F ′2G
J
α =

1√
λα

∑
j∈J

k(i, j)

k(i)
Gα(j) =

1√
λα

∑
j∈J

k(i, j)

CardQ
Gα(j).

Avec les notations proposées on a donc

Fα(i) =
1

CardQ

∑
q∈Q

Gα(q(i))√
λα

.

Proposition 4.12

Lors de l’AFC de kIJ , le centre de gravité des profils f jI pour j ∈ Jq est confondu avec le centre de
gravité global. ∑

j∈Jq

f·jGα(j) = 0.

Démonstration. — Du fait de la structure en blocs des tableaux kIJ et BJJ , on a pour toute question
q ∈ Q : ∑

j∈Jq

f·jGα(j) = 0.

Remarque 4.13. — On a le même résultat pour les profils (lignes ou colonnes) du tableau (symétrique)
BJJ .
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Remarque 4.14. — En pratique, on effectue l’AFC de BJJ et on met le tableau kIJ en supplémentaire.
On a alors :

GBα(j) =
√
λαGα(j) =

∑
i∈I

k(i, j)

k(j)
Fα(i)

GBα(j) =
∑
q(i)=j

Fα(i)

k(j)
.

Autrement dit, pour tout axe factoriel, chaque modalité j ∈ J est représentée par le centre de gravité
des individus l’ayant choisie.

4. Contributions en ACM

On a une expression pour l’inertie totale.

Proposition 4.15

Dans le cadre d’une ACM, l’inertie totale est donnée par :

IT =
Card J

CardQ
− 1.

Démonstration. — L’inertie totale est donnée par

IT =
∑
j∈J

f·j ||f jI − fI ||2D1/fI

On pose
ρ2(j) = ||f jI − fI ||

2
D1/fI

On a alors
ρ2(j) =

∑
q∈Q

∑
j∈Jq

f·jρ2(j),

On note p(j) la proportion des individus ayant adopté la modalité j, on a

pj =
k(j)

n
.

On démontre alors que

ρ2(j) =
1− pj
pj

.

En effet en utilisant l’égalité k(i, j)2 = k(i, j), on obtient :

ρ2(j) =

n∑
i=1

1

fi
(f ji − fi)

2,

= n

n∑
i=1

(
k(i, j)

k(j)
− 1

n
)2,

= n

n∑
i=1

k(i, j)

k(j)2
− 2

k(i, j)

nk(j)
+

1

n2
,

=
n

k(j)
− 2 + 1,

=
1

pj
− 1.
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On pose
CR(j) = f·jρ2(j), et CR(Jq) =

∑
j∈Jq

f·jρ2(j).

Comme f·j = k(j)
k =

pj
CardQ , on a

CR(j) =
1− pj
CardQ

,

d’où
CR(Jq) =

Card Jq − 1

CardQ
,

et on en conclut que

IT =
Card J

CardQ
− 1.

Proposition 4.16 – Décompositions en fonction des axes

On a
IT =

∑
α

λα =
∑
α

∑
q∈Q

∑
j∈Jq

f·jG2
α(j),

on pose
CRα(j) = f·jG2

α(j), CRα(Jq) =
∑
j∈Jq

f·jG2
α(j).

On pose

CTRα(q) =
CRα(Jq)

λα
est la contribution relative de Jq à l’inertie de l’axe α. On peut poser

CORα(q) =
CRα(Jq)

CR(Jq)
, QLT (q) =

∑
α

CORα(q),

INR(q) =
CR(Jq)

CR(J)
=
CR(Jq)

IT
.

Règles d’interprétation

1. Proximité entre individus : deux individus se ressemblent s’ils ont choisi les mêmes modalités.

2. Proximité entre deux modalités de variables différentes : ces modalités correspondent aux points
moyens des individus les ayant choisies et sont proches parce qu’elles concernent les mêmes individus
ou des individus semblables.

3. Proximité entre deux modalités d’une même variable : par construction, elles s’excluent. Si elles sont
proches, c’est que les groupes des individus les ayant choisies se ressemblent.



APPENDICE A

ESPACE AFFINE

1. Définitions

Définition A.1 – Espace affine

Soit E un espace vectoriel, on dit que E est un espace affine de direction E si il existe une application
f de E × E dans E notée

∀(A,B) ∈ E × E , f((A,B)) =
−−→
AB,

vérifiant les deux conditions suivantes
• A1 : Relation de Chasles

∀(A,B,C) ∈ E × E × E ,
−−→
AB +

−−→
BC =

−→
AC,

• A2 : Pour tout A ∈ E , l’application fA définie de E dans E par

∀M ∈ E , fA(M) =
−−→
AM est une bijection .

Les éléments de E sont appelés points et ceux de E vecteurs. On appelle dimension de E la dimension
de E.

Remarque A.2. — Pour tout entier n non nul, Rn est un espace affine de direction Rn espace vectoriel.

Ainsi la notation

x1

...
xn

 peut être vu comme un vecteur de Rn ou un point de l’espace affine Rn.

Notations : Soit A ∈ E et u ∈ E, A+ u désigne l’unique point B de E tel que
−−→
AB = u. Ainsi

∀(A,B) ∈ E × E , ∀u ∈ E,
−−→
AB = u⇐⇒ B = A+ u⇐⇒ B −A = u.

Définition A.3

On considère E un espace affine de direction E, on dit que F est un sous-espace affine si il existe un
point A de E et un sous-espace vectoriel F de E tels que

F = A+ F = {M ∈ E , ∃u ∈ F,M = A+ u}.

