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Abstract : In [8] we have defined a viscosity solution for the gradient
flow of the exterior Bernoulli free boundary problem. We prove here that
the associated energy is non decreasing with the flow. For this we build a
discrete gradient flow in the flavour of Almgren, Taylor and Wang [2] and
prove its convergence to the viscosity solution.

1 Introduction

In this paper we continue our investigation of a gradient flow for the Bernoulli
free boundary problem initiated in [8]. The exterior Bernoulli free boundary
problem amounts to minimize the capacity of a set under volume constraints.
Using a Lagrange multiplier λ > 0, this problem can be recasted into the
minimization with respect to the set Ω of the functional

Eλ(Ω) = cap(Ω) + λ|Ω| ,

where cap(Ω) denotes the capacity of the set Ω with respect to some fixed
set S and |Ω| denotes the volume of Ω. The set Ω is constrained to satisfy
the inclusion S ⊂⊂ Ω. Notice that there is a “competition” between the
two terms in the minimization: the capacity is nondecreasing with respect
to inclusion whereas the volume is nondecreasing.
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Such a problem has quite a long history and we refer to the survey paper
[12] for references and interpretations in physics. Our study is motivated by
several papers in numerical analysis where discrete gradient flows are built
via a level-set approach in order to solve free boundary and shape optimiza-
tion problems: see [1] and the references therein for the recent advances in
this area. In this framework, the exterior Bernoulli free boundary problem
appears as a model problem in order to better understand this numerical
approach.

Let us now go further into the description of the gradient flow for E := E1

(we work here in the case λ = 1 for simplicity of notations). The energy
E being defined on sets, a gradient flow for E is a family of sets (Ω(t))t≥0

evolving with a normal velocity which decreases instantaneously the most
the energy. For the Bernoulli problem, the corresponding evolution law is
given by:

Vt,x = h(x,Ω(t)) := −1 + h̄(x,Ω(t)) for all t ≥ 0, x ∈ ∂Ω(t) . (1)

In the above equation, Vt,x is the normal velocity of the set Ω(t) at the point
x at time t and h̄(x,Ω) is a non local term of Hele-Shaw type given, for any
set Ω with smooth boundary, by

h̄(x,Ω) = |∇u(x)|2 , (2)

where u : Ω → R is the capacity potential of Ω with respect to S, i.e., the
solution of the following partial differential equation





−∆u = 0 in Ω\S,
u = 1 on ∂S,
u = 0 on ∂Ω.

(3)

The set S is a fixed source and we always assume above that S is smooth
and S ⊂⊂ Ω(t). Let us underline that h(x,Ω) is well defined as soon as Ω
has a “smooth” (say for instance C2) boundary and that S ⊂⊂ Ω.

The reason why a smooth solution (Ω(t)) of the geometric equation (1)
can be considered as a gradient flow of the energy

E(Ω) = |Ω| + cap(Ω) (4)

is the following: from Hadamard formula we have

d

dt
E(Ω(t)) =

∫

∂Ω(t)

(
1 − |∇u|2

)
Vt,x = −

∫

∂Ω(t)

(
−1 + |∇u|2

)2 ≤ 0 .
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Hence the choice of Vt,x = h(x,Ω(t)) in (1) appears to be the one which
decreases instantaneously the most the energy E . In order to minimize the
energy E , it is therefore very natural to follow the gradient flow (1). This is
precisely what is done numerically in [1].

In general the geometric flow (1) does not have classical solutions. In
order to define the flow after the onset of singularities, we have introduced
in [8] a notion of generalized (viscosity) solution and investigated its ex-
istence as well as its uniqueness. The aim of this paper is to prove that
the energy E is non increasing along the generalized flow. This question is
certainly essential to better explain the numerical schemes of [1]. This also
fully justifies the terminology of “gradient flow” for our generalized solutions.

Such energy estimates are difficult to derive from the notion of viscosity
solutions. Indeed this latter notion is defined through a comparison princi-
ple, which has very little to do with the energy associated to the flow. To
the best of our knowledge, such a question has only be settled for the mean
curvature motion (MCM in short), which corresponds to the gradient flow
of the perimeter. There are two proofs of the fact that the perimeter of
the viscosity solution to the mean curvature flow decreases: the first one is
due to Evans and Spruck in their seminal papers [10, 11]; it is based on a
regularized version of the level set formulation for the flow and is probably
specific to local evolution equations. The other proof is due to Chambolle [9].
Its starting point is the fondamental construction of Almgrem, Taylor and
Wang [2] who built generalized solutions of the MCM in a variational way as
limits of “discrete gradient flow” for the perimeter (the so-called minimizing
movements. See also Ambrosio [5]). The key argument of Chambolle’s paper
[9] is that Almgren, Taylor and Wang’s generalized solutions coincide with
the viscosity solutions, at least for a large class of initial sets. Hence the
energy estimate available from [2]—which allows to compare the energy of
the evolving set with the energy of the initial position—can also be applied
to the viscosity solution. Since the viscosity solution enjoys a semi-group
property, one can conclude that the energy is decreasing along the flow.

For proving that the energy E is decreasing along our viscosity solutions
of (1), we borrow several ideas from Almgren, Taylor and Wang [2] and
Chambolle [9]. As in [2] for the MCM, we start with a construction of dis-
crete gradient flow (Ωh

n) for the energy E : namely Ωh
n+1 is obtained from Ωh

n

as a minimizer of a functional Jh(Ωh
n, ·) which is equal to E plus a penalizing

term. The penalizing term—which depends on the time-step h—prevents
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the minimizing set Ωh
n+1 from being too far from Ωh

n. Then, as in Chambolle
[9], we prove that the limits of these discrete gradient flows converge to the
viscosity solution of our equation (1) as the time-step h goes to 0. In [9],
this convergence is proved by using the convexity of the equivalent of our
functional Jh(Ωn

h, ·) for the MCM. We use instead here directly a weak form
of the Euler equation for minimizers of Jh(Ωn

h, ·) as described by Alt and
Caffarelli [3] for the Bernoulli problem. We then conclude that the energy
of the flow is non increasing.

The paper is organized in the following way. In Section 2 we recall the
construction of [8] for the viscosity solutions of (1). Section 3 is devoted
to suitable generalizations of the capacity and capacity potential needed for
our estimates. In Section 4 we introduce the functional Jh and build the
discrete motions, the limits of which are discussed in section 5. The fact
that the energy is decreasing along the flow is finally proved in Section 6.

Aknowledgement : We wish to thank Luis Caffarelli, Antonin Cham-
bolle and Marc Dambrine for fruitful discussions. The authors are partially
supported by the ACI grant JC 1041 “Mouvements d’interface avec termes
non-locaux” from the French Ministry of Research.

2 Definitions and notations for the generalized flow

Let us first fix some basic notations: if A,B are subsets of R
N , then A ⊂⊂ B

means that the closure A of A is a compact subset which satisfies A ⊂ int(B),
where int(B) is the interior of B. We set

D = {K ⊂⊂ R
N : S ⊂⊂ K} .

