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Abstract. Geometric flows related to shape optimization problems of Bernoulli
type are investigated. The evolution law is the sum of a curvature term and a non-
local term of Hele-Shaw type. We introduce generalized set solutions, the definition
of which is widely inspired by viscosity solutions. The main result is an inclusion
preservation principle for generalized solutions. As a consequence, we obtain ex-
istence, uniqueness and stability of solutions. Asymptotic behavior for the flow is
discussed: we prove that the solutions converge to a generalized Bernoulli exterior
free boundary problem.

Résumé. On étudie des flots géométriques liés des problèmes d’optimisation de

forme du type “problème de Bernoulli”. La loi d’évolution considérée a la forme

d’une somme d’un terme de courbure et d’un terme non-local de type Hele-Shaw.

Notre définition de solution généralisée est fortement inspirée de la notion de solu-

tions de viscosité. Le résultat central est un principe d’inclusion pour les ensembles

solutions. Nous en déduisons l’existence, une unicité générique et des propriétés

de stabilité des solutions. Enfin, nous étudions le comportement asymptotique des

solutions en montrant qu’elles convergent vers la solution d’un problème à frontière

libre de Bernoulli.

1 Introduction

In recent years several works have been devoted to the study of viscosity
solution for moving boundary problems whose evolution law is governed by
a nonlocal equation. See in particular [2, 7, 8, 9, 12, 20, 21]. In this paper,
we consider subsets Ω(t) of IRN (with N ≥ 2) whose boundary ∂Ω(t) evolves
with a normal velocity of the type

V Ω
(t,x) = F (νΩ(t)

x ,HΩ(t)
x ) + λh̄(x,Ω(t)) (1)
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where λ ≥ 0, ν
Ω(t)
x is the outward unit normal to ∂Ω(t) at x, H

Ω(t)
x is the

curvature matrix of ∂Ω(t) at x (nonpositive for convex sets), F is continuous
and elliptic, i.e., nondecreasing with respect to the curvature matrix. The
nonlocal term h̄ is of Hele-Shaw type:

h̄(x,Ω(t)) = |Du(x)|2 ,

where u : Ω(t) → IR is the solution to the following p.d.e.





−∆u = 0 in Ω(t)\S,
u = g on ∂S,
u = 0 on ∂Ω(t).

(2)

The set S 6= ∅ is a fixed source with a smooth boundary and g : ∂S → IR is
positive and smooth. We always assume that S ⊂⊂ Ω(t).

The motivation to study such problems comes from several numerical
works using the “level-set approach” in shape optimization [1, 23, 24, 25,
28]. The idea of these papers is to use formally a gradient method for the
minimization of an objective function J(Ω) where Ω is a subset of IRN . The
use of the level-set method for building the gradient flow has then the major
advantage to allow topological changes. Let us underline that this technique
is up to now purely heuristic. One of the goals of this paper is to justify it
for some simple shape optimisation problems.

In order to make our purpose more transparent, a brief description of
the level-set approach to shape optimization problem is now in order (see
also the discussion in [1] for a more detailed presentation concerning more
realistic shape optimization problems). Consider the problem of minimizing
the capacity of a set under volume constraints:

min
S⊂⊂Ω⊂⊂IRN

{cap(Ω) with vol(Ω) = constant} , (3)

where

cap(Ω) =

∫

Ω\S
|Du(x)|2dx and vol(Ω) =

∫

Ω\S
dx

and u is the solution of (2) with Ω instead of Ω(t). For any local diffeo-
morphism θ, we can compute the shape derivatives with respect to θ of the
capacity and of the volume. By Hadamard formulas we get

cap′(Ω)(θ) =

∫

∂Ω
|Du(σ)|2〈θ(σ), νΩ

σ 〉dσ and vol′(Ω)(θ) =

∫

∂Ω
〈θ(σ), νΩ

σ 〉dσ .

2



Assuming that the optimal shape Ω is smooth, the necessary conditions of
optimality states that there is a Lagrange multiplier Λ > 0 such that

cap′(Ω)(θ) + Λvol′(Ω)(θ) = 0 .

So it is natural to set

Jλ(Ω) = vol(Ω) + λ cap(Ω) ,

where λ = 1/Λ. If we choose θ(x) = (−1 + λ|Du(x)|2)νΩ
x on ∂Ω, then, at

least formally, we get

J ′
λ(Ω)(θ) = −

∫

∂Ω
(−1 + λ|Du(σ)|2)2dσ ≤ 0 .

Therefore the velocity θ(x) = (−1 + λ|Du(x)|2)νΩ
x appears as a descent

direction for the optimization problem (3) and for the set Ω. The heuristic
method for solving (3) is now clear: fix an initial position Ω0, consider the
evolution (Ω(t))t≥0 with normal velocity given by (1) and F ≡ −1, and
compute the limit of Ω(t) as t → +∞: this limit is the natural candidate
minimizer for (3).

It is worth noticing that problem (3) has for necessary condition the
classical Bernoulli exterior free boundary problem

Find a set K ⊂⊂ IRN , with S ⊂⊂ K and |Du(x)| = k for all x ∈ ∂K, (4)

where k > 0 is a fixed constant and u is the solution of (2). We refer the
reader to the survey paper [15] for a complete description of this problem.

If one considers a perimeter constraint instead of a volume constraint:

min
S⊂⊂Ω⊂⊂IRN

{cap(Ω) with per(Ω) = constant} ,

one is naturally lead to consider the evolution equation (1) with F (ν,A) =
1

N−1Tr(A) (i.e., the mean curvature). The flow is then formally a descent
direction for

Jλ(Ω) = per(Ω) + λcap(Ω) .

Let us underline that this problem has for necessary condition the gener-
alization of the free boundary problem (4) with curvature dependance (see
(53)).

Of course all the above computations are only formal: in general, solu-
tions to the evolution equation do not remain smooth, even when starting
from smooth initial data. Numerically, this difficulty is overcome by using
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the level-set approach, which allows to define the solution after the onset of
singularities. The aim of this paper is to define and study generalized solu-
tions of the evolution equation, and to investigate the asymptotic behavior
of the solution as t→ +∞.

Our concept of solutions is widely inspired by the definition of viscosity
solution for the mean curvature motion, which corresponds to equation (1)
with F (ν,A) = 1

N−1Tr(A) and λ = 0. Motivated by the numerical work
of Osher and Sethian [22], a weak notion of solution for this motion was
introduced in the articles of Chen, Giga and Goto [10] and Evans and Spruck
[13]. In this so-called level-set method, the evolution is described as the level
set of the solution of an auxiliary pde, the level set equation. This equation
is solved in the sense of viscosity solutions (see [11]). This powerful method
leads to plenty of results, we refer for instance to the survey book of Giga
[16]. Note that the level-set approach in shape optimization is a natural–but
up to now formal–generalization of these ideas.

As pointed out in [3, 4, 26], the generalized solutions obtained by the
level set approach can also be defined in more geometric and intric ways (see
also the related notion of barrier solutions introduced by De Giorgi). We
use here a definition introduced in [2], and used repetitively in [7, 8, 9]. In
the case of the mean curvature motion, Giga [16] proved this definition is
equivalent to the level-set one. Compared with the already quoted studies
on viscosity solutions of front propagation problems with nonlocal terms,
the main novelty of this paper is the fact that we are able to treat signed
velocities which also involve curvature terms. We learnt recently that a
similar result (for a Stefan problem) has been obtained by Kim in [21].

Our main result is an inclusion principle, which is the equivalent of the
maximum principle for geometric evolutions. It states that viscosity subso-
lutions for the flow remain included into viscosity supersolutions, provided
the initial positions are. For this we have to generalize Ilmanen interposi-
tion Lemma, which was already the key tool of [7, 9]. This Lemma allows to
separate disjoint sets by a smooth (that is C1,1) surface in a clever way. We
improve this result in two directions (see Theorem 3.3). At first we show
that, when dealing with subsets of IR × IRN , the smooth separating hyper-
surfaces in IR × IRN can be chosen to be smoothly evolving hypersurfaces
of IRN . Secondly, we build in a carefull way a C2 approximation of these
evolving hypersurfaces which allows to treat problems with curvature as in
(1).

Let us finally explain how this paper is organized. In Section 2, we de-
fine the notion of generalized solutions and state the main properties of the
velocity law. Section 3 is devoted to the interposition Theorems. In Section
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4 we state and prove the inclusion principle for our generalized solutions.
As a consequence, we derive results about existence, uniqueness and stabil-
ity of generalized solutions. Finally, Section 5 is devoted to the asymptotic
behaviour of the solutions in terms of a generalized Bernoulli exterior free
boundary problem.

Acknowledgment. The authors are partially supported by the ACI grant
JC 1041 “Mouvements d’interface avec termes non-locaux” from the French
Ministry of Research.

2 Definitions and preliminary results

2.1 Definition of the solutions

Let us first fix some notations: throughout the paper | · | denotes the eu-
clidean norm (of IRN or IRN+1, depending on the context) and B(x,R) the
open ball centered at x and of radius R. If K is a subset of IRN and x ∈ IRN ,
then dK(x) denotes the usual distance from x to K: dK(x) = infy∈K |y− x|
and dK is the signed distance to ∂K defined by

dK(x) =

{
dK(x) if x /∈ K,
−d∂K(x) if x ∈ K.

(5)

Finally, in the whole paper, if K1 and K2 are subset of IRM for N ≥ 1, then

K1 ⊂⊂ K2

means that K1 is bounded and, either K1 ⊂ int(K2) or equivalently K1 ∩
IRN\K2 = ∅.

We intend to study the evolution of compact hypersurfaces Σ(t) = ∂Ω(t)
of IRN , where Ω(t) is an open set, evolving with the following law:

∀t ≥ 0 , x ∈ Σ(t), V Ω
(t,x) = hλ(x,Ω(t)) (6)

where V Ω
(t,x) is the normal velocity of the evolving set, hλ = hλ(x,Ω) is given,

for any set Ω ⊂ IRN with smooth boundary by

hλ(x,Ω) = F (νΩ
x ,H

Ω
x ) + λh̄(x,Ω) (7)

where νΩ
x is the outward unit normal to Ω at x, HΩ

x the curvature matrix.
Throughout this paper we assume that (ν,A) ∈ SN−1×SN 7→ F (ν,A) ∈ IR is

5



continuous and elliptic, i.e., nondecreasing with respect to the matrix. Here
SN−1 denotes the (N − 1)−dimensional unit sphere, and SN the space of
N−dimensional symmetric matrices. Typical examples for F are F (ν,A) =
−1 (this corresponds to the flow associated to Bernoulli problem in the
introduction) or F (ν,A) = Tr(A) (for the flow arising in the minimization
of the capacity under perimeter constraints). As for h̄, it is a nonlocal
evolution term of Hele-Shaw type: the example we consider here is

h̄(x,Ω) = |Du(x)|2 , (8)

where u : Ω → IR is the solution of the following p.d.e.





i) −∆u = 0 in Ω\S,
ii) u = g on ∂S,
iii) u = 0 on ∂Ω.

(9)

The set S 6= ∅ is a fixed source and we always assume above that S ⊂⊂ Ω(t).
Here and throughout the paper, we suppose that





i) S ⊂ IRN is bounded and equal to the closure of an open set
with a C2 boundary,

ii) g : ∂S → (0,+∞) is C1,α (for some α ∈ (0, 1)).
(10)

Let us underline that h̄(x,Ω) is well defined as soon as Ω has a “smooth”
(say for instance C1,α) boundary and that S ⊂⊂ Ω. In the sequel, we set

D = {K ⊂ IRN : K is bounded and S ⊂ int(K)} , (11)

where int(K) denotes the interior of K.
From now on, we consider the graph

K = {(t, x) ∈ IR+ × IRN : x ∈ Ω(t)} .

of the evolving sets Ω(t). Note that K is a subset of IR+ × IRN . The set K
is our main unknown. We denote by (t, x) an element of such a set, where
t ∈ IR+ denotes the time and x ∈ IRN denotes the space. We set

K(t) = {x ∈ IRN : (t, x) ∈ K} .

The closure of the set K in IRN+1 is denoted by K. The closure of the
complementary of K is denoted K̂:

K̂ = (IR+ × IRN ) \K
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and we set
K̂(t) = {x ∈ IRN : (t, x) ∈ K̂} .

We use here repetitively the terminology and the notations introduced
in [8, 9] and [7]:

• A tube K is a subset of IR+ × IRN , such that K ∩ ([0, t] × IRN ) is a
compact subset of IRN+1 for any t ≥ 0.

• A set K ⊂ IR+ × IRN is left lower semicontinuous if

∀t > 0, ∀x ∈ K(t), if tn → t−, then ∃xn ∈ K(tn) such that xn → x .