La dimension de F est celle de F .

Exemple A.4. — Une droite affine de E est un sous-espace affine de dimension 1. Dans ce cas F = Vect(u)

où u est non nul, soit A un point de la droite affine, on note DA,u la droite affine passant par A de direction
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Vect(u). On dit encore que u est un vecteur directeur de la droite affine DA,u, on a

DA,u = {M ∈ E , ∃t ∈ R, M = A+ t u}.

On peut aussi définir une droite affine par deux points distincts A et B, alors la droite affine passant par
A et B est D

A,
−−→
AB

Exemple A.5. — Un plan affine de E est un sous-espace affine de dimension 2. Dans ce cas F = Vect(u, v)

où u et v sont des vecteurs non colinéaires, soit A un point du plan affine, on note PA,(u,v) le plan affine
passant par A de direction Vect(u, v). On a

PA,(u,v) = {M ∈ E , ∃(t, s) ∈ R2, M = A+ t u+ s v}.

On peut aussi définir un plan affine par trois points non alignés A, B et C, alors le plan affine passant
par A, B et C est P

A,(
−−→
AB,
−→
AC)

Exemple A.6. — On considère le système linéaire

AX = b où A ∈Mn,p(R), X =

x1

...
xp

 ∈ Rp, b ∈ Rn.

On suppose qu’il existe une solution particulière X0, alors l’ensemble des solutions du système linéaire est
le sous-espace affine X0 + KerA de Rp, de dimension dim KerA = p− rg(A), où rg(A) est le rang de A.

Exemple A.7. — Un hyperplan affine de E est un sous-espace affine de dimension dimE − 1.

Remarque A.8. — Lorsque l’on fixe un point O dans un espace affine E de direction E, on vectorialise
l’espace affine, c’est-à-dire à l’aide de la fonction fO on construit une structure d’espace vectoriel sur E ,
tout point M de E est assimilé au vecteur

−−→
OM .

2. Barycentre

Définition A.9 – Barycentre

On considère E un espace affine de direction E, soitM1, · · · ,Mn n points de E , et pour tout 1 ≤ i ≤ n,
on affecte à chaque point Mi un coefficient ou poids pi qui est un réel. Soit O une origine,

• si
n∑
i=1

pi = 0, alors le vecteur
n∑
i=1

pi
−−→
OMi est indépendant de O.

• si
n∑
i=1

pi = p 6= 0, alors le point G défini par

G =
1

p

n∑
i=1

piMi = O +
1

p

n∑
i=1

pi
−−→
OMi est indépendant de O.

On dit que g est le barycentre des (Mi, pi)1≤i≤n.

Exemple A.10. — Le milieu de deux points A et B est le barycentre de A et B affectés des poids 1/2 et
1/2.
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Définition A.11

On considère E un espace affine de direction E, soitM = {M1, · · · ,Mn} un ensemble de n points de
E , on note <M > l’ensemble des barycentres des points deM affectés de poids quelconques. Alors
<M > est un sous-espace affine de E . On dit que <M > est le sous-espace affine engendré parM.
C’est le plus petit sous-espace affine contenantM.

Proposition A.12

Le sous-espace affine engendre par M = {M1, · · · ,Mn} est associé au sous-espace vectoriel
Vect(

−−−−→
M1M2, · · · ,

−−−−→
M1Mn). la dimension de <M > est au plus n− 1.

3. Applications affines

Définition A.13 – Applications affines

On considère E un espace affine de direction E, soit f une application de E dans E . On dit que
f est une application affine si il existe un point O de E tel que l’application ~f de E dans E qui à
tout vecteur u de E associé le vecteur f(O)f(O + u) est linéaire. On appelle ~f l’application linéaire
associée à f .

Remarque A.14. — Une application affine f est caractérisée par sa valeur en un point et son application
linéaire associée.

Exemple A.15. — Une translation de vecteur u est une application affine telle que

∀M ∈ E , f(M) = M + u.

Exemple A.16. — Une projection orthogonale affine sur le sous-espace affine F est une application affine
telle qu’il existe un point O de F vérifiant

∀M ∈ E , f(M) = O + p(OM) où p est la projection orthogonale linéaire sur F.

Proposition A.17

On considère E un espace affine de direction E, soit f une application de E dans E . l’application f
est une application affine si et seulement si f conserve les barycentres c’est-à-dire pour tout entier n

∀(xi, ti) ∈ E × R, avec
n∑
i=1

ti = 1, f(

n∑
i=1

tixi) =

n∑
i=1

tif(xi).



APPENDICE B

ENDOMORPHISME SYMÉTRIQUE

Définition B.1 – Endomorphisme symétrique

Soit E un espace euclidien muni d’une métrique M , et f un endomorphisme de E, on dit que f est
un endomorphisme symétrique si pour tous x et y de E, on a l’égalité

< x, f(y) >M=< f(x), y >M .

Théorème B.2 – Théorème spectral

Tout endomorphisme symétrique est diagonalisable. De plus il existe une base orthonormale de E
constituées de vecteurs propres de f .

La matrice d’un endomorphisme symétrique dans une base orthomormale quelconque de E est une matrice
symétrique à coefficients réels. On en déduit la version matricielle du théorème spectral

Proposition B.3

Soit A une matrice symétrique à coefficients réels deM(R), alors A est diagonalisable, il existe donc
une matrice diagonale D et P une matrice inversible tels que

A = PDP−1.

De plus il est possible de choisir P orthogonale dans ce cas, l’égalité devient

A = PDP ′.
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