Throughout the paper | · | denotes the euclidean norm (of R
N or R

N+1,
depending on the context) and B(x,R) denotes the open ball centered at x
and of radius R. If E is a measurable subset of R

N , we also denote by |E|
the Lebesgue measure of E. If K is a subset of R

N and x ∈ R
N , then dK(x)

denotes the usual distance from x to K: dK(x) = infy∈K |y−x|. The signed
distance ds

K to K is defined by

ds
K(x) =

{
dK(x) if x /∈ K,
−d∂K(x) if x ∈ K,

(5)

where ∂K = K\int(K) is the boundary of K. Let Ω be an open bounded
subset of R

N . We denote by C∞
c (Ω) the set of smooth functions with com-
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pact support in Ω, and by H1
0 (Ω) its closure for the H1 norm.

Here and throughout the paper, we assume that

S is the closure of an open, nonempty, bounded subset of R
N

with a C2 boundary.
(6)

The generalized solution of the front propagation problem (1) is defined
though their graph: if (Ω(t))t≥0 is the familly of evolving sets, then its graph
is the subset of R

+ × R
N defined by

K = {(t, x) ∈ R
+ × R

N : x ∈ Ω(t)} .

We denote by (t, x) an element of such a set, where t ∈ R
+ denotes the time

and x ∈ R
N denotes the space. We set

K(t) = {x ∈ R
N | (t, x) ∈ K} .

The closure of the set K in R
N+1 is denoted by K. The closure of the

complementary of K is denoted K̂:

K̂ = (R+ × RN ) \K

and we set
K̂(t) = {x ∈ R

N | (t, x) ∈ K̂} .

We use here repetitively the terminology of [6, 7, 8]:

• A tube K is a subset of R
+ × R

N , such that K ∩ ([0, t] × R
N ) is a

compact subset of R
N+1 for any t ≥ 0.

• A tube K is left lower semi-continuous if

∀t > 0, ∀x ∈ K(t), if tn → t−, ∃xn ∈ K(tn) such that xn → x .

• If s = 1, 2 or (1, 1), then a Cs tube K is a tube whose boundary ∂K
has at least Cs regularity.

• A regular tube Kr is a tube with a non empty interior and whose
boundary has at least C1 regularity, such that at any point (t, x) ∈ Kr

the outward normal (νt, νx) to Kr at (t, x) satisfies νx 6= 0. In this
case, its normal velocity V Kr

(t,x) at the point (t, x) ∈ ∂Kr is defined by

V Kr

(t,x) = − νt

|νx|
,

where (νt, νx) is the outward normal to Kr at (t, x).
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• A C1 regular tube Kr is externally tangent to a tube K at (t, x) ∈ K if

K ⊂ Kr and (t, x) ∈ ∂Kr .

It is internally tangent to K at (t, x) ∈ K̂ if

Kr ⊂ K and (t, x) ∈ ∂Kr .

• We say that a sequence of C1,1 tubes (Kn) converges to some C1,1 tube
K in the C1,b sense if (Kn) converges to K and (∂Kn) converges to
∂K for the Hausdorff distance, and if there is an open neighborhood
O of ∂K such that, if ds

K (respectively ds
Kn

) is the signed distance to
K (respectively to Kn), then (ds

Kn
) and (∇ds

Kn
) converge uniformly to

ds
K and DdK on O and ‖D2ds

Kn
‖∞ are uniformly bounded on O.

We are now ready to define the generalized solutions of (1):

Definition 2.1 Let K be a tube and K0 ∈ D be an initial set.

1. K is a viscosity subsolution to the front propagation problem (1) if K
is left lower semi-continuous and K(t) ∈ D for any t, and if, for any
C2 regular tube Kr externally tangent to K at some point (t, x), with
Kr(t) ∈ D and t > 0, we have

V Kr

(t,x) ≤ h(x,Kr(t))

where V Kr

(t,x) is the normal velocity of Kr at (t, x).

We say that K is a subsolution to the front propagation problem with
initial position K0 if K is a subsolution and if K(0) ⊂ K0.

2. K is a viscosity supersolution to the front propagation problem if K̂
left lower semi-continuous, and K(t) ⊂ D for any t, and if, for any
C2 regular tube Kr internally tangent to K at some point (t, x), with
Kr(t) ∈ D and t > 0, we have

V Kr

(t,x) ≥ h(x,Kr(t)) .

We say that K is a supersolution to the front propagation problem with
initial position K0 if K is a supersolution and if K̂(0) ⊂ RN\K0.

3. Finally, we say that a tube K is a viscosity solution to the front prop-
agation problem (with initial position K0) if K is a sub- and a super-
solution to the front propagation problem (with initial position K0).
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In [8] we have proved that for any initial position there is a maximal
solution, with a closed graph, which contains any subsolution of the problem,
as well as a minimal solution, which has an open graph, and is contained in
any supersolution of the problem.

3 Capacity and capacity potential

Let S be as in (6). For an open bounded subset Ω of R
N such that S ⊂⊂ Ω,

the capacity of Ω with respect to S is defined by

cap(Ω) = inf

{∫

Ω\S
|∇φ|2 : φ ∈ C∞

c (Ω), φ = 1 on S

}
.

Obviously cap(Ω) is non increasing with respect to the set Ω (for inclusion).
For a general reference on the subject, see for instance [14].

Remark 3.1 (Classical capacity potential) If Ω is any bounded open subset
of R

N , then

cap(Ω) = inf

{∫

Ω\S
|∇v|2 : v ∈ H1

0 (Ω), v = 1 on S

}

and the infimum is achieved for a unique u ∈ H1
0 (Ω), called the capacity

potential of Ω with respect to S, such that u = 1 on S, u is harmonic in
Ω\S and |{u > 0}\Ω| = 0 (namely, u = 0 a.e. in R

N\Ω). If Ω has a
C1,1 boundary, then it is known that the infimum is achieved by a function
u ∈ C2(Ω\S) ∩ C1(Ω\S) which is a classical solution to (3).

For any set E (not necessarily open) such that S ⊂⊂ E, we define a
generalized capacity by

cap(E) = sup {cap(Ω) | E ⊂⊂ Ω, Ω open and bounded} .

With this definition, cap(E) is non increasing with respect to the set E.
Notice that this notion of capacity does not take into account “thin closed
sets” in the sense that, if F = E, then cap(E) = cap(F ) even when |E\F | 6=
0. By construction, if E is open, then we have

cap(E) ≤ cap(E)

but equality does not hold in general. Nevertheless, there is equality if the
boundary of the set is regular enough:
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Lemma 3.1 If Ω is an open bounded subset of R
N , with S ⊂⊂ Ω and with

a C1,1 boundary, we have cap(Ω) = cap(Ω).

Proof of Lemma 3.1. We have to prove that cap(Ω) ≥ cap(Ω). It is
enough to show that, if

Ωn =
{
y ∈ R

N : dΩ(y) < 1/n
}

,

then cap(Ωn) → cap(Ω) as n → +∞. Indeed, for n large enough, Ωn

has also a C1,1 boundary. Then from classical regularity arguments, the
harmonic potential un to Ωn converges to the capacity potential u of Ω for
the C1,α norm, where α ∈ (0, 1). Whence the result.

QED

Lemma 3.2 Let En be a bounded sequence of subsets of R
N , for which there

exists some r > 0 with Sr ⊂ En for any n, where

Sr = {y ∈ R
N : dS(y) ≤ r} . (7)

Let us denote by K the Kuratowski upper limit of the (En), namely

K =
{
x ∈ R

N : lim inf
n

dEn(x) = 0
}

.