• If s = 1, 2 or (1, 1), a Cs regular tube Kr is a tube with a nonempty
interior and whose boundary has a Cs regularity, and is such that at
any point (t, x) ∈ ∂Kr, the outward unit normal νKr

(t,x) = (νt, νx) to Kr

at (t, x) satisfies

νx 6= 0. (12)

• The normal velocity V Kr

(t,x) of a C1 regular tube Kr at the point (t, x) ∈
∂Kr is defined by

V Kr

(t,x) = − νt

|νx|
, (13)

where νKr

(t,x) = (νt, νx) is the outward unit normal to Kr at (t, x).

• A C1 regular tube Kr is externally tangent to a tube K at (t, x) ∈ K if

K ⊂ Kr and (t, x) ∈ ∂Kr .

It is internally tangent to K at (t, x) ∈ K̂ if

Kr ⊂ K and (t, x) ∈ ∂Kr .

• We say that a sequence of C1,1 tubes (Kn) converges to some C1,1 tube
K in the C1,b sense if (Kn) converges to K and (∂Kn) converges to ∂K
for the Hausdorff distance, and if there is an open neighborhood O of
∂K such that, if dK (respectively dKn) is the signed distance (5) to K
(respectively to Kn), then (dKn) and (DdKn) converge uniformly to
dK and DdK on O and ‖D2dKn‖∞ are uniformly bounded on O.
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Remark 2.1
1. The reason to introduce C1,1 and C2 tubes is clear when looking at (6)
and (7): h̄ is well defined if Kr is a C1,1 tube (see Section 2.2) and F is
well defined if Kr is a C2 tube (to be able to compute the curvature of Kr).
Therefore, (6) is well defined when Kr is a C2 regular tube and, following
the ideas of viscosity solutions (see [11]), C2 regular tubes will play the role
of “test-functions” in the following definition.
2. For simplicity, we gave all the above definitions with tubes defined for
all time t ≥ 0. But this is not the point, everything in the sequel is local in
time, so we use the same definitions with tubes K where K(s) is only defined
in a neighborhood of some fixed t. Note that smooth tubes will always be
defined locally in time.

Definition 2.1 Let K be a tube and K0 ∈ D be an initial set.

1. K is a viscosity subsolution to the front propagation problem (in short
FPP) (6) if K is left lower semicontinuous and K(t) ∈ D for any t,
and if, for any C2 regular tube Kr externally tangent to K at some
point (t, x), with Kr(t) ∈ D and t > 0, we have

V Kr

(t,x) ≤ hλ(x,Kr(t))

where V Kr

(t,x) is the normal velocity of Kr at (t, x).

We say that K is a subsolution to the FPP (6) with initial position K0

if K is a subsolution and if K(0) ⊂ K0.

2. K is a viscosity supersolution to the FPP (6) if K̂ is left lower semi-
continuous, and K(t) ⊂ D for any t, and if, for any C2 regular tube
Kr internally tangent to K at some point (t, x), with Kr(t) ∈ D and
t > 0, we have

V Kr

(t,x) ≥ hλ(x,Kr(t)) .

We say that K is a supersolution to the FPP (6) with initial position
K0 if K is a supersolution and if K̂(0) ⊂ IRN\K0.

3. Finally, we say that a tube K is a viscosity solution to the front prop-
agation problem (with initial position K0) if K is a sub- and a super-
solution to the FPP (with initial position K0).

Remark 2.2 The operator hλ defined in (7) is the sum of a local operator
F and a nonlocal one h̄. As in the theory of viscosity solutions, we can local-
ize arguments related to the local part of the operator. More precisely, C 2

8



regularity of the boundary of the tube is required to compute the curvature
in F, but only C1,1 regularity is needed to compute the nonlocal part h̄.
Therefore, the above definition is equivalent if we replace “for any C2 regu-
lar tube Kr internally (respectively externally) tangent to K at some point
(t, x)...” by “for any C1,1 regular tube Kr internally (respectively externally)
tangent to K at some point (t, x) such that ∂Kr is C2 in a neighborhood of
(t, x)...” We will use this equivalent definition in the proof of Theorem 4.1.

2.2 Regularity properties of the velocity h̄

We complete this part by recalling the regularity properties of the nonlocal
term h̄ defined by (8) and (9). These results were already given in [7], so we
omit the proofs. Here we assume that the set S and the function g satisfy
assumptions (10).

Because of the maximum principle, the function h̄ is nonnegative and
nondecreasing: if K1 ∈ D and K2 ∈ D are closed and with a C1,1 boundary,
if K1 ⊂ K2 and if x ∈ ∂K1 ∩K2, then 0 ≤ h̄(x,K1) ≤ h̄(x,K2).

Furthermore, h̄ is continuous in the following sense: If Kn and K ∈ D
are closed subsets of IRN with C1,1 boundary such that Kn converge to K
in the C1,b sense, if xn ∈ ∂Kn converge to x ∈ ∂K, then

lim
n
h̄(xn,Kn) = h̄(x,K).

This is a straightforward application of [17, Theorem 8.33].
Next we give a result describing the behaviour of h̄ for large ball:

Lemma 2.2 For any x0 ∈ IRN , there are constants r0 > 0 and α > 0 such
that

∀r ≥ r0, ∀x ∈ ∂B(x0, r), h̄(x,B(x0, r)) ≤
{
αr2−2N if N 6= 2,

α

r2| log(r)|2 if N = 2.

Moreover, the constants r0 and α only depend on S and on ‖g‖∞.

The proof is based on standard construction of supersolutions to (9) for
Ω = B(0, r), and so we omit it.

Lemma (2.2) states that h̄ is small when Ω is a large ball. On the
contrary, the following lemma means that h̄ is large when “Ω is close to S.”
For all γ ≥ 0, we introduce

Sγ = {x ∈ IRN , dS(x) ≤ γ}. (14)

Then, we have
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Lemma 2.3 There exist γ0 > 0 and a constant α > 0 which depends only
on g and S such that, for all γ ∈ (0, γ0),

h̄(x, Sγ) ≥ α

γ2
∀x ∈ ∂Sγ .

Proof of Lemma 2.3. Since S has a C2 boundary, we can fix γ0 > 0
small enough such that dS defined by (5) is C2 in S2γ0

\{dS < −2γ0}. We
fix γ ∈ (0, γ0) and set K = {dS ≤ −γ}. We note that dK = dS + γ is C2 on
S2γ0

\{dS < −2γ0}. Moreover dK = γ on ∂S and dK = 2γ on ∂Sγ . Set

M = max{|∆d2
K(x)| | 0 ≤ dS(x) ≤ γ} and m = min{g(x) | x ∈ ∂S} . (15)

Finally we set Ω = Sγ and, for β = e−3M/4m, we define

ϕ(r) = β(e−Mr/(4γ2) − 1) ∀r ∈ IR .

We claim that
u(x) = ϕ(d2

K(x) − (2γ)2)

is a subsolution of (9). Indeed, since ϕ(0) = 0, for all x ∈ ∂Sγ , u(x) = 0.
From the definition of β, for all x ∈ ∂S, u(x) = ϕ(−3γ2) ≤ m ≤ g. Setting
rx = d2

K(x) − (2γ)2, an easy computation gives

−∆u(x) = −ϕ′′(rx)|D(d2
K)|2 − ϕ′(rx)∆(d2

K).

But D(d2
K) = 2dKDdK and |DdK | = 1. From (15), we get

−∆u(x) ≤ −4ϕ′′(rx)d2
K +M |ϕ′(rx)|.

A computation of the derivatives of ϕ gives

−∆u(x) ≤ βM2

4γ2
e−Mrx/(4γ2)

(
1 − d2

K(x)

γ2

)
.

For x ∈ Ω\S, we have dK(x) ≥ γ and therefore we obtain −∆u(x) ≤ 0.
Finally u is a subsolution with u ≥ 0 in Ω and u = 0 on ∂Sγ . Thus, for all
x ∈ ∂Sγ ,

h̄(x, Sγ) ≥ |Du(x)|2 =
M2e−3M/2m2

4γ2
.

QED

We now recall the main regularity property of the map h̄:
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Lemma 2.4 Let R > 0 be some large constant and γ > 0 be sufficiently
small such that Sγ defined by (14) has a C2 boundary. There is a constant
θ > 1/γ such that, for any compact set K with C1,1 boundary such that
Sγ ⊂ int(K) and K ⊂ B(0, R − γ), for any v ∈ IRN with |v| < 1/θ and any
x ∈ ∂K, we have

h̄(x+ v,K + v) ≥ (1 − θ|v|)2h̄(x,K). (16)

For the proof, see [7, Proposition 2.4].

3 Interposition theorems

This part is devoted to interposition theorems in space and in space-time.
Such results are fondamental in the proof of the inclusion principle. They
play the same role as Jensen’s maximum principle (see [19]) or Ishii’s lemma
(see [11, Theorem 8.3]) in the standard theory of viscosity solutions.

3.1 An interposition theorem in IR
N

Let us start with an interposition result for subsets of IRN . The following
proposition is a direct consequence of Ilmanen interposition lemma [18] and
can be found in [7, Proposition 3.7].

Proposition 3.1 (Interposition) Let K1 and K2 be two closed subsets of
IRN , with K1 compact and such that K1 ⊂⊂ K2. Let y1 ∈ K1 and y2 ∈ ∂K2

be such that
|y1 − y2| = min

z1∈K1,z2∈∂K2

|z1 − z2| .

Then there is some open subset Σ1 of IRN with a C1,1 boundary, such that
Σ1 is externally tangent to K1 at y1 (i.e., K1 ⊂ Σ1 and y1 ∈ ∂Σ1) and such
that Σ2 := Σ1 + y2 − y1 is internally tangent to K2 at y2 (i.e., Σ2 ⊂ K2 and
y2 ∈ ∂Σ2).

See Figure 1 for an illustration of this proposition. The key point in this
result is that the smooth set Σ2 internally tangent to K2 is just a translation
of the smooth set Σ1 externally tangent to K1.

The C1,1 regularity of the sets Σ1 and Σ2 turns out to be optimal: one
cannot expect Σ1 and Σ2 to be C2 in general. Unfortunately the C2 regularity
will be required in the sequel to be able to deal with curvature terms. In
order to overcome this difficulty, one can approximate the sets Σ1 and Σ2

in the following way:
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K1

y1

y2

Σ1

Σ2

K2

Figure 1: Illustration of the result of Proposition 3.1.

Theorem 3.2 (Approximation) Let K1, K2, y1, y2, Σ1 and Σ2 be as in
Proposition 3.1 and δ > 0 be sufficiently small. Then there exists Σ1,n and
Σ2,n open subsets of IRN with C1,1 boundary, converging respectively to Σ1

and Σ2 in the C1,b sense, there exists y1,n ∈ K1 and y2,n ∈ ∂K2 converging
respectively to y1 and y2, and there exists (N − 1) × (N − 1) matrices X1,
X2 such that

(i) Σ1,n is externally tangent to K1 at y1,n and Σ2,n is internally tangent
to K2 at y2,n.

(ii) For i = 1 and 2, Σi,n is of class C2 in a neighbourhood of yi,n with

lim
n
H

Σi,n
yi,n → Xi, and

−1

δ
I2(N−1) ≤

(
X1 0
0 −X2

)
≤ 1

δ

(
IN−1 −IN−1

−IN−1 IN−1

)
. (17)

Remark 3.1
1. Note carefully that the two approximations are not independent because
of the inequalities (17), which implies in particular that X1 ≤ X2.
2. By “δ > 0 sufficiently small”, we mean δ ∈ (0, |y1 − y2|/(2 + |y1 − y2|)).

The proof of Theorem 3.2 is very similar to the (more difficult) proof of the
second part of Theorem 3.3 below, so we omit it.
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3.2 Interposition by regular tubes

The aim of this part is to extend previous results for subsets Σ1,Σ2 ⊂
IR× IRN which are regular tubes. The point here is to be able to construct
tubes satisfying the regularity assumption (12).

For this we introduce some notations. In IR × IRN we work with the
norm (where σ > 0 is fixed)

|(t, x)|σ =

(
1

σ2
t2 + |x|2

) 1

2

.

For any subset E of IRN+1, we note the distance to E for this norm

dσ
E(t, x) = inf

(s,y)∈E
|(s, y) − (t, x)|σ .

For any two subsets A1 and A2 of IRN+1, we define the minimal distance
between A1 and A2 by

e(A1, A2) = inf
(t1,x1)∈A1, (t2 ,x2)∈A2

|(t2, x2) − (t1, x1)|σ .

We consider the following transversality condition:

for C1 ⊂⊂ C2 ⊂ IR× IRN with C1 compact and C2 closed,

and for any (s̄1, ȳ1) ∈ C1 and any (s̄2, ȳ2) ∈ Ĉ2,

if |(s̄1, ȳ1) − (s̄2, ȳ2)|σ = e(C1, Ĉ2), then s̄1 > 0, s̄2 > 0 and ȳ1 6= ȳ2.