Then
lim inf

n
cap(En) ≥ cap(K) .

Proof of Lemma 3.2. Let Ω be any open bounded set such that K ⊂⊂ Ω.
Since (En) is bounded and has for upper-limit K, the inclusion En ⊂ Ω
holds for n large enough. Hence cap(En) ≥ cap(Ω) for every n. Therefore

lim inf
n

cap(En) ≥ cap(Ω) .

The open set Ω being arbitrary, the desired conclusion holds.

QED

Let Ω be an open bounded subset of R
N , with S ⊂⊂ Ω. We denote

by H1
0 (Ω) the intersection sequence of the spaces H1

0 (Ωn) where (Ωn) is a
decreasing sequence of open bounded sets, such that Ω ⊂⊂ Ωn and Ω =
∩nΩn. One easily checks that H1

0 (Ω) does not depend on the sequence (Ωn).
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Lemma 3.3 Assume that |∂Ω| = 0. Then the following equality holds:

cap(Ω) = inf

{∫

Ω\S
|∇v|2 : v ∈ H1

0 (Ω), v = 1 on S

}
,

and there is a unique u ∈ H1
0 (Ω) such that

u = 1 on S and

∫

RN\S
|∇u|2 =

∫

Ω\S
|∇u|2 = cap(Ω) .

Moreover u is harmonic in Ω\S and |{u > 0}\Ω| = 0.

Definition 3.4 Such a function u is called the capacity potential of Ω with
respect to S.

Remark 3.2
1. If ∂Ω is C1,1, then the capacity potential u of Ω with respect to S is the
(classical) solution of (3) and is equal to the (classical) capacity potential of
Ω (see Remark 3.1).
2. In what follows, we study the energy of subsets Ω ⊃⊃ S which is defined
as the sum of the capacity and the volume of Ω with respect to S (see (4)).
This energy is well-defined for bounded sets Ω ⊃⊃ S. It is why we assumed
all the sets to be bounded. But let us mention that all classical results of
this section hold replacing Ω, S bounded by Ω\S bounded. We need this
generalization in the proof of Lemma 4.5.

Proof of Lemma 3.3. The proof is easily obtained by approximation. By
construction of cap(Ω), we can find a decreasing sequence of open bounded
sets Ωn such that

Ω ⊂⊂ Ωn ,
⋂

n

Ωn = Ω and cap(Ω) = lim
n

cap(Ωn) .

Let un be the (classical) capacity potential of Ωn. From the maximum
principle, the sequence (un) is decreasing, and converges to some u which
is nonnegative with a support in Ω and equals 1 on S. In particular, {u >
0} ⊂ Ω a.e. since |∂Ω| = 0. Furthermore, by classical stability result, u is
harmonic in Ω because so are the un. Since we can find a smooth function
φ with compact support in Ω such that φ = 1 on S, we have

∫

Ωn\S
|∇un|2 ≤

∫

Ωn\S
|∇φ|2 =

∫

Ω\S
|∇φ|2,
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which proves that (un) is bounded in H1(RN ). Thus the limit u belongs
to H1(RN ). Since un ∈ H1

0 (Ωn) with H1
0 (Ωn+1) ⊂ H1

0 (Ωn), u belongs to
H1

0 (Ωn) for any n. Therefore u ∈ H1
0 (Ω). In particular, the support of u lies

in Ω = Ω a.e.. So we have,

cap(Ω) = lim
n

cap(Ωn) = lim
n

∫

Ωn\S
|∇un|2

= lim inf
n

∫

RN\S
|∇un|2 ≥

∫

RN\S
|∇u|2 =

∫

Ω\S
|∇u|2. (8)

For every n,

cap(Ωn) =

∫

Ωn\S
|∇un|2 = inf

{∫

Ωn\S
|∇v|2 : v ∈ H1

0 (Ωn), v = 1 on S

}

≤ inf

{∫

Ω\S
|∇v|2 : v ∈ H1

0 (Ω), v = 1 on S

}
,

since H1
0 (Ω) ⊂ H1

0 (Ωn). Letting n go to infinity, we obtain

cap(Ω) ≤ inf

{∫

Ω\S
|∇v|2 : v ∈ H1

0 (Ω), v = 1 on S

}
.

From (8), we get the equality in the above inequality and the fact that u is
optimal. Uniqueness of u comes from the strict convexity of the criterium.

QED

4 The discrete motions

Let us fix h > 0 which has to be understood as a time step. Let us recall
that S is the closure of an open bounded subset of R

N with C2 boundary.
We introduce the functional space

E(S) := {u ∈ H1(RN )∩L∞(RN ) : u = 1 on S and u has a compact support} .

If S and S′ are two compact subsets of R
N with C2 boundary such that

S ⊂ S′, then we note that E(S ′) ⊂ E(S).
For any bounded open subset Ω of R

N with S ⊂⊂ Ω we define the
functional Jh : E(S) → R by setting

JS
h (Ω, u) =

∫

RN\S
|∇u|2 + 1{u>0}

(
1 +

1

h
ds
Ω

)

+

.
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where ds
Ω is the signed distance to Ω defined by (5), 1A denotes the indicator

function of any set A ⊂ R
N and r+ = r∨0 for any r ∈ R. We write Jh(Ω, u)

if there is no ambiguity on S.

Let us recall some existence and regularity results given in [3]:

Proposition 4.1 (Alt and Caffarelli [3]) Let Ω be an open subset of R
N

such that Ω\S is bounded and with S ⊂⊂ Ω. Then there is at least a min-
imizer u ∈ E(S) to Jh(Ω, ·). Moreover u is Lipschitz continuous and is
harmonic in {u > 0}\S. Finally HN−1(∂{u > 0}) < +∞.

Remark 4.1 We note that S ⊂⊂ {u > 0} because u is Lipschitz continuous
with u = 1 in S.

The existence of u and its Lipschitz continuity come from Theorem 1.3
and Corollary 3.3 of [3]. The fact that u has a compact support is estab-
lished in Lemma 2.8, and its harmonicity in Lemma 2.4. The finiteness of
HN−1(∂{u > 0}) is given in Theorem 4.5.

We are now ready to define the discrete motions.

Let Ω0 ⊃⊃ S be a fixed initial condition. We define by induction the
sequence (Ωh

n) of open bounded subsets of R
N with Ωn ⊃⊃ S by setting

Ωh
0 := Ω0 and Ωh

n+1 := {un > 0} ∪ {x ∈ Ωh
n : d∂Ωh

n
(x) > h},

where

un ∈ argmin
v∈E(S)

JS
h (Ωh

n, v).

We call discrete motion such a family of open sets. Of course, the dis-
crete motion is defined in order that it converges to a solution of the front
propagation problem (1) (see Theorem 5.2 and Remark 4.2).

In order to investigate the behavior of discrete motions, we need some
properties on the minimizers of Jh.

Lemma 4.2 Let Ω and u be as in Proposition 4.1. Let Ω′ = {u > 0} ∪ Ω̂h

where

Ω̂h := {y ∈ Ω : d∂Ω(y) > h} = {y ∈ R
N : ds

Ω(y) < −h} . (9)

Then |∂Ω′| = 0 and u is the capacity potential to Ω′
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Remark 4.2 We do not claim that u is positive in Ω′. For instance, consider
a set Ω with two connected components Ω1 and Ω2 such that S ⊂⊂ Ω1. In
this case, u ≡ 0 in Ω2. Notice that it explains why we define Ωh

n+1 := {un >
0} ∪ {x ∈ Ωh

n : d∂Ωh
n
(x) > h}. Adding the set {x ∈ Ωh

n : d∂Ωh
n
(x) > h}

prevents the discrete motion from the sudden disappearance of a connected
component. Indeed, the discrete motion is built in order to approach a
solution of the front propagation problem (1) and a connected component
which does not contain any part of the source is expected to move with a
constant normal velocity −1.

Proof of Lemma 4.2. Let us first notice that |∂Ω′| = 0. Indeed we
already know that |∂{u > 0}| = 0 (because its HN−1−measure is finite from
Proposition 4.1). On the other hand ∂Ω̂h ⊂ {y ∈ Ω : d∂Ω′(y) = h} has also
a finite HN−1−measure thanks to [4, Lemma 2.4].

Let now ε > 0 be fixed and set, for any α > 0, Ωα = {y ∈ R
N : dΩ′(y) <

α}. The set Ωα is open, bounded and satisfies Ω′ ⊂⊂ Ωα. Moreover, since
1Ωα → 1Ω′ and Ω′ is bounded with |∂Ω′| = 0, for α > 0 enough small, we
have ∫

Ωα\Ω′

(
1 +

1

h
ds

∂Ω

)

+

≤ ε . (10)

Let v be the capacity potential of Ωα and set

vk(x) = v(x) +
1

k
dRN\Ωα

(x) ∀x ∈ R
N .

Then (vk) converges to v in H1(RN ) and |Ωα\{vk > 0}| = 0. Therefore

Jh(Ω, vk) =

∫

RN\S
|∇vk|2 + 1{vk>0}

(
1 +

1

h
ds
Ω

)

+

−→
k

cap(Ωα) +

∫

RN\S
1Ωα

(
1 +

1

h
ds
Ω

)

+

.

Since Jh(Ω, vk) ≥ Jh(Ω, u), we get from (10)

cap(Ω′) ≥ cap(Ωα)

≥ lim
k

Jh(Ω, vk) −
∫

RN\S
1Ωα

(
1 +

1

h
ds
Ω

)

+

≥ Jh(Ω, u) −
∫

RN\S
1Ωα

(
1 +

1

h
ds
Ω

)

+

≥
∫

RN\S
|∇u|2 − 1Ωα\{u>0}

(
1 +

1

h
ds
Ω

)

+
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≥
∫

RN\S
|∇u|2 − 1Ωα\Ω′

(
1 +

1

h
ds
Ω

)

+

≥
∫

RN\S
|∇u|2 − ε

Thus
∫

RN\S |∇u|2 ≤ cap(Ω′), which proves from Lemma 3.3 that u is the

capacity potential of Ω′.

QED

Next we need to compare solutions to Jh(Ω, ·) for different S and Ω.

Proposition 4.3 Let S1 and S2 be the closure of two open bounded subsets
of R

N with C2 boundary, Ω1 and Ω2 be open bounded subsets of R
N such

that S1 ⊂⊂ Ω1 and S2 ⊂⊂ Ω2. Let u1 and u2 be, respectively, minimizers of
JS1

h (Ω1, ·) and JS2
h (Ω2, ·). If S1 ⊂ S2 and Ω1 ⊂ Ω2, then u1 ∧u2 and u1 ∨u2

are, respectively, minimizers of JS1
h (Ω1, ·) and JS2

h (Ω2, ·).

Remark 4.3
1. In particular, if JS2

h (Ω2, ·) has a unique minimizer u2, then {u1 > 0} ⊂
{u2 > 0}.
2. This Proposition still holds true if we replace, for i = 1, 2, Ωi, Si bounded
by Ωi\Si bounded; see Remark 3.2 and Lemma 4.5.

Proof of Proposition 4.3. We have

JS1
h (Ω1, u1 ∧ u2) + JS2

h (Ω2, u1 ∨ u2)

= JS1
h (Ω1, u1) + JS2

h (Ω2, u2)

+

∫

RN\S1

(|∇(u1 ∧ u2)|2 − |∇u1|2) + (1{u1∧u2>0} − 1{u1>0})

(
1 +

1

h
ds
Ω1

)

+

+

∫

RN\S2

(|∇(u1 ∨ u2)|2 − |∇u2|2) + (1{u1∨u2>0} − 1{u2>0})

(
1 +

1

h
ds
Ω2

)

+

.

Since Ω1 ⊂ Ω2 we have ds
Ω2

≤ ds
Ω1

in R
N . Hence, a straightforward compu-

tation leads to

1{u1∧u2>0}

(
1 +

1

h
ds
Ω1

)

+

+ 1{u1∨u2>0}

(
1 +

1

h
ds
Ω2

)

+

≤ 1{u1>0}

(
1 +

1

h
ds
Ω1

)

+

+ 1{u2>0}

(
1 +

1

h
ds
Ω2

)

+

.
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Moreover, by classical results,

|∇(u1 ∧ u2)|2 + |∇(u1 ∨ u2)|2 = |∇u1|2 + |∇u2|2 a.e. in R
N .

It follows

JS1
h (Ω1, u1 ∧ u2) + JS2

h (Ω2, u1 ∨ u2)

≤ JS1
h (Ω1, u1) + JS2

h (Ω2, u2)

+

∫

S1\S2

(|∇(u1 ∧ u2)|2 − |∇u1|2) + (1{u1∧u2>0} − 1{u1>0})

(
1 +

1

h
ds
Ω1

)

+

.

But u1 ∧ u2 = u1 on S1 which gives

JS1
h (Ω1, u1 ∧ u2) + JS2

h (Ω2, u1 ∨ u2) ≤ JS1
h (Ω1, u1) + JS2

h (Ω2, u2). (11)

Since u1 and u2 are minimizers we have

JS1
h (Ω1, u1) ≤ JS1

h (Ω1, u1∧u2) and JS2
h (Ω2, u2) ≤ JS2

h (Ω2, u1∨u2). (12)

The inequalities in (11) and (12) are therefore equalities. Hence u1 ∧u2 and
u1 ∨ u2 are respectively minimizers of JS1

h (Ω1, ·) and JS2
h (Ω2, ·).

QED

We define the energy E(Ω) by

E(Ω) = |Ω| + cap(Ω).

(compare with (4)).

Lemma 4.4 Let (Ωh
n) be a discrete motion with |∂Ωh

0 | = 0. Then the energy

E(Ωh
n) is non increasing with respect to n. More precisely,

E(Ωh
n+1) − E(Ωh

n) ≤
∫

RN

(
1Ωh

n\{d
s

∂Ωh
n

<−h} − 1{un>0}\{ds

∂Ωh
n

<−h}

)
1

h
ds
Ωh

n
≤ 0,

where un is a minimizer for Jh(Ωh
n, ·).

Proof of Lemma 4.4. Let us fix n. In order to simplify the notations, let
us set

Ω := Ωh
n , Ω̂h := {x ∈ Ω : ds

Ω(x) < −h} = {x ∈ Ω : d∂Ω(x) > h} .