(18)

Theorem 3.3 Let C1 and C2 be such that (18) holds. Let us fix (s̄1, ȳ1) ∈
C1 and (s̄2, ȳ2) ∈ Ĉ2 with

|(s̄1, ȳ1) − (s̄2, ȳ2)|σ = e(C1, Ĉ2) .

1. Interposition: There exists a C1,1 regular tube Σ1, defined on an open
interval I (see Remark 2.1.2), such that Σ1 is externally tangent to C1

at (s̄1, ȳ1), with s̄1 ∈ I, and Σ2 := Σ1 + (s̄2, ȳ2) − (s̄1, ȳ1) is internally
tangent to C2 at (s̄2, ȳ2).

2. Joint approximation by C2 tubes: Futhermore, for any δ > 0 suf-
ficiently small, there exists C1,1 regular tubes Σ1,n and Σ2,n converging
respectively to Σ1 and Σ2 in the C1,b sense, there exists (s̄1,n, ȳ1,n) ∈ C1

and (s̄2,n, ȳ2,n) ∈ Ĉ2 converging respectively to (s̄1, ȳ1) and (s̄2, ȳ2), and
there exists (N − 1) × (N − 1) matrices X1, X2 such that
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(i) Σ1,n is externally tangent to C1 at (s̄1,n, ȳ1,n) and Σ2,n is inter-
nally tangent to C2 at (s̄2,n, ȳ2,n).

(ii) For i = 1 and 2, Σi,n is of class C2 in a neighbourhood of (s̄i,n, ȳi,n)

with lim
n
H

Σi,n(s̄i,n)
ȳi,n

→ Xi and

−1

δ
I2(N−1) ≤

(
X1 0
0 −X2

)
≤ 1

δ

(
IN−1 −IN−1

−IN−1 IN−1

)
. (19)

The proof of this theorem is done in Section 3.5.

Remark 3.2
1. Inequality (19) implies that X1 ≤ X2. Although we only use this latter
inequality in the sequel, inequality (19) allows to treat equations with F
depending on x (see for instance [11]). Let us once again point out that the
two approximations are not independent because of (19).
2. Thanks to the C1,b convergence of Σ1,n and Σ2,n to Σ1 and Σ2 respectively,
one also has:

lim
n
ν

Σ1,n(s̄1,n)
ȳ1,n

= lim
n
ν

Σ2,n(s̄2,n)
ȳ2,n

= ν
Σ1(s̄1)
ȳ1

= ν
Σ2(s̄2)
ȳ2

, (20)

lim
n
V

Σ1,n

(s̄1,n,ȳ1,n) = lim
n
V

Σ2,n

(s̄2,n,ȳ2,n) = V Σ1

(s̄1,ȳ1)
= V Σ2

(s̄2,ȳ2)
. (21)

3. By “δ > 0 sufficiently small, we mean: δ ∈ (0, e(C1, Ĉ2)/(2 + e(C1, Ĉ2))).

3.3 Existence of the regular interposition tubes

Let us introduce a new notation: if Σ is a tube defined on some open interval
I (see Remark 2.1.2), then we set

bd(Σ) :=
⋃

t∈I

∂Σ(t) . (22)

The following result is the key point in the proof of the existence of the
regular interposition tubes of Theorem 3.3 part (i).

Proposition 3.4 Let C1, C2, (s̄1, ȳ1) ∈ C1, (s̄2, ȳ2) ∈ C2 be as in Theorem
3.3. There exist a C1,1 regular tube Σ defined on some interval I and some
(t, x) ∈](s̄1, ȳ1), (s̄2, ȳ2)[ such that

t ∈ I, x ∈ ∂Σ(t) and e(C1 , Ĉ2) = e(C1 , bd(Σ)) + e(Σ , Ĉ2) . (23)
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Above, ](s̄1, ȳ1), (s̄2, ȳ2)[ denotes the open segment joining (s̄1, ȳ1) and (s̄2, ȳ2).

Proof of Proposition 3.4. Let us first fix some notation needed through-
out the proof: we set

• ē := e(C1 , Ĉ2),

• E := {(t, x) ∈ IR+ × IRN : (t, x) ∈](s1, y1), (s2, y2)[ where

(s1, y1) ∈ C1 and (s2, y2) ∈ Ĉ2 satisfy |(s1, y1) − (s2, y2)|σ = ē},

• Aρ := {(t, x) ∈ IR+ × IRN : dσ
C1

(t, x) > ρ and dσ
cC2

(t, x) > ρ} for ρ ∈ (0, ē/2) ,

and, if I is an interval, then Aρ(I) = Aρ ∩ (I × IRN ),

• (t(s), x(s)) := s(s̄1, ȳ1) + (1 − s)(s̄2, ȳ2) for all s ∈ (0, 1) and

(t̄, x̄) := (t(1/2), x(1/2)), (24)

• Iτ := (t̄− τ, t̄+ τ) for all τ > 0.

For later use we note that

dσ
cC2

(t(s), x(s)) = sē and dσ
C1

(t(s), x(s)) = (1 − s)ē for all s ∈ (0, 1) ,

(25)
because of the definition of (s̄1, ȳ1) and (s̄2, ȳ2). Moreover, for a point (t, x) ∈
IR+×IRN , the equality ē−dσ

cC2

(t, x) = dσ
C1

(t, x) holds if and only if (t, x) ∈ E.

We now reduce the construction of the tube Σ to the construction of a
suitable function w:

Lemma 3.5 Let I be a nonempty open interval of IR+ and w : Aρ(I) → IR
be of class C1,1 (for some ρ ∈ (0, ē/2)) and such that

ē− dσ
cC2

(s, y) ≤ w(s, y) ≤ dσ
C1

(s, y) ∀(s, y) ∈ Aρ(I) . (26)

We also assume that there is some γ ∈ (ρ, ē−ρ) and some (t, x) ∈ E∩Aρ(I)
with w(t, x) = γ and such that

Dxw(s, y) 6= 0 ∀(s, y) ∈ Aρ(I) with w(s, y) = γ . (27)

Then the set Σ = {(s, y) ∈ Aρ(I) | w(s, y) ≤ γ} satisfies the requirements of
Proposition 3.4.
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Proof of Lemma 3.5. Let us first check that Σ is a tube of class C1,1 in
the intervall I. Because of assumption (27) it suffices to show that bd(Σ) ⊂
Aρ(I) where bd(Σ) is defined by (22). Using (26) and the fact that γ ∈
(ρ, ē − ρ), we have, for all (s, y) ∈ bd(Σ),

dσ
cC2

(s, y) ≥ ē− γ > ρ and dσ
C1

(s, y) ≥ γ > ρ .

Hence (s, y) ∈ Aρ(I).
Finally we show that (23) holds. If w(s, y) = γ, then dσ

C1
(s, y) ≥ γ while

dσ
cC2

(s, y) ≥ ē− γ. Hence e(C1,bd(Σ)) ≥ γ, e(Ĉ2,Σ) ≥ ē− γ and

e(C1,bd(Σ)) + e(Ĉ2,Σ) ≥ e(C1, Ĉ2) .

For the reverse inequality let us first recall that ē − dσ
cC2

(t, x) = dσ
C1

(t, x)

because (t, x) ∈ E. This implies that γ = dσ
C1

(t, x) ≥ e(C1,bd(Σ)) and

ē− γ = dσ
cC2

(t, x) ≥ e(Ĉ2,Σ). Hence (23) holds.

QED

Next we turn to the construction of a function w satisfying the assump-
tions of Lemma 3.5. We advice the reader to look at Figure 2 to follow the
rest of the proof of Proposition 3.4.

The first step is the following result given in [9]: let us set

K1 := {(t, x) ∈ IR+ × IRN : dσ
C1

(t, x) ≤ 15ē/16} .
Then, we have

Lemma 3.6 [9, Lemma 5.1] The function ϕ(t, x) = dσ
∂K1

(t, x) is C1,1 in a
bounded open neighborhood O1 of E ∩ (K1\∂K1) and

ē− dσ
cC2

(t, x) ≤ 15ē

16
− ϕ(t, x) ≤ dσ

C1
(t, x) ∀(t, x) ∈ IR+ × IRN . (28)

We now show that ϕ has a nonvanishing spatial gradient in a neigh-
borhood of E ∩ O1. Let (t, x) ∈ E ∩ O1. Then there exists (s1, y1) ∈ C1,

(s2, y2) ∈ Ĉ2 such that |(s1, y1)− (s2, y2)|σ = ē and (t, x) ∈](s1, y1), (s2, y2)[.
Therefore, Dϕ(t, x) = ((s2, y2) − (s1, y1)))/ē. From assumption (18), we
know that y1 6= y2. Thus Dxϕ(t, x) 6= 0 for all (t, x) ∈ E ∩O1. By continuity
of Dxϕ in O1, there is an open set O2 ⊂ O1 which contains E ∩ Aē/8 and
such that

η := min
(t,x)∈O2

|Dxϕ(t, x)| > 0. (29)

We are now going to modify ϕ far away from E. For this we need a
technical lemma:

16



IRN

IR+

Ĉ2

C1

K1

(s̄1, ȳ1)

(s̄2, ȳ2)

(t̄, x̄)

O1
O2E

Aē/8





︸ ︷︷ ︸
Iτ︸ ︷︷ ︸

I





Aē/4

Figure 2: Illustration of the proof of Proposition 3.4.

Lemma 3.7 Let f, g, h be continuous functions in IRk such that g ≤ f ≤ h
in IRk. Suppose that K := {h = g} is non empty and compact and that there
is some open neighbourhood U of K such that f is C1,1 in U .

Then, for any η̃ > 0 and for any open subset U ′ such that K ⊂ U ′ ⊂⊂ U ,
there is a function ψ : IRk → IR such that:

(i) ψ is C1,1
loc in IRk and ψ is C∞ in IRk\U ′,

(ii) g ≤ ψ ≤ h in IRk and g < ψ < h in IRk\U ′,

(iii) |D(ψ − f)| ≤ η̃ in U ′.

Proof of Lemma 3.7. Let U1 and U2 be two open subsets of IRk such
that K ⊂ U2 ⊂⊂ U1 ⊂⊂ U ′ and fix some smooth map θ : IRk → [0, 1] such
that θ = 1 in U2 and θ = 0 in IRk\U1. Then we consider a smooth map
ξ : IRk → IR such that g < ξ < h in IRk\U2,

‖ξ − f‖L∞(U ′\U2) ≤
η̃

2‖Dθ‖∞
and ‖Dξ −Df‖L∞(U ′\U2) ≤

η̃

2
.

The construction of such a function ξ is possible because g < f < h outside
of K and f is C1,1 in U . Then we set

ψ(x) = θ(x)f(x) + (1 − θ(x))ξ(x) ∀x ∈ IRk .
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Note first that (i) and (ii) obviously hold. As for (iii), it clearly holds in U2

since ψ = f in U2. Moreover, for x ∈ U ′\U2, we have

|D(ψ − f)(x)| ≤ |D(ξ − f)(x)| + |f(x) − ξ(x)||Dθ(x)| ≤ η̃

2
+
η̃|Dθ(x)|
2‖Dθ‖∞

≤ η̃ .

QED

Next, we apply Lemma 3.7 with k := N+1, U := O1, U
′ := O2, η̃ := η/2

where η is given by (29),

g(t, x) := ē− dσ
cC2

(t, x) − dσ
Aē/8

(t, x), h(t, x) := dσ
C1

(t, x) + dσ
Aē/8

(t, x)

and f(t, x) := 15ē/16−ϕ(t, x) for (t, x) ∈ IR+ × IRN . We extend f , g and h
for t ≤ 0 by setting f(t, x) = f(0, x), g(t, x) = g(0, x) and h(t, x) = h(0, x).
From Lemma 3.6 we have g ≤ f ≤ h in IRN+1. Moreover, from assumption
(18), the setK := {g = h} = E∩Aē/8 is compact and contained in (0,+∞)×
IRN and we know from Lemma 3.6 that f is C1,1 in the neighbourhood O1

of K. Lemma 3.7 states that there is a map ψ : IRN+1 → IR such that




(i) ψ is C1,1
loc in IRN+1 and C∞ in IRN+1\O2,

(ii) ē− dσ
cC2

≤ ψ ≤ dσ
C1

in Aē/8,

(iii) ē− dσ
cC2

< ψ < dσ
C1

in Aē/8\O2,

(iv) |D(ψ − f)| ≤ η/2 in O2.

(30)

Putting together (29) and (iv) implies that

|Dxψ(t, x)| ≥ |Dxf(t, x)| − |Dx(ψ − f)(t, x)| ≥ η

2
∀(t, x) ∈ O2 .