14



Let u0 be the capacity potential of Ω and u be a minimizer to Jh(Ω, ·).
We finally set Ω′ := Ωh

n+1 = {u > 0} ∪ Ω̂h. Recall that Ω′ ∈ D and that
|∂Ω′| = 0: indeed this is true for n = 0 from the assumption and by Lemma
4.2 for n ≥ 1. With these notations we have to prove that

E(Ω′) ≤ E(Ω) .

For this we introduce for any k ≥ 1 the function uk defined by

uk(x) =

{
u0(x) + 1

kd∂Ω(x) if x ∈ Ω,
u0(x) otherwise.

Then (uk) converges to u0 in H1(RN ) and {uk > 0} = Ω a.e. because
{u0 > 0} ⊂ Ω and |∂Ω| = 0. Hence

lim
k

Jh(Ω, uk) = lim
k

∫

RN\S
|∇uk|2 + 1{uk>0}(1 +

1

h
ds
Ω)+

= cap(Ω) +

∫

RN\S
1Ω(1 +

1

h
ds
Ω)+

= E(Ω) − |Ω| +
∫

Ω\Ω̂h

(1 +
1

h
ds
Ω)

= E(Ω) +

∫

Ω\Ω̂h

1

h
ds
Ω − |Ω̂h|.

On the other hand, since cap(Ω′) =
∫

RN\S |∇u|2 from Lemma 4.2 and since

|Ω′| = |Ω′|, we also have

Jh(Ω, u) =

∫

RN\S
|∇u|2 + 1{u>0}(1 +

1

h
ds
Ω)+

= E(Ω′) − |Ω′| +
∫

{u>0}\Ω̂h

(1 +
1

h
ds
Ω)

= E(Ω′) +

∫

{u>0}\Ω̂h

1

h
ds
Ω − |Ω̂h|.

Writing that Jh(Ω, u) ≤ Jh(Ω, uk), we get the desired claim.

QED

Next we show that the solution does not blow up when h becomes small.
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Lemma 4.5 Let R > 0 and r0 ∈ (0, R/21/(N−2)) be fixed. Let us also fix M
such that

√
1 + M ≥ 4(N − 2)/r0. Then there is some h0 = h0(N, r0, R,M)

such that, for any h ∈ (0, h0) and r ∈ (r0, R/21/(N−2)), for any Ω ∈ D open
bounded, for any x /∈ Ω with r ≤ dΩ(x), R ≤ dS(x) and for any u minimizer
to Jh(Ω, ·), we have

d{u>0}∪Ω̂h
(x) ≥ r − Mh,

where Ω̂h is defined by (9).

Proof of Lemma 4.5. The idea is to compare the solution with radial
ones. For simplicity we assume that N ≥ 3, the computation in the case
N = 2 being similar. We also suppose without loss of generality that x = 0.

Let us first investigate the problem of minimizing J
Bc

R

h (Bc
r, ·), where

Br = B(0, r) and BR = B(0, R). Notice that neither the source Bc
R, nor

the subset Bc
r is bounded but Bc

r\Bc
R = BR\Br is bounded so the previ-

ous results on the minimization problem apply (see Remark 3.2). Standard

S

{vρ2
>0}

r

R x

r−Mhρ2

Ω {u > 0}

Ω̂h

Figure 1: Illustration of the proof of Lemma 4.5.

symmetrization arguments show that a minimizer v to J
Bc

R

h (Bc
r, ·) must be

radially symmetric. For ρ ∈ (0, R), let us denote by vρ the (radial) har-
monic function which vanishes on ∂Bρ and is equal to 1 on ∂BR. We also

set Jh(ρ) := J
Bc

R

h (Bc
r, vρ). Notice that a minimizer of J

Bc
R

h (Bc
r , ·) has to be

either of the form vρ with ρ minimizer of Jh(·), or constant equal to v0 := 1.
Let us fix h0 enough small in order that r + h < R for h ∈ (0, h0). We have

Jh(0+) = J
Bc

R

h (Bc
r , v0) =

αN−1(r + h)N+1

hN(N + 1)
,

16



where αN−1 is the volume of the unit sphere of R
N . For Jh(ρ) with ρ > 0,

we distinguish two cases. If r + h < ρ < R, then

Jh(ρ) =
αN−1(N − 2)

ρ2−N − R2−N
.

If 0 < ρ ≤ r + h, then

Jh(ρ)

αN−1
=

N − 2

ρ2−N − R2−N
+

1

h

(
(r + h)N+1

N(N + 1)
+

ρN+1

N + 1
− (r + h)ρN

N

)
.

We show that v0 cannot be a minimizer by comparing Jh(0+) with Jh(ρ)
for 0 < ρ ≤ r + h. Choosing ρ = β

√
h with β > 0, we have

1

αN−1
(Jh(ρ) − Jh(0))

= ρN−2

(
N − 2

1 − (ρ/R)N−2
+

ρ3

h(N + 1)
− (r + h)ρ2

hN

)

≤ ρN−2

(
N − 2

1 − βN−2h(N−2)/2/RN−2
+

β3h1/2

N + 1
− rβ2

N

)
. (13)

Recalling that r0 ∈ (0, R/21/(N−2)) is fixed, we choose

β >
N(2(N − 2) + 1)

r0
(14)

and then h0 = h0(N, β, r0, R) > 0 enough small such that

1 − βN−2h
(N−2)/2
0

RN−2
>

1

2
and

β3h
1/2
0

N + 1
< 1. (15)

For all h ∈ (0, h0), we obtain that (13) is negative, which proves that v0 is
not a minimizer.

Therefore minimizers have to be of the form vρ for some ρ ∈ (0, R). On
(r + h,R), Jh(ρ) is increasing. For ρ ∈ (0, r + h), we have

J ′
h(ρ)

αN−1
=

(N − 2)2ρ1−N

(ρ2−N − R2−N )2
+

ρN

h
− (r + h)ρN−1

h
.

The stationary points of Jh on (0, r + h] satisfy

f(ρ) :=
(N − 2)2

[ρ (1 − (ρ/R)N−2)]2
− 1

h
(r + h − ρ) = 0 . (16)
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Notice that ρ 7→ f(ρ) is convex on (0, r + h] and tends to +∞ as ρ → 0+

and as ρ → R−. If we find some value ρ for which f(ρ) is negative, then
there are exactly two solutions to (16).

For this, let us choose ρ = β
√

h with β > 0. Then

h f(β
√

h) =
(N − 2)2

β
(
1 − (βh1/2/R)N−2

)N−2
)2

− r − h + βh1/2.

Choosing β > 0 satisfying (14) and

β >
4(N − 2)

r
1/2
0

and h0 satisfying (15) and

βh
1/2
0 <

r0

2
, (17)

we obtain that f(β
√

h) < 0 for h ∈ (0, h0).
Let us fix h ∈ (0, h0) and let ρ1 and ρ2 be respectively the smallest

and largest solutions to (16). With the arguments just developed above,
we know that ρ1 ≤ β

√
h ≤ ρ2, where β is defined as above. Since J ′

h(ρ) =
αN−1ρ

N−1f(ρ), we have

J ′′
h (ρ1) = αN−1ρ

N−1
1 f ′(ρ1)

= αN−1ρ
N−1
1

[
−2(N − 2)2(1 − (N − 1)(ρ1/R)N−2)

(ρ1(1 − (ρ1/R)N−2))3
+

1

h

]

≤ αN−1ρ
N−1
1

[
−2(N − 2)2

ρ3
1

(
1 − (N − 1)

(ρ1

R

)N−2
)

+
β2

ρ2
1

]
.

If we choose h0 > 0 satisfying (15), (17) and furthermore

(N − 1)

(
βh

1/2
0

R

)N−2

<
1

2
and h

1/2
0 <

N − 2

β3
, (18)

we obtain that J ′′
h(ρ1) < 0 for h ∈ (0, h0) and ρ1 is not a minimum to Jh.

Therefore, Jh is increasing on (0, ρ1), decreasing on (ρ1, ρ2) and increasing
on (ρ2, R). The minimum is achieved at ρ = ρ2.

Let us now estimate ρ2. We suppose that h0 satisfies (15), (17), (18) and

h0 ≤ r0

2M
where 1 + M ≥ 16(N − 2)2

r2
0

.

18



Then, for all h ∈ (0, h0) and r ∈ (r0, R/21/(N−2)), we have r−Mh ≥ r0/2 > 0
and we compute

f(r − Mh) =
(N − 2)2

(r − Mh)2(1 − ((r − Mh)/R)N−2)2
− (1 + M)

≤ 4(N − 2)2

(r − Mh)2
− (1 + M)

≤ 0.

Therefore ρ2 ≥ r − Mh.
To summerize, we know that, setting h0 = h0(N, r0, R,M) small enough,

for all h ∈ (0, h0) and r ∈ (r0, R/21/(N−2)), the problem consisting of min-

imizing J
Bc

R

h (Bc
r , ·) has a unique solution vρ2 , which is radially symmetric

and such that ρ2 ≥ r − Mh.
Let now Ω ∈ D, x /∈ Ω with R ≤ dS(x), r ≤ dΩ(x) and let u be a

minimizer to Jh(Ω, ·). Since S ⊂ Bc
R(x) and Ω ⊂ Bc

r(x), Proposition 4.3
states that {u > 0} ⊂ {vρ2 > 0} ⊂ Bc

r−Mh(x) (see Figure 1 for a picture).

Since Ω̂h ⊂ Ω ⊂ Bc
r, finally, we have d{u>0}∪Ω̂h

(x) ≥ r − Mh.

QED

Finally we explain that the set {u > 0} satisfies some inequalities in a
viscosity sense. Here again the regularity results of Alt and Caffarelli [3]
play a crucial role. Let Σ be an open set with C1,1 boundary such that
S ⊂⊂ Σ and Σ\S is bounded. We denote by uΣ

S the (classical) solution to
(3) (replacing Ω by Σ), i.e., the capacity potential of Σ with respect to S.

Lemma 4.6 Let Ω be a bounded open subset of R
N with S ⊂⊂ Ω and u be

a minimizer to Jh(Ω, ·). We set

Ω̂h = {x ∈ Ω | d∂Ω(x) > h} and Ω′ = {u > 0} ∪ Ωh .

Let Σ is an open bounded subset of R
N with C1,1 boundary.

1. [Outward estimate] Suppose that Σ is such that

{u > 0} ⊂ Σ and ∃x ∈ ∂Σ ∩ ∂{u > 0} .

Then
∣∣∇uΣ

S (x)
∣∣ ≥

(
1 +

1

h
ds
Ω(x)

)1/2

+

.
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2. [Inward estimate] Let us now assume that Σ is such that

S ⊂⊂ Σ, Σ ⊂ Ω′ and ∃x ∈ ∂Σ ∩ ∂Ω′ .

Then
∣∣∇uΣ

S (x)
∣∣ ≤

(
1 +

1

h
ds
Ω(x)

)1/2

+

.

Proof of Lemma 4.6. Let us set gΩ(x) = (1 + ds
Ω(x)/h)+. We first prove

the outward estimate. From [3, Lemma 4.10] we have

lim sup
x′ → x

x′ ∈ {u > 0}

u(x′)

dB(x′)
≥
√

gΩ(x)

for any ball B contained in {u = 0} and tangent to {u > 0} at x. Let
ν be the outward unit normal to Σ at x and r > 0 be such that the ball
B := B(x + rν, r) is tangent to Σ at x. Then B is also tangent to {u > 0}
at x. Since by the maximum principle, u ≤ uΣ

S , we have

|∇uΣ
S (x)| = lim sup

x′→x, x′∈{u>0}

uΣ
S (x′)

dB(x′)

≥ lim sup
x′→x, x′∈{u>0}

u(x′)

dB(x′)

≥
√

gΩ(x).

We now turn to the proof of the inward estimate. We first prove that
uΣ

S ≤ u in {uΣ
S > 0}. Indeed from Lemma 4.2, u is the capacity potential

of Ω′. In particular u is harmonic in Ω′\S ⊃ Σ\S, u = uΣ
S on ∂S and

0 = uΣ
S ≤ u on ∂{uΣ

S > 0}. Hence uΣ
S ≤ u in {uΣ

S > 0}. Let us note that
u = 0 on ∂Ω′. Therefore u(x) = uΣ

S (x) = 0.

We now consider two cases. If x /∈ ∂{u > 0}, then x ∈ ∂Ω̂h; thus
ds
Ω(x) = −h and gΩ(x) = 0. But 0 ≤ uΣ

S ≤ u = 0 in a neighborhood of x so
that ∇uΣ

S (x) = 0. Therefore

|∇uΣ
S (x)| = 0 = gΩ(x).

Let us now consider the case x ∈ ∂{u > 0}. Then [3, Theorem 6.3] states
that

sup
B(x,r)

|∇u| ≤
√

gΩ(x) + m(r),
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where m(r) → 0 as r → 0+. Since we want to prove that |∇uΣ
S (x)| ≤√

gΩ(x), we can assume without loss of generality that ∇uΣ
S (x) 6= 0. Let

ν be the outward unit normal to Σ at x. Since ν = −∇uΣ
S (x)/|∇uΣ

S (x)|,
for r > 0 sufficiently small, the segment ]x, x − rν[ is contained in Σ and
in {uΣ

S > 0}, and thus in {u > 0}. So u is smooth at each point of this
segment. Since moreover u ≥ uΣ

S , we have, for some ξ ∈ (x, x − rν),

uΣ
S (x − rν) ≤ u(x − rν) = u(x) + 〈∇u(ξ),−rν〉

≤ r
(√

gΩ(x) + m(r)
)

.

Therefore

|∇uΣ
S (x)| = lim

r→0+

uΣ
S (x − rν)

r
≤
√

gΩ(x) .

QED

5 Discrete motions and viscosity solutions

Let us fix Ω0 open and bounded such that S ⊂⊂ Ω0. Let (Ωh
n)n be a discrete

motion with Ωh
0 = Ω0.

Let us now introduce a lower and upper envelope for the sequences (Ωh
n)n

as the time-step h tends to 0+: the upper envelope K∗ is

K∗(t) :=

{
x ∈ R

N :
∃hk → 0+, nk → +∞, xk ∈ Ωhk

nk
,

with xk → x and hknk → t

}
, (19)

while the lower envelope K∗ is defined by its complementary:

R
N\K∗(t) =

{
x ∈ R

N :
∃hk → 0+, nk → +∞, xk /∈ Ωhk

nk
,

with xk → x and hknk → t

}
. (20)

Lemma 5.1 The set K∗ is closed while K∗ is open. Moreover the maps
t → K∗(t) and t → K̂∗(t) are left lower-semicontinuous on (0,+∞).