We now choose two open subsets U1 and U2 of IRN and some τ > 0 such
that O2(t̄) ⊂⊂ U2 ⊂⊂ U1 (recall that t̄ is defined by (24)) and

|Dxψ(t, x)| ≥ η

4
∀(t, x) ∈ Iτ × U1 . (31)

We also fix some smooth function θ : IRN → [0, 1] such that θ = 1 in U2,
θ = 0 in IRN\U1 and we set

w(t, x) = θ(x)ψ(t, x) + (1 − θ(x))ψ(t̄, x) ∀(t, x) ∈ IRN+1 .

Note that w belongs to C1,1
loc (IR

N+1)∩C∞(IR× (IRN\U1)). We claim that we
can choose τ > 0 sufficiently small such that

{
(i) ē− dσ

cC2

≤ w ≤ dσ
C1

in Aē/4(Iτ ),

(ii) |Dxw| ≥ η/8 in Iτ × U1.
(32)
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Let us prove the first assertion. Let (t, x) ∈ Aē/4(Iτ ). On the one hand,
if (t, x) ∈ Aē/4(Iτ ) ∩ (Iτ × U2), then θ(x) = 1 and w(t, x) = ψ(t, x). Since
Aē/4(Iτ ) ⊂ Aē/8, we conclude from (30(ii)). On the other hand, suppose
(t, x) ∈ Aē/4(Iτ )\(Iτ × U2). In particular, (t, x) /∈ O2(t̄) and (t̄, x) /∈ O2.
Therefore, from (30(iii)), we have

ē− dσ
cC2

(t̄, x) < ψ(t̄, x) < dσ
C1

(t̄, x).

Using the uniform continuity of the above distance functions in the compact
set Aē/4(Iτ ), we obtain that, for τ small enough,

ē− dσ
cC2

(t, x) < ψ(t̄, x) < dσ
C1

(t, x) ∀(t, x) ∈ Aē/4(Iτ )\(Iτ × U2) .

Combining with (30(ii)), we conclude also in this case.
For the second assertion, we notice that, for (t, x) ∈ Iτ × U1, we have

|Dx(w−ψ)(t, x)| ≤ |1−θ(x)||Dx(ψ(t, x)−ψ(t̄, x))|+|ψ(t, x)−ψ(t̄, x)||Dθ(x)|

with a right-handside smaller than η/8 provided τ is sufficiently small, be-
cause ψ ∈ C1,1

loc . Then, for (t, x) ∈ Iτ × U1, we have, from the choice of U1

and τ in (31),

|Dxw(t, x)| ≥ |Dxψ(t, x)| − |Dx(w − ψ)(t, x)| ≥ η/8 ,

which proves the second statement.

We now fix σ ∈ (0, ē/4) such that

(t(s), x(s)) ∈ Iτ ×O2(t̄) ∀s ∈ (1/2 − σ, 1/2 + σ) .

This is possible because (t̄, x̄) = (t(1/2), x(1/2)) belongs to O2(t̄). From
(25), an easy calculation gives w(t(s), x(s)) = (1 − s)ē. Since w is smooth
in IR × (IRN\U1), Sard Lemma states that we can find a level γ ∈ ((1/2 −
σ)ē, (1/2 + σ)ē) such that γ is a non critical value of w in IR × (IRN\U1).
We claim that w and γ satisfy the requirements of Lemma 3.5. Note first
that, for s = (ē − γ)/ē, the point (t(s), x(s)) belongs to E ∩ Aē/4(Iτ ) and
satisfies w(t(s), x(s)) = γ. Moreover, (26) holds from (32(i)). Finally we
show that (27) holds. Indeed, if w(t, x) = γ for some (t, x) ∈ Aē/4(Iτ ), then

either x ∈ U1, in which case Dxw(t, x) 6= 0 thanks to (32(ii)), or x /∈ U1

and Dw(t, x) = (0, Dxw(, tx)) 6= 0 because γ is a non critical value of w in
Iτ × (IRN\U1). In each case we have Dxw(t, x) 6= 0. This completes the
proof of Proposition 3.4.

QED
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3.4 C2 regularization of a C1,1 tangent surface near contact

points

The aim of this section is to show the following fact: if a C1,1 surface Σ
is externally tangent to a set K at a point y, then it is possible to find a
C1,1 surface Σ̃ which is close to Σ (in the C1,b sense) and is still externally
tangent to K at a point ỹ close to y. Moreover, Σ̃ is more regular than Σ,
namely is C2 in a neighborhood of ỹ. In particular, we can use Σ̃ as a test
set to estimate the curvature (see Remark 2.2).

Let us give the exact assumptions:

Let K be a subset of IRk for k ≥ 1 and Σ be an open set with a
C1,1 boundary ∂Σ, which is externally tangent to K at some point
y ∈ ∂K. Let x /∈ K be such that y is the unique projection of x onto
K and p := DdK(x) is the outward normal to Σ at y. Suppose that
there is a sequence of points xn → x, where dK is twice differentiable
with first and second derivative denoted respectively pn and Xn, and
finally assume that pn converges to p while Xn converges to some X.

(33)

Note that, by usual properties of the distance function at differentiability
points, the projection of xn onto K is unique and converges to y. We denote
by yn this projection.

Proposition 3.8 Under Assumption (33) we can find a sequence of open
sets Σn with C1,1 boundary such that

(i) Σn is externally tangent to K at yn,

(ii) Σn has a C2 boundary in a neighbourhood of yn, with normal pn and
curvature equal to the restriction to (pn)⊥ of −(Xn − 1

nIk),

(iii) Σn converges to Σ in the C1,b sense.

Before starting the proof of the proposition, we need two lemmas. The first
one builds, from the derivatives of the distance function at a point a, a map
φ which has a local maximum on K at the point b, projection of a onto K:

Lemma 3.9 Suppose that a /∈ K and that dK is twice differentiable at a.
Let b be the projection of a onto K. Then, for any α > 0, the (smooth)
function

φ(z) = 〈DdK(a), z − b〉 +
1

2
〈(D2dK(a) − αIk)(z − b), z − b〉

has a strict local maximum at b on K.
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Proof of Lemma 3.9. For any z ∈ K, we have

φ(z) = dK(z + a− b) − α

2
|z − b|2 − dK(a) − |z − b|2ε(z − b)

because dK is has a second order Taylor expansion at a. But, since z ∈ K,
we have dK(z + a− b) ≤ |(z + a− b) − z| = |a− b| = dK(a). Therefore

φ(z) ≤ −α
2
|z − b|2 − |z − b|2ε(z − b)

which is negative as soon as z ∈ K is sufficiently close to b and z 6= b.

QED

From now on, we fix a smooth function θ : IR+ → [0, 1] such that θ is
nonincreasing, θ = 1 on [0, 1/2] and θ = 0 on [1,+∞).

We will use several times below the following interpolation. The proof
relies on straightforward computations, so we skip it.

Lemma 3.10 Let φ and ψ some C1,1 functions in some open set O. Let
ȳ ∈ O be such that φ(ȳ) = ψ(ȳ), and let us set, for any ρ > 0,

ξρ(z) = φ(z)θρ(z) + ψ(z)(1 − θρ(z)) where θρ(z) = θ

( |z − ȳ|2
ρ2

)
.

Then, for any ρ > 0 such that B(ȳ, ρ) ⊂⊂ O, we have

‖ξρ − ψ‖∞ ≤ C(ηρ+ (M1 +M2)ρ
2) , ‖Dξρ −Dψ‖∞ ≤ C(η + (M1 +M2)ρ)

and

‖D2ξρ‖∞ ≤ C

ρ
(η + (M1 +M2)ρ)

for some constant C = C(k) > 0, where we have set η = |Dφ(ȳ) −Dψ(ȳ)|,
M1 = ‖D2φ‖∞ and M2 = ‖D2ψ‖∞.

Remark 3.3
1. The norms ‖ · ‖∞ are of course taken on B(ȳ, ρ), since ξρ = ψ outside.
2. The key point is that ξρ coincides with φ in a small neighbourhood of ȳ,
but is not too far from ψ in the full set O provided ρ and η are small.

We are now ready to prove the proposition.
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Proof of Proposition 3.8. From Lemma 3.9 the function φn defined by

φn(z) = 〈DdK(xn), z − yn〉 +
1

2
〈(D2dK(xn) − 1

n
Ik)(z − yn), z − yn〉

has a strict local maximum at yn on K. Since yn is the unique projection of
xn onto K, the map ψn(z) = dK(xn)−|z−xn| has a global strict maximum
on K at yn. Hence

ζn(z) = φn(z)θn(z) + ψn(z)(1 − θn(z)) where θn(z) = θ

( |z − yn|2
ρ2

n

)
,

has a global strict maximum at yn on K, provided we choose ρn > 0, ρn → 0
and n large enough. Since φn is globally smooth with uniformly bounded
second order derivative, and since ψn is smooth with uniformly bounded
second order derivative ouside of the ball B(x, dK(x)/2), and since finally
ψn(yn) = φn(yn) = 0 and Dψn(yn) = Dψn(yn) = pn, Lemma 3.10 states
that ζn and Dζn uniformly converge to the function z → dK(x)−|z−x| and
its derivative respectively, in the set IRk\B(x, dK(x)/2), and that ‖D2ζn‖∞
is uniformly bounded in IRk\B(x, dK(x)/2).

Let us now denote by dΣ the signed distance to Σ (see (5) for a defini-
tion). Since ∂Σ is a C1,1 manifold, we can find some open neighbourhood O
of ∂Σ such that dΣ is C1,1 in O, with ‖D2dΣ‖∞ bounded in O. For z ∈ IRk,
we define

dn(z) = dΣ(z) − βn|y − z|2 where βn > 0, βn → 0.

Notice that dn is C1,1 in O, that dn and its derivative converge locally uni-
formly to dΣ whereas ‖D2dn‖∞ is bounded in O. The advantage of in-
troducing dn is that {dn ≤ 0} is still externally tangent to K at y with
∂K ∩ ∂{dn ≤ 0} = {y} (instead, Σ can touch K at many points). We claim
that, if we choose βn = 2|y − yn|1/3, then, at least for n large,

dn(z) ≤ dn(yn) for any z ∈ K\B(yn, βn/2). (34)

Indeed, for z ∈ K\B(yn, βn/2),

dn(z) − dn(yn) ≤ −βn|y − z|2 − dΣ(yn) + βn|y − yn|2

≤ −βn(βn/2 − |y − yn|)2 + |y − yn| + βn|y − yn|2

≤ −|y − yn|(1 − 4|y − yn|
2

3 ),

which is nonpositive for large n since yn → y.
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We introduce the maps

ξn(z) = ζn(z)θ̃n(z)+[dn(z)−dn(yn)](1−θ̃n(z)) where θ̃n(z) = θ

( |z − yn|2
σ2

n

)

and
σn = max{|pn −Ddn(yn)|, βn/

√
2} .

Let us notice that σn → 0 because yn → y and pn andDdn(yn) = DdΣ(yn)−
2βn(yn − y) converge both to p = DdΣ(y) since DdΣ is continuous at y.
We now use Lemma 3.10, with ζn(yn) = [dn(yn) − dn(yn)] = 0 and ηn :=
|Dζn(yn)−Ddn(yn)| = |pn −DdΣ(yn) + 2βn(yn − y)| → 0. It states that ξn
and Dξn uniformly converge to dΣ and DdΣ, respectively. Moreover, since
ηn ≤ σn, the second order derivative of ξn is uniformly bounded.

Let us finally prove that the set Σn = {ξn < 0} satisfies our requirements.
What we already proved on ξn shows that Σn converges to Σ (in the C1,b

sense). From its construction, Σn is smooth in a neighborhood of yn, with
normal at the point yn equal to pn and curvature equal to the restriction to
(pn)⊥ of −(Xn − 1

nIk).
It remains to check that Σn is externally tangent to K at yn. It suffices

to prove that ξn(z) ≤ 0 for any z ∈ K, because ξn(yn) = 0. Let z ∈ K. If
|z − yn| ≤ σn/

√
2, then ξn(z) = ζn(z) ≤ 0 from the construction of ζn. If

|z−yn| > σn/
√

2, then |z−yn| > βn/2 and thus, from (34), dn(z) ≤ dn(yn).
Since moreover ζn has a global maximum on K at yn, we finally have

ξn(z) = ζn(z)θ̃n(z) + [dn(z) − dn(yn)](1 − θ̃n(z))

≤ ζn(yn)θ̃n(z) + [dn(yn) − dn(yn)](1 − θ̃n(z)) = 0 .

In conclusion we have proved that ξn has a global maximum on K at yn,
and the proof is complete.