Proof of Lemma 5.1. The fact that set K∗ is closed comes from its
construction since the upper limit of sets is always closed. The argument
works in a symmetric way for K∗.

We now prove that t → K∗(t) is left lower-semicontinuous on (0,+∞)
(see Section 2 for a definition). We proceed by contradiction assuming there
exist t > 0, x ∈ K∗(t), ρ > 0 and a sequence tp → t− such that B(x, ρ) ∩
K∗(tp) = ∅. Therefore dK∗(tp)(x) ≥ ρ > 0 for all p.
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Set R = dS(x), r0 < min{ρ,R/21/(N−2)} and M > 0 such that
√

1 + M ≥
8(N−2)/r0. Then Lemma 4.5 states that there is some h0 = h0(N, r0, R,M)
with the following property: for any r ∈ (r0/2, R/21/N−2) and h ∈ (0, h0),
for any Ω with r ≤ dΩ(x) and for any u minimizer to Jh(Ω, ·), we have
d{u>0}∪Ω̂h

(x) ≥ r − Mh, where Ω̂h = {ds
Ω < −h}.

For h ∈ (0, h0), let nh = [tp/h] be the integer part of tp/h. From the
definition of K∗(tp) and r0, we can find some h1 ∈ (0, h0) such that dΩh

nh
(x) ≥

r0 for any h ∈ (0, h1). We are going to prove by induction that

dΩh
nh+kh

(x) ≥ r0 − Mkh for all k ∈ {0, . . . , kh
0 }, (21)

where kh
0 = [r0/(2Mh)]. Indeed inequality (21) holds for k = 0. Assume

that it holds for some k < kh
0 . Let u be a minimizer for Jh(Ωh

nh+kh, ·) and
define

Ωh
nh+(k+1)h = {u > 0} ∪ {y ∈ Ωh

nh+kh : dΩh
nh+kh

(y) > h} .

Then since r0 − Mkh ≥ r0/2 and r0 − Mkh ≤ r0 ≤ R/21/(N−2), we have
from Lemma 4.5 recalled above that

dΩh
nh+(k+1)h

(x) ≥ r0 − Mkh − Mh .

So (21) is proved.
Let us set τ = r0/(4M) and fix s ∈ (0, τ). Let (kh) be such that khh → s

as h → 0+. We notice that kh ∈ {0, . . . , kh
0} for h sufficiently small. Letting

h → 0+ in inequality (21) for any such (kh) implies that

dK∗(tp+s)(x) ≥ r0 − Ms ≥ r0/2 > 0. (22)

Since τ does not depend on x and tp and since tp → t−, for p large
enough, we have s = t − tp ≤ τ. Therefore, from (22),we obtain dK∗(t)(x) =
dK∗(tp+s)(x) ≥ r0/2 > 0 which is a contradiction with the assumption x ∈
K∗(t).

The proof of the left lower semicontinuity of K̂∗ is simpler. As above,
we proceed by contradiction assuming that there exists x ∈ K̂∗(t) for t > 0
and a sequence tp → t− such that dcK∗(tp)

(x) ≥ ρ > 0 for all p. From the

definition of Ωh
nh+1, for (nh) such that nhh → tp and h sufficiently small, we

have Bρ/2(x) ⊂ Ωh
nh

. From the definition of Ωh
nh+1, we have therefore

Bρ/2−h(x) ⊂ {y ∈ Ωh
nh

: d∂Ωh
nh

(x) > h} ⊂ Ωh
nh+1 .
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By induction we prove in a similar way that, for any k ≤ ρ/(4h),

Bρ/2−kh(x) ⊂ {y ∈ Ωh
nh+(k−1)h : d∂Ωh

nh+(k−1)h
(x) > h} ⊂ Ωh

nh+k .

Letting now h → 0+ we get at the limit:

Bρ/4(x) ∩ K̂∗(tp + s) = ∅ for all s ∈ [0, ρ/4] .

Since ρ is independent of p, we get a contradiction by taking p big enough
such that t − tp = s ≤ ρ/4.

QED

Theorem 5.2 The tube K∗ (respectively K∗) is a viscosity subsolution (re-
spectively supersolution) to the front propagation problem V = h(x,Ω), where

h(x,Ω) = −1 + h̄(x,Ω)

and h̄ is defined by (2).

Proof of Theorem 5.2. Let us set Ωh :=
⋃

n{nh} ×Ωh
n. Let (t0, x0) ∈ K∗

with t0 > 0, be such that there is a smooth regular tube Kr with K∗ ⊂ Kr

and x0 ∈ ∂Kr(t0). Without loss of generality we can assume that K∗∩∂Kr =
{(t0, x0)}. Then by standard stability arguments (see [7]), one can find a
sequence of smooth regular tubes Kk

r converging to Kr in the C1,b sense (see
Section 2 for a definition), and sequences hk → 0 and nk → +∞ such that
Ωhk ⊂ Kk

r , (nkhk, xk) → (t0, x0), xk ∈ ∂Ωhk
nk

and such that xk ∈ ∂Kk
r (nkhk).

Let u be a minimizer to Jhk
(Ωhk

nk−1, ·). By definition of the discrete mo-
tion, we have

Ωhk
nk

= {u > 0} ∪ {y ∈ Ωhk

nk−1 : ds

Ω
hk
nk−1

(y) < −hk} . (23)

Let vk := u
Kk

r (nkhk)
S be the capacity potential of Kk

r (nkhk).
Let us first assume that xk ∈ ∂{u > 0} for some subsequence of (xk)

(still denoted by (xk)). The case xk ∈ int{u = 0} for any k is treated
later. From the discrete viscosity condition in Lemma 4.6 and the inclusion
Ωhk

nk−1 ⊂ Kk
r ((nk − 1)hk), we know that

|∇vk(xk)| ≥
(

1 +
1

hk
ds

Ω
hk
nk−1

(xk)

)1/2

+

≥
(

1 +
1

hk
ds
Kk

r ((nk−1)hk)(xk)

)1/2

+

.
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Hence
1

hk
ds
Kk

r ((nk−1)hk)(xk) ≤ −1 + |∇vk(xk)|2 . (24)

Let us now recall that the normal velocity of Kk
r at a point (t, x) ∈ ∂Kk

r

is given by − ∂
∂td

s
Kk

r (t)
(x). Since xk ∈ ∂Kk

r (nkhk), (nkhk, xk) → (t0, x0) and

since Kk
r converges to Kr, we have therefore that

ds
Kk

r ((nk−1)hk)(xk) = ds
Kk

r (nkhk)(xk) − hk
∂

∂t
ds
Kk

r (nkhk)(xk) + hkε(k)

= hkV
Kr

(t0,x0)
+ hkε(k) ,

where ε(k) → 0 as k → +∞ and V Kr

(t0 ,x0)
is the normal velocity of Kr at

(t0, x0). From (24) we get for k large enough,

h(xk,Kk
r (nkhk)) = −1 + |∇vk(xk)|2 ≥ V Kr

(t0,x0)
+ ε(k) .

Letting k → +∞, we obtain

h(x0,Kr(t0)) = lim
k

h(xk,Kk
r (nkhk)) ≥ V Kr

(t0,x0)
.