QED

3.5 Proof of Theorem 3.3

The first part of the theorem is an immediate consequence of Proposition
3.4 : we set Σ1 = Σ− (t, x) + (s̄1, ȳ1) and Σ2 = Σ− (t, x) + (s̄2, ȳ2) where Σ
and (t, x) are given by Proposition 3.4 and we check that Σ1 and Σ2 enjoy
the desired properties.

Without loss of generality, we assume that δ ∈ (0, ē/(2 + ē)). Let us
introduce, for all (τ1, z1, τ2, z2) ∈ IR+ × IRN × IR+ × IRN ,

f(τ1, z1, τ2, z2) = dσ
C1

(τ1, z1) + dσ
cC2

(τ2, z2) +
1

2δ
|(τ1, z1) − (τ2, z2)|2σ .
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Then dσ
C1

, dσ
cC2

and f are semi-concave functions in (IR+× IRN )2\(C1 ∪ Ĉ2)
2.

We claim that f has a minimum at (τ̄1, z̄1, τ̄2, z̄2), where

(τ̄1, z̄1) =
1

2
(1 + δ)(s̄1, ȳ1) +

1

2
(1 − δ)(s̄2, ȳ2)

and

(τ̄2, z̄2) =
1

2
(1 − δ)(s̄1, ȳ1) +

1

2
(1 + δ)(s̄2, ȳ2).

Indeed, on the one hand, an easy computation shows that f(τ̄1, z̄1, τ̄2, z̄2) =
ē − δ/2. On the other hand, for all (τ1, z1, τ2, z2) ∈ IR+ × IRN × IR+ × IRN ,
we have

f(τ1, z1, τ2, z2)

= dσ
C1

(τ1, z1) + dσ
cC2

(τ2, z2) +
1

2δ
|(τ1, z1) − (τ2, z2)|2σ

= |(τ1, z1) − (t1, x1)|σ + |(τ2, z2) − (t2, x2)|σ +
1

2δ
|(τ1, z1) − (τ2, z2)|2σ

≥ |(t1, x1) − (t2, x2)|σ − |(τ1, z1) − (τ2, z2)|σ +
1

2δ
|(τ1, z1) − (τ2, z2)|2σ ,

where (t1, x1) ∈ C1 and (t2, x2) ∈ Ĉ2 are the points for which the distances
dσ

C1
(τ1, z1) and dσ

cC2

(τ2, z2) are achieved. It follows that f(τ1, z1, τ2, z2) ≥
ē− δ/2 since |(t1, x1)− (t2, x2)|σ ≥ ē and since, for all r ≥ 0, −r+ r2/(2δ) ≥
−δ/2. Finally, (τ̄1, z̄1, τ̄2, z̄2) is a minimum for f.

Since the semi-concave function f has a minimum at (τ̄1, z̄1, τ̄2, z̄2), Jensen
maximum principle [19] (see also [14]) states that one can find a sequence
of points (τ̄1,n, z̄1,n, τ̄2,n, z̄2,n) which converges to (τ̄1, z̄1, τ̄2, z̄2) and a non-
negative symmetric matrix Ā ∈ S2N+2 such that the functions dσ

C1
, dσ

cC2

and

f are twice differentiable at (τ̄1,n, z̄1,n), (τ̄2,n, z̄2,n) and (τ̄1,n, z̄1,n, τ̄2,n, z̄2,n)
respectively and such that

Df(τ̄1,n, z̄1,n, τ̄2,n, z̄2,n) → 0 and D2f(τ̄1,n, z̄1,n, τ̄2,n, z̄2,n) → Ā ≥ 0.
(35)

In particular, since Ddσ
C1

(τ̄1,n, z̄1,n) and Ddσ
cC2

(τ̄2,n, z̄2,n) exist, the projec-

tions of (τ̄1,n, z̄1,n) onto C1 and Ĉ2 respectively are unique, and equal to
some (s̄1,n, ȳ1,n) and (s̄2,n, ȳ2,n). Note that (s̄1, ȳ1) is the unique projection
onto C1 of (t̄, x̄), and therefore (s̄1,n, ȳ1,n) converges to (s̄1, ȳ1). For the same
reason, (s̄2,n, ȳ2,n) converges to (s̄2, ȳ2). Since dσ

C1
and dσ

cC2

are semi-concave

functions, the matrices D2dσ
C1

(τ̄1,n, z̄1,n) and D2dσ
cC2

(τ̄2,n, z̄2,n) are bounded
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from above: namely (see for instance [6, Proposition 22.2])

D2
xxd

σ
C1

(τ̄1,n, z̄1,n) ≤ 1

dσ
C1

(τ̄1,n, z̄1,n)
IN (36)

and

D2
xxd

σ
cC2

(τ̄2,n, z̄2,n) ≤ 1

dσ
cC2

(τ̄2,n, z̄2,n)
IN . (37)

Using (35), we get

(
D2

xxd
σ
C1

(τ̄1,n, z̄1,n) + 1
δ IN −1

δ IN
−1

δ IN D2
xxd

σ
cC2

(τ̄2,n, z̄2,n) + 1
δ IN

)
→ A ≥ 0, (38)

where the matrix A ∈ S2N is the restriction to IRN ×IRN of Ā. In particular,

if we set A =

(
A1 A3

A3 A2

)
, then

D2
xxd

σ
C1

(τ̄1,n, z̄1,n) +D2
xxd

σ
cC2

(τ̄2,n, z̄2,n) +
2

δ
IN → A1 +A2 ≥ 0

and therefore D2
xxd

σ
C1

(τ̄1,n, z̄1,n) and D2
xxd

σ
cC2

(τ̄2,n, z̄2,n) are in fact bounded.

So, after relabelling all the sequences, we can assume that the restriction
of −D2

xxd
σ
C1

(τ̄1,n, z̄1,n) to (Dxd
σ
C1

(τ̄1,n, z̄1,n))⊥ converges to some matrix X1

while the restriction of D2
xxd

σ
cC2

(τ̄2,n, z̄2,n) to (Dxd
σ
cC2

(τ̄2,n, z̄2,n))⊥ converges

to some X2. Note that, from (38) we have

(
−X1 + 1

δ IN−1 −1
δ IN−1

−1
δ IN−1 X2 + 1

δ IN−1

)
≥ 0 .

Moreover, since

dσ
C1

(τ̄1,n, z̄1,n) → dσ
C1

(τ̄1, z̄1) =
ē(1 − δ)

2

and

dσ
cC2

(τ̄2,n, z̄2,n) → dσ
cC2

(τ̄2, z̄2) =
ē(1 − δ)

2
,

we get from (36, 37)

(
−X1 0

0 X2

)
≤ 2

ē(1 − δ)
I2(N−1) ≤

1

δ
I2(N−1)

because δ < ē/(ē+ 2). So we have proved (19).

25



We now apply Proposition 3.8 to the sets C1 and Σ1. Assumption (33)
holds since the set Σ1 is externally tangent to C1 at (s̄1, ȳ1). Moreover, the
point (s̄1, ȳ1) is the unique projection of the point (τ̄1, z̄1) onto C1. The
points (τ̄1,n, z̄1,n) are points of twice differentiability of dσ

C1
, converge to

(τ̄1, z̄1) and have a unique projection (s̄1,n, ȳ1,n) onto C1. Therefore we can
find a sequence of sets Σ1,n with C1,1 boundary, such that Σ1,n is externally
tangent to C1 at (s̄1,n, ȳ1,n) and has a C2 boundary near (s̄1,n, ȳ1,n). Note
that, since Σ1 is a C1,1 regular tube and since the sets Σ1,n converge to Σ1

in the C1,b sense, Σ1,n are also C1,1 regular tubes provided n is sufficiently
large.

From Proposition 3.8(ii), we also have that the curvature matrix of Σ1,n

at (s̄1,n, ȳ1,n) is equal to the restriction of −(D2dσ
C1

(τ̄1,n, z̄1,n) + 1
nIN+1) to

the tangent space of Σ1,n at (s̄1,n, ȳ1,n). Let us denote by X1,n the restriction
of this curvature matrix to IRN . We notice that X1,n converges to X1.

In the same way, applying Proposition 3.8 to the complementary of the
tube Σ2 which is externally tangent to Ĉ2 at (s̄2, ȳ2), we can find a se-

quence of C1,1 tubes Σ2,n which are externally tangent to Ĉ2 at some points
(s̄2,n, ȳ2,n), such that Σ2,n are of class C2 near (s̄2,n, ȳ2,n), and such that the
curvature matrix X2,n to Σ2,n(s̄2,n) at ȳ2,n converges to X2.

QED

4 The inclusion principle

4.1 Statement of the main theorem. Existence, uniqueness

and stability

Theorem 4.1 (Inclusion principle) Let 0 ≤ λ1 < λ2 be fixed, K1 be a
subsolution of the FPP (6) with speed hλ1

on the time interval [0, T ) for
some T > 0 and K2 be a supersolution on [0, T ) with speed hλ2

. If

K1(0) ∩ K̂2(0) = ∅ ,

then, for all t ∈ [0, T ),

K1(t) ∩ K̂2(t) = ∅ .

Before proving Theorem 4.1, we recall some applications of such inclusion
principle, omiting the proofs which are easy adaptations of those of [7] and
[9].

Concerning the existence of solutions, we have the following
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Proposition 4.2 For any initial position K0, with S ⊂ int(K0) and K0

bounded, there is (at least) one solution to the FPP (6) for hλ.
Moreover, there is a largest solution and a smallest solution to this prob-

lem. The largest solution has a closed graph while the smallest solution has
an open graph in IR+ × IRN . The largest solution contains all the subsolu-
tions of the FPP (6) with initial condition K0, while the smallest solution
is contained in any supersolution.

In general, one cannot expect to have a unique solution, i.e., the closure
of the minimal solution is not necessarily equal to the maximal solution.
However, uniqueness is generic:

Proposition 4.3 Let (Kλ)λ>0 be a strictly increasing family of initial po-
sitions (i.e., Kλ′ ⊂⊂ Kλ for 0 < λ′ < λ) such that Kλ ∈ D for all λ > 0.
Then the solution of the FPP (6) for hλ with initial position Kλ is unique
but for a countable subset of the λ’s.

Stability of solutions is expressed by means of Kuratowski upperlimit of
sets. Let us recall that, if (An)n∈N is a sequence of sets in IRM , then the
Kuratowski upperlimit A∗ = Lim supnAn is the subset of all accumulation
points of somes sequences of points in (An)n∈N, namely

A∗ := {z ∈ IRM : ∃(nk)k∈N increasing sequence of integers,∃(zk)k∈N,

zk ∈ Ank
and z = lim

k
yk}. (39)

We define A∗ as the complementary of Lim supn Ân.

Proposition 4.4 If Kn is a sequence of subsolutions for hλ, locally uni-
formly bounded with respect to t, then the Kuratowski upperlimit K∗ =
Lim supn Kn is also a subsolution for hλ.

In a similar way, if Kn is a sequence of supersolutions for hλ, locally
uniformly bounded with respect to t, then K∗ is also a supersolution for hλ.

4.2 Proof of Theorem 4.1

Without loss of generality, we assume that K1 has a closed graph. We argue
by contradiction, assuming there exists 0 ≤ T ∗ < T such that

K1(T
∗) ∩ K̂2(T

∗) 6= ∅. (40)
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For σ > 0 and ε > 0, we consider

ρσ(t) = min
x∈K1(t)

dσ
cK2

(t, x)

and we set
T ε,σ = inf{t ≥ 0 : ρσ(t) ≤ εe−t } .

Recall that the notations | · |σ and dσ
cK2

were introduced at the beginning

of subsection 3.2. Let r > 0 sufficiently small such that S + rB has a C2

boundary and S + rB ⊂⊂ K1(t) and S + rB ⊂⊂ K2(t) for all t ∈ [0, T ]. We
also fix R > 0 sufficiently large such that

sup
(t,x)∈K1, t≤T

|x| + sup
(t,x)∈K2, t≤T

|x| ≤ R− r .

We denote by θ the constant defined in Proposition 2.4 for R and r. Let
us recall that θ > 1/r and that, for any compact set K with C1,1 boundary
such that Sr ⊂ int(K) and K ⊂ B(0, R− r), for any v ∈ IRN with |v| < 1/θ
and any x ∈ ∂K, we have

h̄(x+ v,K + v) ≥ (1 − θ|v|)2h̄(x,K) . (41)

We refer the reader to Figure 3 for an illustration of the proof.

IRN

IR+K1

K
ε,σ
1

K̂2

(s1, y1)

(s2, y2)

Σ1

Σ2

T ε,σ = s1

Figure 3: Illustration of the proof of Theorem 4.1.

Lemma 4.5 We can choose ε > 0 and σ > 0 sufficiently small so that
(i) λ2(1 − θε)2 > λ1 and εσ < 1 ,
(ii) T ε,σ > ε,
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(iii) ρσ(T ε,σ) = εe−T ε,σ
,

(iv) for any y1 ∈ K1(T
ε,σ) and any (s2, y2) ∈ K̂2 such that

ρσ(T ε,σ) = min
y∈K1(T ε,σ)

dσ
cK2

(T ε,σ, y) = |(T ε,σ, y1) − (s2, y2)|σ , (42)

we have y1 6= y2 and s2 > 0.

The proof of the lemma is postponed to Section 4.3.
From now on we fix ε and σ as in Lemma 4.5 and we set s1 = T ε,σ. Let

us also set

Kε,σ
1 = {(s, y) ∈ IR+ × IRN :

∃(τ, z) ∈ K1 with τ ≤ s1 and |(s, y) − (τ, z)|σ ≤ ε(e−τ − e−s1)}.
Recall that, for any two subsets A1 and A2 of IRN+1, we define the minimal
distance between A1 and A2 by

e(A1, A2) = inf
(t1,x1)∈A1, (t2 ,x2)∈A2

|(t2, x2) − (t1, x1)|σ .

Lemma 4.6 The set Kε,σ
1 is closed, with Kε,σ

1 (s1) = K1(s1) and

e(Kε,σ
1 , K̂2) = εe−s1 .

Moreover there exist y1 ∈ Kε,σ
1 (s1) and (s2, y2) ∈ K̂2, such that

|(s1, y1) − (s2, y2)|σ = e(Kε,σ
1 , K̂2), (43)

and, for such points y1 and (s2, y2), we have y1 6= y2.

The proof is postponed. Lemma 4.6 is a kind of refinement of Lemma
4.5.(iv). Note that the proof of Lemma 4.5 and Lemma 4.6 only use the fact

that K1(0) ∩ K̂2(0) = ∅ and that K1 and K̂2 are left lower semicontinuous.
Next we give an estimate of the normal velocity of the tube K1 in terms

of the normal velocity of Kε,σ
1 :

Lemma 4.7 Assume that a C1,1 tube Σ is externally tangent to Kε,σ
1 at some

point (s̄, ȳ) ∈ ∂Kε,σ
1 . Let (τ̄ , z̄) ∈ K1 be such that

τ̄ ≤ s1 and |(s̄, ȳ) − (τ̄ , z̄)|σ ≤ ε(e−τ̄ − e−s1).

Then there is a C1,1 tube Σ̃ which is externally tangent to the tube K1 ∩
([0, τ̄ ] × IRN ) at (τ̄ , z̄) and such that

V
eΣ

(τ̄ ,z̄) ≥ V Σ
(s̄,ȳ) + εe−s1 and Σ̃(τ̄) = Σ(s̄) + (z̄ − ȳ).

If furthermore Σ is of class C2 in a neighbourhood of (s̄, ȳ), then Σ̃ is also
C2 in a neighbourhood of (τ̄ , z̄).
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We postpone the proof. We are now ready to use the interposition Theorem
3.3 that we apply to C1 := Kε,σ

1 and C2 := K̂2. Note that condition (18)

holds thanks to Lemma 4.6. Let us fix (s1, y1) ∈ Kε,σ
1 and (s2, y2) ∈ K̂2 with

|(s1, y1) − (s2, y2)| = e(Kε,σ
1 , K̂2) .

From Theorem 3.3 we know that there exists a regular tube Σ1 with C1,1

boundary such that Σ1 is externally tangent to Kε,σ
1 at (s1, y1) and Σ2 :=

Σ1 + (s2, y2) − (s1, y1) is internally tangent to K̂2 at (s2, y2) (see Figure 3).
Futhermore, there exist C1,1 regular tubes Σ1,n and Σ2,n converging re-

spectively to Σ1 and Σ2 in the C1,b sense, there exist (s1,n, y1,n) ∈ Kε,σ
1 and

(s2,n, y2,n) ∈ K̂2 converging respectively to (s1, y1) and (s2, y2), and there
exist (N − 1) × (N − 1) matrices X1, X2, such that

(i) Σ1,n is externally tangent to Kε,σ
1 at (s1,n, y1,n) and Σ2,n is internally

tangent to K̂2 at (s2,n, y2,n),

(ii) For i = 1, 2, Σi,n is of class C2 in a neighbourhood of (si,n, yi,n) with

lim
n
ν

Σ1,n(s1,n)
y1,n = lim

n
ν

Σ2,n(s2,n)
y2,n = νΣ1(s1)

y1
= νΣ2(s2)

y2
, (44)

lim
n
V

Σ1,n

(s1,n,y1,n) = lim
n
V

Σ2,n

(s2,n,y2,n) = V Σ1

(s1,y1)
= V Σ2

(s2,y2)
, (45)

and, for i = 1, 2,

lim
n
H

Σi,n
si,n,yi,n → Xi, with X1 −X2 ≤ 0 . (46)

Since K2 is a supersolution for hλ2
and Σ2,n is internally tangent to K2

at (s2,n, y2,n), we have

V
Σ2,n

(s2,n,y2,n) ≥ F (ν
Σ2,n(s2,n)
y2,n ,H

Σ2,n(s2,n)
y2,n ) + λ2h̄(y2,n,Σ2,n(s2,n)).

Letting n → +∞ gives, from the continuity property of h̄, from (44), (45)
and (46)

V Σ2

(s2,y2) ≥ F (νΣ2(s2)
y2

, X2) + λ2h̄(y2,Σ2(s2)) (47)

We now establish a symmetric inequality for Σ1. For any n, let (τ1,n, z1,n) ∈
K1 be such that

τ1,n ≤ s1 and |(s1,n, y1,n) − (τ1,n, z1,n)|σ ≤ ε(e−τ1,n − e−s1).
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Note that (τ1,n, z1,n) → (s1, y1) because (s1,n, y1,n) → (s1, y1) and Kε,σ
1 has a

closed graph with Kε,σ
1 (s1) = K(s1) (see Lemma 4.6). In particular, τ1,n > 0

for large n. Since Σ1,n is externally tangent to Kε,σ
1 at (s1,n, y1,n), Lemma

4.7 states that one can find a C1,1 tube Σ̃1,n externally tangent to K1 ∩
([0, τ1,n] × IRN) at (τ1,n, z1,n) with

V
eΣ1,n

(τ1,n ,z1,n) ≥ V
Σ1,n

(s1,n,y1,n) + εe−s1 and Σ̃(τ1,n) = Σ(s1,n) + (z1,n − y1,n).

Moreover Σ̃1,n is also C2 in a neighbourhood of (τ1,n, z1,n). Lemma 4.8, given
below, states that the tube K1 ∩ ([0, τ1,n]× IRN) is still a subsolution to the
evolution equation for hλ1

. Therefore,

V
eΣ1,n

(τ1,n,z1,n) ≤ F (ν
eΣ1,n(τ1,n)
z1,n ,H

eΣ1,n(τ1,n)
z1,n ) + λ1h̄(z1,n, Σ̃1,n(τ1,n)) .

Since Σ1,n(s1,n) = Σ̃1,n(τ1,n) − (z1,n − y1,n), we have ν
Σ1,n(s1,n)
y1,n = ν

eΣ1,n(τ1,n)
z1,n

and H
Σ1,n(s1,n)
y1,n = H

eΣ1,n(τ1,n)
z1,n . Therefore

V
Σ1,n

(s1,n,y1,n)+εe
−s1 ≤ F (ν

Σ1,n(s1,n)
y1,n ,H

Σ1,n(s1,n)
y1,n )+λ1h̄(y1,n,Σ1,n(s1,n)−(z1,n−y1,n)) .

Letting n→ +∞ we get

V Σ1

(s1,y1)
+ εe−s1 ≤ F (νΣ1(s1)

y1
, X1) + λ1h̄(y1,Σ1(s1)) . (48)

The difference between (47) and (48) gives

0 ≥ F (νΣ2(s2)
y2

, X2) + λ2h̄(y2,Σ2(s2))

−F (νΣ1(s1)
y1

, X1) − λ1h̄(y1,Σ1(s1)) + εe−s1

≥ (λ2(1 − θε)2 − λ1)h̄(y1,Σ(t̄) − e1ν̄x) + εe−s1 , (49)

because, on the one hand, V Σ1

(s1,y1)
= V Σ2

(s2,y2)
, ν

Σ1(s1)
y1

= ν
Σ2(s2)
y2

and X1 ≤ X2

(from (44, 45,46)) and F is elliptic and because, on the another hand, from
(41) and the definition of Σ2,

h̄(y2,Σ2(s2)) = h̄(y2,Σ1(s1) + y2 − y1) ≥ (1 − θ|y2 − y1|)2 h̄(y1,Σ1(s1)),

where |y2 − y1| ≤ εe−s1 ≤ ε. Since h̄ ≥ 0 and λ2(1 − θε)2 ≥ λ1 from Lemma
4.5, there is a contradiction in (49) and the proof is complete.

QED
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4.3 Proofs of Lemmas 4.5, 4.6, 4.7 and 4.8

Proof of Lemma 4.5. The proof of this lemma is close to the one of [7,
Proposition 4.2]. We provide it for reader’s convenience.

The assertion (i) is obvious.

To prove (ii), we first note that, since K1(0)∩ K̂2(0) = ∅ and K1 and K̂2

are closed, there exists τ > 0 such that K1(t)∩K̂2(s) = ∅ for all 0 ≤ s, t ≤ τ.
Therefore

µ := inf{|y − x| : 0 ≤ s, t ≤ τ, x ∈ K1(t), y ∈ K̂2(s)} > 0.

Let ε < µ and σ < τ/(2ε). Then, for s ∈ [0, τ/2] and y ∈ K1(s) and for any

(t, x) ∈ K̂2, we have

|(s, y) − (t, x)|σ ≥
{
µ if t ≤ τ,
τ
2σ if t ≥ τ.

Hence dcK2
(s, y) ≥ ε, which proves that T ε,σ ≥ τ/2 ≥ ε.

We prove (iii). From the definition of ρσ(T ε,σ), there exists tn ↓ T ε,σ

with ρσ(tn) ≤ εe−tn . Therefore there exists yn ∈ K1(tn) such that ρσ(tn) =
dσ

cK2

(tn, yn) and, up to extract a subsequence, we can assume that yn → y ∈
K1(T

ε,σ) (since K1 is closed). It follows

ρσ(tn) = dσ
cK2

(tn, yn) → dσ
cK2

(T ε,σ, y) ≥ ρσ(T ε,σ).

Thus, we obtain the inequality ρσ(T ε,σ) ≤ εe−T ε,σ
(note that we prove by the

way that ρσ is a lower-semicontinuous function). It remains to prove that
the equality holds. If not, there exists y ∈ K1(T

ε,σ) such that dσ
cK2

(T ε,σ, y) <

εe−T ε,σ
. From the left lower-semicontinuity of the subsolution K1, for all

sequence tn ↑ (T ε,σ)−, there exists yn ∈ K1(tn) which converges to y. It
follows that

ρσ(tn) ≤ dσ
cK2

(tn, yn) < εe−tn at least for n large.

We get a contradiction with the definition of T ε,σ and conclude for the proof
of (iii).

We turn to the proof of (iv). For this we fix ε > 0 as in the proof of (ii)
and we note that T ε,σ is noncreasing with respect to σ. Since T ε,σ ≤ T ∗,
limσ→0+ T ε,σ exists and we denote it by s̄. Note that s̄ ≥ ε.

We now argue by contradiction, assuming that there is a sequence σn →
0+, y1,n ∈ K1(T

ε,σn), (s2,n, y2,n) ∈ K̂2 such that

ρσn(T ε,σn) = |(T ε,σn , y1,n) − (s2,n, y2,n)|σn = εe−T ε,σn
,
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with either s2,n = 0 or y1,n = y2,n. Since K1 and K̂2 have closed graphs, up

to extract subsequences, there exist y1 ∈ K1(s̄) and (s2, y2) ∈ K̂2 such that
y1,n → y1 and (s2,n, y2,n) → (s2, y2). From the inequality

ε ≥
(

1

σn
(T ε,σn − s2,n)2 + |y1,n − y2,n|2

) 1

2

,

we deduce that T ε,σn − s2,n → 0. But T ε,σn → s̄ > ε, and so s2,n > 0 for n
sufficiently large, which implies that y1,n = y2,n and thus y1 = y2.

We now use the left lower-semicontinuity of K1 and K̂2: Let tn → s̄−.
Since y1 = y2 ∈ K1(s̄) ∩ K̂2(s̄), there exist x1,n ∈ K1(tn) and x2,n ∈ K̂2(tn)
which converge to y1 = y2. Then

ρσn(tn) ≤ dσn

cK2

(tn, x1,n) ≤ |(tn, x1,n) − (tn, x2,n)|σ = |x1,n − x2,n| < εe−tn

as soon as n is sufficiently large. This is in contradiction with the definition
of T ε,σn .