The above equality is a straightforward application of [13, Theorem 8.33]
since Kk

r converges to Kr in the C1,b sense (see Section 2 for a definition).
We now assume that xk ∈ int{u = 0} for any k. Then we have from (23)

that
ds

Ω
hk
nk−1

(xk) = −d
∂Ω

hk
nk−1

(xk) = −hk .

Arguing as above we get

−hk = ds

Ω
hk
nk−1

(xk) ≥ ds
Kk

r ((nk−1)hk)(xk) = hkV
Kr

(t0 ,x0)
+ hkε(k) ,

where ε(k) → 0. Dividing by hk and letting k → +∞ gives

V Kr

(t0,x0)
≤ −1 ≤ −1 + |∇u

Kr(t0)
S (x0)|2 = h(x0,Kr(t0)) .

So we have finally proved that K∗ is a subsolution.
We now show that K∗ is a supersolution. The proof starts exactly as

above: if there is a smooth regular tube Kr with Kr ⊂ K∗ and some (t0, x0) ∈
∂K∗ with t0 > 0 and x0 ∈ ∂Kr(t0), then one can find a sequence of smooth
regular tubes Kk

r converging to Kr in the C1,b sense and sequences hk → 0
and nk → +∞ such that Kk

r (nhk) ⊂ Ωhk
n for any n, (nkhk, xk) → (t0, x0),

24



xk ∈ ∂Ωhk(nkhk)∩ ∂Kk
r (nkhk). Let u be a minimizer to Jhk

(Ωhk

nk−1, ·). Then

(23) holds for Ωhk
nk

.
Then using Lemma 4.6 we get

|∇vk(xk)| ≤
(

1 +
1

hk
ds

Ω
hk
nk−1

(xk)

)1/2

+

≤
(

1 +
1

hk
dKk

r ((nk−1)hk)(xk)

)1/2

+

,

(25)

where vk := u
Kk

r (nkhk)
S is the capacity potential of Kk

r (nkhk) with respect to
S. Since xk ∈ ∂Ωhk(nkhk), we have from (23) that ds

Ωhk (nkhk)
(xk) ≥ −hk.

Therefore inequality (25) can also be written as

1

hk
dKk

r ((nk−1)hk)(xk) ≥ −1 + |∇vk(xk)|2 .

As before we have

ds
Kk

r ((nk−1)hk)(xk) = hkV
Kr

(t0,x0)
+ hkε(k) .

Hence

h(xk,Kk
r (nkhk)) = −1 + |∇vk(xk)|2 ≤ V Kr

(t0 ,x0)
+ ε(k) → V Kr

(t0,x0)
.

Then we can complete the proof as above to get the required condition:

h(x0,Kr(t0)) ≤ V Kr

(t0,x0)
.

QED

In particular we get immediately the following Theorem:

Theorem 5.3 Let Ω0 be an open bounded subset of R
N such that S ⊂⊂ Ω0.

Let K+ and K− be, respectively, the largest and smallest viscosity solutions
to the front propagation problem (1) with initial position Ω0. Then

K− ⊂ K∗ ⊂ K∗ ⊂ K+ .

In particular, if the problem has a unique solution, i.e., K− = K+, then

K− = K∗ = K∗ = K+ .

Proof of Theorem 5.3. Since K+ contains any subsolution and K− is
contained in any supersolution (see [8]), we have K∗ ⊂ K+ and K− ⊂ K∗.
Inclusion K∗ ⊂ K∗ holds by construction. Whence the result.

QED
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6 The energy is decreasing along the flow

Let Ω0 be a bounded open subset of R
N . Let we assume that the front

propagation problem (1) with initial position Ω0 has a unique solution and,
furthermore that

|∂Ω0| = 0 and
∣∣K+\K−

∣∣ = 0, (26)

where K+ and K− denote the maximal and minimal solutions respectively.

Theorem 6.1 Under assumption (26), there is a set T ⊂ [0,+∞) of full
measure such that

E
(
K+(t)

)
≤ E

(
K+(s)

)
for all s, t ∈ T , s < t .

Remark 6.1 Assumption (26) is not too restrictive. Indeed, it is generic in
the following sense: let (Ωλ

0)λ>0 be a strictly increasing family of bounded
open initial positions containing the source, i.e.,

for all 0 < λ < λ′, S ⊂⊂ Ωλ
0 ⊂⊂ Ωλ

0
′
.

If K+
λ (respectively K−

λ ) is the maximal (respectively minimal) viscosity
solution to (1) with initial position Ωλ

0 , then (26) holds for all λ > 0 except
for a countable subset. See [8] for details. For simplicity of notations, we
have chosen to consider the case λ = 1 and to assume that (26) holds for
the initial position Ω0.

Proof of Theorem 6.1. Let (Ωh
n) be a discrete motion starting from Ω0.

Recall for later use that, from Lemma 4.4,

E(Ωh
n) ≤ E(Ω0) ∀n ≥ 0, ∀h > 0 , (27)

because we have assumed that |∂Ω0| = 0. Let K∗ and K∗ be the associated
generalized evolutions defined by (19) and (20). We have

K− ⊂ K∗ ⊂ K∗ ⊂ K+ .

Let
T :=

{
t ∈ [0,+∞) :

∣∣K+(t)\K−(t)
∣∣ = 0

}
.

From assumption (26) and Fubini Theorem, the set T is of full measure in
[0,+∞).
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We first prove that

E(K+(t)) ≤ E(Ω0) ∀t ∈ T . (28)

For this, let t ∈ T , hk → 0+ and nk → +∞ such that hknk → t.
For simplicity we set Ωk := Ωhk

nk
. Since the Kuratowski upper limit of the

(Ωk) is contained in K+(t), which is a compact subset, the sequence (Ωk)
is bounded. Since moreover the upper limit of (RN\Ωk) is contained in
R

N\K−(t), the latter with a boundary at a positive distance from S, there
is some r > 0 such that Sr ⊂ Ωk for any k sufficiently large (see (7) for a
definition of Sr). Since finally the capacity is non increasing with respect to
the inclusion, we get from Lemma 3.2:

lim inf
k

cap(Ωk) ≥ cap(K+(t)) . (29)

The next step towards (28) amounts to show that

|K+(t)| ≤ lim inf |Ωk| . (30)

Let R > 0 be sufficiently large so that K+(t) ⊂⊂ BR, where BR = B(0, R).
By definition of the Kuratowski upper limit and the construction of K∗, we
have

1BR\K∗(t) ≥ lim sup
k

1BR\Ωk
.

Fatou Lemma then states that

|BR\K∗(t)| ≥ lim sup |BR\Ωk| ,

whence (30) since K−(t) ⊂ K∗(t) and |K+(t)| = |K−(t)| because t ∈ T .
Combining (29), (30) and (27) finally gives

E(K+(t)) ≤ lim inf
k

E(Ωk) ≤ E(Ω0) ∀t ∈ T .

This proves (28).
Let now 0 ≤ s ≤ t with s, t ∈ T . From the uniqueness of the solution

starting from K0, the maximal solution to the front propagation problem
starting at time s from K+(s) is equal at time t to K+(t). Since |∂K+(s)| = 0,
because s ∈ T , inequality (28) states that

E(K+(t)) ≤ E(K+(s)) ,

which is the desired result.

QED
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