QED

Proof of Lemma 4.6. The set Kε,σ
1 is closed because so is K1. Let y ∈

Kε,σ
1 (s1). There is some (τ, z) ∈ K1 such that τ ≤ s1 and |(τ, z)− (s1, y)|σ ≤

ε(e−τ − e−s1). Then

1

σ2
(τ − s1)

2 ≤ |(τ, z) − (s1, y)|2σ ≤ ε2(e−τ − e−s1)2 ≤ ε2(τ − s1)
2 .

Since εσ < 1 (from Lemma 4.5), we have τ = s1 and thus y = z. So we
have proved that Kε,σ

1 (s1) ⊂ K1(s1). The other inclusion being obvious, the
equality holds.

Let (s, y) ∈ Kε,σ
1 . Then there exists (τ, z) ∈ K1 with τ ≤ s1 and |(s, y) −

(τ, z)|σ ≤ ε(e−τ −e−s1). From the definition of ρσ and s1, we have dσ
cK2

(τ, z) ≥
ρσ(τ) ≥ εe−τ . It follows

dσ
cK2

(s, y) ≥ dσ
cK2

(τ, z) − |(s, y) − (τ, z)|σ ≥ εe−s1 . (50)

Taking the infimum over (s, y) ∈ Kε,σ
1 , we get e(Kε,σ

1 , K̂2) ≥ εe−s1 .
Let us prove the opposite inequality. From Lemma 4.5, we can choose

y ∈ K1(s1) such that dσ
cK2

(s1, y) = εe−s1 . But K1(s1) ⊂ Kε,σ
1 (s1). Therefore

e(Kε,σ
1 , K̂2) ≤ dσ

cK2

(s1, y) = εe−s1 .
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To prove the second assertion, let y1 ∈ K1(s1) and (s2, y2) ∈ K̂2 be such
that (42) in Lemma 4.5 holds. Then obviously (43) also holds. For such
points, let (τ, z) ∈ K1 be such that τ ≤ s1 and

|(s1, y1) − (τ, z)|σ ≤ ε(e−τ − e−s1). (51)

If τ < s1, then, by definition of s1, we have ρσ(τ) > εe−τ . From the com-
putation (50) with (s, y) := (s1, y1), it follows dσ

cK2

(s1, y1) > εe−τ > εe−s1

which is a contradiction with (43). Hence τ = s1 and therefore (51) gives
(s1, y1) = (τ, z) ∈ K1. We conclude by Lemma 4.5.

QED

Proof of Lemma 4.7. Let dσ
Σ be the signed distance to ∂Σ:

dσ
Σ(τ, z) =

{
dσ
Σ(τ, z) if (τ, z) /∈ Σ,

−dσ
∂Σ(τ, z) if (t, z) ∈ Σ.

(52)

Since Σ is of class C1,1, one can find η > 0 such that dσ
Σ is of class C1,1 in

{|dσ
Σ| < η}, with Dxd

σ
Σ 6= 0 in this set.

Let us define Σ̃ by

Σ̃ = {(τ, z) ∈ IR+ × IRN : dσ
Σ((τ, z) + (s̄, ȳ) − (τ̄ , z̄)) ≤ −ε(e−τ − e−τ̄ )}.

We first show that the tube Σ̃ is externally tangent to K1 ∩ ([0, τ̄ ] × IRN )
at (τ̄ , z̄). At first, if (τ, z) ∈ K1 with τ ≤ τ̄ , then by definition of Kε,σ

1 ,
we have Bσ((τ, z), ε(e−τ − e−s1)) ⊂ Kε,σ

1 , where Bσ is the usual open ball
related to the norm | · |σ. In particular, since Kε,σ

1 ⊂ Σ, we have dσ
Σ(τ, z) ≤

−ε(e−τ − e−s1). Therefore

dσ
Σ((τ, z) + (s̄, ȳ) − (τ̄ , z̄))

≤ dσ
Σ(τ, z) + |(s̄, ȳ) − (τ̄ , z̄)|σ

≤ −ε(e−τ − e−s1) + ε(e−τ̄ − e−s1)
≤ −ε(e−τ − e−τ̄ ) .

So we have proved that K1 ∩ ([0, τ̄ ] × IRN ) ⊂ Σ̃. Moreover, we obviously
have that (τ̄ , z̄) ∈ ∂Σ̃ because (s̄, ȳ) ∈ ∂Σ.

Let us show that Σ̃ is a regular tube in an open interval containing τ̄ .
For this, recall that bd(Σ) is defined by (22). If (τ, z) belongs to bd(Σ) with
ε|e−τ − e−τ̄ | < η, then

|dσ
Σ((τ, z) + (s̄, ȳ) − (τ̄ , z̄))| ≤ ε|e−τ − e−τ̄ | < η
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and so dσ
Σ is differentiable in a neighbourhood of (τ, z) + (s̄, ȳ)− (τ̄ , z̄) with

Dxd
σ
Σ 6= 0. Thus Σ̃ is as smooth as Σ. Finally,

V
eΣ

(τ̄ ,z̄) = −
∂dσ

Σ

∂t (s̄, ȳ) − εe−τ̄

|Dxdσ
Σ(s̄, ȳ)| ≥ V Σ

(s̄,ȳ) + εe−s1 ,

since |Dxd
σ
Σ(s̄, ȳ)| ≤ |Ddσ

Σ(s̄, ȳ)| = 1.

QED

Lemma 4.8 If K1 is a subsolution to the evolution equation for hλ1
, then,

for any t > 0, K1 ∩ ([0, t] × IRN ) is also a subsolution for hλ1
.

Proof of Lemma 4.8. Let us set K̃1 = K1 ∩ ([0, t] × IRN). It is clear

that K̃1 is a left lower-semicontinuous tube because so is K1. Let Σ be a C2

tube defined on some open time-intervall I and which is external tangent to
K̃1 at some point (s, y) with s > 0. If s < t, then, assuming without loss
of generality that I ⊂ (0, t), Σ is also externally tangent to K1 and thus
V Σ

(s,y) ≤ hλ1
(y,Σ(s)) .

We now suppose that s = t and, without loss of generality, that ∂Σ∩K̃1 =
{(s, y)}. Let dσ

Σ be the signed distance to ∂Σ defined by (52). Note that,

since ∂Σ ∩ K̃1 = {(s, y)}, dσ
Σ has a strict maximum on K1 at (s, y) (at least

on the interval I). For γ > 0 we introduce the mapping

ϕγ(τ, z) = dσ
Σ(τ, z) + γ log(t− τ)

of class C2 for τ ∈ I ∩ (0, t) and when |dσ
Σ(τ, z)| is small. From standard

arguments (see for instance the proof of Lemma 4.2 of [8]), ϕγ has a maxi-
mum on K1 at some point (sγ , yγ) ∈ K1 which converge to (s, y) as γ → 0+

and such that sγ < t. Moreover, the set

Σγ = {(τ, z) ∈ (I ∩ (0, t)) × IRN : ϕγ(τ, z) ≤ ϕγ(sγ , yγ)}

is a C2 tube on some open interval Iγ ⊂ I ∩ (0, t) with sγ ∈ Iγ , and Σγ(sγ)
converges in the C2 sense to Σ(s). Now we note that Σγ is externally tangent
to K1 at (sγ , yγ) and thus

V
Σγ

(sγ ,yγ) ≤ hλ1
(yγ ,Σγ(sγ)) ,

with

V
Σγ

(sγ ,yγ) = −
∂ϕ
∂t (sγ , yγ)

|Dϕ(sγ , yγ)| ≥ V Σ
(sγ ,yγ) .
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Hence
V Σ

(sγ ,yγ) ≤ hλ1
(yγ ,Σγ(sγ)) ,

which gives the desired inequality as γ → 0+: V Σ
(s,y) ≤ hλ1

(y,Σ(s)) .

QED

5 Convergence to equilibria

In this section we investigate the asymptotic behavior of the solutions of
our front propagation problem (6). More precisely, we show, under suitable
assumptions on the source S and on F , that the solution converges as t →
+∞ to the (weak) solution of the free boundary value problem:

Find a set K ∈ D such that hλ(x,K) = 0 for all x ∈ ∂K (53)

(recall that D is defined by (11)). This problem is a generalization of the
Bernoulli exterior free boundary problem we recalled in the introduction.

Let us first introduce a notion of weak solution:

Definition 5.1 We say that the set K ∈ D is a viscosity subsolution (re-
spectively supersolution, solution) of the free boundary problem (in short
FBP) (53) for hλ if the constant tube K(t) = K for all t ≥ 0 is a subsolu-
tion (respectively supersolution, solution) of the FPP (6) for hλ.

Remark 5.1 There are many other definitions of weak solutions for such
FBP: see for instance the survey paper [15]. The one we introduce here is
the more suitable to our purpose. The idea of using sub- and supersolution
in this framework comes back to Beurling [5].

In order to ensure that the FBP (53) has a solution, we assume in the
sequel the following:

∀λ > 0, ∃R > 0 such that ∀r ≥ R, ∀x ∈ B(0, r), hλ(x,B(0, r)) < 0. (54)

This assumption states that B(0, r) is a strict classical supersolution of the
free boundary problem for hλ for r sufficiently large. It is in particular
fulfilled (i) when F (ν,A) = Tr(A) + F1(ν), where F1(ν) ≤ 0, or (ii) when
F = F (ν) < 0 for any ν with |ν| = 1, because of the behavior of h̄ for large
balls (see Lemma 2.2). Note also that the assumption implies that, for any
ball B,

F (νB
x ,H

B
x ) < 0 ∀x ∈ ∂B ,

since F is elliptic and h̄ ≥ 0.
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Proposition 5.2 We assume that (10) and (54) hold. Then, for any λ > 0,
there is a largest and a smallest solution of the FBP (53) for hλ, the largest
being closed and containing any subsolution for hλ, while the smallest is
open and is contained in all the supersolutions.

Proof of Proposition 5.2. The proof can be achieved by a direct applica-
tion of Perron’s method. Existence and bounds for sub- and supersolutions
are ensured by assumption (54) and by Lemma 5.3 below.

QED

Lemma 5.3 We assume that (10) and (54) hold. Let λ > 0 be fixed. Then
there exist ε > 0 and R > 0 such that, if K is a subsolution (respectively
a supersolution) of the FBP (53) for hλ, then K ⊂ B(0, R) (respectively
Sε ⊂ K where Sε is defined by (14)).

Proof of Lemma 5.3. Let r be the smallest nonnegative real such that
K ⊂ B(0, r). Then there is some point x ∈ ∂K ∩ ∂(B(0, r)). Using the
constant tube B(0, r)×IR as a test-tube and the fact that K is a subsolution,
we have hλ(x,B(0, r)) ≥ 0, which implies that r < R where R is given by
(54). Therefore we have K ⊂ B(0, R).

The assertion for the supersolution can be proved in a similar way, by
using assumption (10) and Lemma 2.3 saying that h̄(x, Sε) is large for ε > 0
small and x ∈ ∂Sε.

QED

Next we address the uniqueness problem. The main assumption for this
is that S is starshaped. We also suppose that F = F (ν,A) satisfies the
subhomogeneity condition:

F (ν, γA) ≥ γF (ν,A) ∀γ ≥ 1, (55)

and that the following compatibility condition between F and S holds:

F (νS
x ,H

S
x ) < 0 ∀x ∈ ∂S . (56)

Assumption (55) is fulfilled for instance if (i) F (ν,A) = Tr(A) + F1(ν),
where F1(ν) ≤ 0, or if (ii) F = F (ν) < 0 for any ν with |ν| = 1, while
assumption (56) is always satisfied for F as in (ii), and is satisfied for sets
with negative mean curvature if F is as in (i).
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Theorem 5.4 Let us assume that S is strictly starshaped at 0, with 0 ∈
int(S), g ≡ 1 and that (10), (54), (55) and (56) hold. Then, for any λ > 0,
the FBP (53) for hλ has a unique solution denoted Kλ. Moreover, Kλ is
starshaped at 0 for any λ > 0 and the map λ → Kλ is continuous for the
Hausdorff topology.

Remark 5.2
1. Uniqueness of solution means that, if K1 and K2 are two solutions of the
FBP for hλ, then K1 = K2 and int(K1) = int(K2).
2. Such a uniqueness result is classical in the literature, see in particular
Beurling [5], Tepper [27] and the survey paper [15].

In order to prove Theorem 5.4 we need three Lemmas. The first one explains
that the homothetic of a subsolution is still a subsolution. The second one
allows to compare sub and supersolutions of the FBP. The last one shows
that subsolutions of the FBP for hλ when λ is small are necessarily close
to S.

Lemma 5.5 Assume that S is starshaped at 0, g ≡ 1 and that (55) holds.
If K is a subsolution of the FBP (53) for hλ, then ρK is a subsolution of
the FBP for hρλ for any ρ ∈ (0, 1) such that S ⊂⊂ ρK.

Proof of Lemma 5.5. For sake of clarity, we do the proof in a formal
way, by assuming that K is smooth. If not, it is enough to do the same
computations for the test-surfaces. We first notice that

h̄(x, ρK) ≥ 1

ρ2
h̄(
x

ρ
,K) ∀ρ ∈ (0, 1), ∀x ∈ ∂(ρK) . (57)

Indeed, if u is the solution to (9) with K instead of Ω, then v(x) = u(x/ρ)
is a subsolution of equation (9) with ρK instead of Ω (we use here the fact
that S is starshaped, that g ≡ 1 and, thus, that 0 ≤ u ≤ 1). Then

h̄(x, ρK) ≥ |Dv(x)|2 =
1

ρ2
|Du(x/ρ)|2 =

1

ρ2
h̄(x/ρ,K) ∀x ∈ ∂(ρK) .

Next we also notice that νρK
x = νK

x/ρ and HρK
x = 1

ρH
K
x/ρ. Hence, for any

x ∈ ∂(ρK), we have

hρλ(x, ρK) = F (νρK
x ,HρK

x ) + ρλh̄(x, ρK)

≥ F (νK
x/ρ,

1
ρH

K
x/ρ) + λ

ρ h̄(x/ρ,K)

≥ (1/ρ)hλ(x/ρ,K) ≥ 0

because K is a subsolution for hλ. Hence ρK is a subsolution for hρλ.
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QED

Lemma 5.6 We assume that (54) holds. Let 0 < λ < Λ, R > 0 and γ > 0
be fixed. Then, there is a constant κ > 0, such that for any λ ≤ λ1 < λ2 ≤ Λ,
for any subsolution K1 of the FBP (53) for hλ1

and any supersolution K2

for hλ2
with

Sγ ⊂⊂ K1 ⊂⊂ K2 ⊂⊂ B(0, R − γ) ,

we have
K1 + κ(λ2 − λ1)B(0, 1) ⊂ K2 ,

where the sum in the above inclusion denotes the Kuratowski sum between
sets.

Proof of Lemma 5.6. Let θ > 0 be the constant given by Lemma 2.4.
From the assumption K1 ⊂⊂ K2, we have K1 ∩ IRN\K2 = ∅ and we can
find y1 ∈ K1 and y2 ∈ IRN\K2 such that

|y1 − y2| = min
z1∈K1,z2∈IRN\K2

|z1 − z2| .

Without loss of generality we can assume that |y1−y2| < 1/θ, since otherwise
the result is obvious.

Using now the interposition and approximation results (see Proposition
3.1 and Theorem 3.2), the fact that K1 is a subsolution for hλ1

and K2 a
supersolution for hλ2

, and proceeding as in the proof of Theorem 4.1, one
can find an open set Σ ⊂ IRN with C1,1 boundary and (N − 1) × (N − 1)
matrices X1 ≤ X2 such that

0 ≤ F (νΣ
y1
, X1) + λ1h̄(y1,Σ) (58)

and
0 ≥ F (νΣ+y2−y1

y2
, X2) + λ2h̄(y2,Σ + y2 − y1) . (59)

Since νΣ
y1

= νΣ+y2−y1
y2

and X1 ≤ X2, we get by subtracting (58) to (59) and
using Lemma 2.4

0 ≥
[
λ2 (1 − θ|y1 − y2|)2 − λ1

]
h̄(y1,Σ) . (60)

In order to complete the proof, we have now to check that h̄(y1,Σ) is posi-
tive. By Hopf maximum principle, we just have to show that the connected
component Σ′ of Σ which contains y1 has a non empty intersection with the
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y1
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′
1

Σ\Σ′

Σ
′

Σ
′
1

K ′
1

Figure 4: Illustration of the proof of Lemma 5.6.

source S. For this, we argue by contradiction, by assuming that Σ′ ∩ S = ∅
(see Figure 4 for an illustration). Let K ′

1 := K1 ∩ Σ′. Note that

e(K ′
1,Σ\Σ′) ≥ e(Σ′,Σ\Σ′) > 0 (61)

since Σ is bounded with a smooth boundary. Let z ∈ S and y ′1 be a point
of maximum of the euclidean norm | · −z| on K ′

1. Note that |y′1 − z| > 0.
The ball B := B(z, |y′1 − z|) is externally tangent to K ′

1 at y′1. Thanks to
(61), one can build an open set Σ′

1 with a C2 boundary, such that K ′
1 ⊂ Σ′

1,
Σ′

1 ∩ Σ\Σ′ = ∅, y′1 ∈ ∂Σ′
1, and for which there is a neighboourhood O of y ′1

with Σ′
1 ∩ O = B ∩ O. Note that Σ′

1 ∩ S = ∅ since S ⊂⊂ Σ\Σ′. Let us set
Σ1 = Σ′

1∪(Σ\Σ′). Note that Σ1 is externally tangent to K1 at y′1. Moreover

hλ(y′1,Σ1) = F (νΣ1

y′
1

,HΣ1

y′
1

) + λh̄(y′1,Σ1) = F (νB
y′
1
,HB

y′
1
)

since h̄(y′1,Σ1) = 0. By (54), for all r ≥ R and all x ∈ ∂B(0, r), we have

hλ(x,B(0, r)) < 0. Therefore F (ν
B(0,r)
x ,H

B(0,r)
x ) < 0 since h̄(x,B(0, r)) ≥ 0.

By ellipticity, we have F (ν
B(0,r′)
x′ ,H

B(0,r′)
x′ ) < 0 even for r′ ≤ R and |x′| = r′

since ν
B(0,r′)
x′ = ν

B(0,r)
rx′/|x′|. It follows

hλ(y′1,Σ1) = F (νB
y′
1
,HB

y′
1
) < 0

which is a contradiction since K1 is a subsolution. So h̄(y1,Σ) > 0.
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Then (60) leads to inequality

|y1 − y2| ≥ κ(λ2 − λ1)

where κ := 1/(2θΛ), which completes the proof.

QED

Lemma 5.7 Under the assumptions of Theorem 5.4, for any ε > 0, there
is λ0 > 0 such that, for any subsolution K of the FBP (53) for hλ with
λ ∈ (0, λ0), we have K ⊂ Sε (see (14) for a definition of Sε).

Proof of Lemma 5.7. From assumption (56) and the regularity of the
boundary of S, there is some α > 0 such that

F (νS
x ,H

S
x ) ≤ −α ∀x ∈ ∂S .

Let us notice that a similar inequality also holds for ρS, for ρ ≥ 1, because

F (νρS
x ,HρS

x ) = F (νS
x/ρ,

1

ρ
HS

x/ρ) ≤
1

ρ
F (νS

x/ρ,H
S
x/ρ) ≤ −α

ρ
,

thanks to assumption (55).
Let us now fix ε > 0 and ρ0 > 1 such that ρ0S ⊂ Sε. Note that

S ⊂⊂ ρ0S since S is strictly starshaped. We set λ0 = α/(βρ0), where
β = supx∈∂(ρ0S) h̄(x, ρ0S). Let K be a subsolution for hλ with λ ∈ (0, λ0).
We denote by ρ > 1 the smallest real such that K ⊂ ρS. In order to prove
that ρ ≤ ρ0, we argue by contradiction and assume that ρ > ρ0. Since ρS is
externally tangent to K at some point x ∈ ∂K and K is a subsolution, we
have

0 ≤ hλ(x, ρS) = F (νρS
x ,HρS

x ) + λh̄(x, ρS) ≤ −α
ρ

+ λh̄(x, ρS)

where, from inequality (57),

h̄(x, ρS) ≤
(
ρ0

ρ

)2

h̄(
ρ0x

ρ
, ρ0S) ≤

(
ρ0

ρ

)2

β .

Hence 0 ≤ −α
ρ + λ

(
ρ0

ρ

)2
β, which implies that ρ ≤ λ0ρ

2
0β/α = ρ0, a contra-

diction. So we have proved that ρ ≤ ρ0. Therefore K ⊂ ρ0S ⊂ Sε.

QED
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Proof of Theorem 5.4. Let us denote for any λ > 0 by Kλ the maximal
solution of the BFP for hλ. Note that λ → Kλ is nondecreasing since Kλ

contains all the subsolutions for hλ.
We first check that Kλ is starshaped at 0. Indeed, from Lemma 5.5, for

any ρ ∈ (0, 1) sufficiently close to 1, the set ρKλ is a subsolution for hρλ,
and thus for hλ. Since Kλ contains all the subsolutions, we have ρKλ ⊂ Kλ

for any ρ ∈ (0, 1) sufficiently close to 1, which implies that Kλ is starshaped.
Next, we show that the map λ → Kλ is continuous for the Hausdorff

topology. From the stability property of solutions (Proposition 4.4), the
decreasing limit of the Kλ′ converges to Kλ when λ′ → λ+. Hence we
only have to show that Limλ′→λ−Kλ′ equals Kλ, where Lim denotes the
Kuratowski limit (see (39)).

Since, for any ρ ∈ (0, 1) sufficiently close to 1, the set ρKλ is a subsolution
for hρλ, we have ρKλ ⊂ Kρλ. Therefore

Kλ = Lim
ρ→1−

ρKλ ⊂ Lim
λ′→λ−

Kλ′ ⊂ Kλ.

So we have checked that λ→ Kλ is continuous.
Let us finally prove that, for any λ > 0, Kλ is the unique solution of for

hλ. Let K be another solution. Note that K ⊂ Kλ. From Lemma 5.7, we
can find some λ1 > 0 such that Kλ1

⊂⊂ K because S ⊂⊂ K. Let us set

λ = sup{λ′ | Kλ′ ⊂⊂ K} .

We now use Lemma 5.6 with r > 0 and R such that Sr ⊂ Kλ1
and Kλ ⊂

B(0, R). There is a constant κ > 0 such that for any λ1 < λ′ < λ,

Kλ′ + κ(λ− λ′)B ⊂ K .

The continuity of the map λ′ → Kλ′ then implies that

Kλ + κ(λ− λ)B ⊂ K .

Therefore λ = λ since, otherwise, the continuity of λ′ → Kλ′ would also
imply the existence of ε > 0 such that Kλ+ε ⊂⊂ K, a contradiction with

the definition of λ. Therefore Kλ ⊂ K.
In order to prove that int(K) = int(Kλ), we notice that int(Kλ) =⋃

λ′<λKλ′ , because Kλ′ ⊂⊂ Kλ for λ′ < λ, and therefore the equality λ̄ = λ
implies that int(Kλ) ⊂ int(K). Since the converse inequality is obvious, the
proof of Theorem 5.4 is complete.

QED
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Corollary 5.8 (Asymptotic behavior) Under the assumptions of Theo-
rem 5.4, if K is a solution of the FPP (6) for hλ, then K(t) converges, for
the Hausdorff metric as t → +∞, to the unique solution Kλ of the FBP
(53) for hλ while K̂(t) converges to IRN\K.

Remark 5.3
1. Note that the above result holds for any solution K(t) of the FPP (6)
with any initial position K(0) ∈ D.
2. The proof of the asymptotic behavior which follows relies strongly on the
uniqueness of the solution of the limit problem (53).

Proof of Corollary 5.8. Let us fix λ1 < λ < λ2. From lemma 2.3 and
(54), there are r > 0 and R > 0 such that Sr and B(0, R) are respectively
sub- and supersolution to the FBP for hλ1

and hλ2
. We can also choose

r > 0 sufficiently small and R > 0 sufficiently large so that Sr ⊂⊂ K(0) ⊂⊂
B(0, R). The inclusion principle then states that

Sr ⊂⊂ K(t) ⊂⊂ B(0, R) ∀t ≥ 0 .

LetK∗ be the Kuratowski upperlimit of K(t) as t→ +∞ (see (39)). Note
that Sr ⊂ K∗ ⊂ B(0, R) and that the constant tube IR×K∗ is actually the
upperlimit of the solutions K(· + τ) as τ → +∞. From the stability of
solutions (see Proposition 4.4), the constant tube IR ×K ∗ is a subsolution
of the FPP for hλ. Hence, K∗ is a subsolution of the FBP (53) for hλ and
we have K∗ ⊂ Kλ.

In the same way, if we set L∗ to be the Kuratowski upperlimit of K̂(t)
as t → +∞, then IRN\L∗ is a supersolution to FBP (53) for hλ. Since Kλ

is the unique solution for hλ, Kλ is also the smallest solution, which implies
that Kλ ⊂ IRN\L∗. Hence

K∗ ⊂ Kλ ⊂ IRN\L∗.

Since IRN\L∗ ⊂ K∗, the proof is complete.

QED
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