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Abstract

We consider some variants of the classical optimal transport where
not only one optimizes over couplings between some variables x and y
but also over some control variables governing the (possibly stochastic)
evolutions of these variables with time. Such a situation is motivated
by an assignment problem of tasks with workers whose characteristics
can evolve with time (and be controlled). We distinguish between the
coupled and decoupled case. The coupled case is a standard optimal
transport with the value of some optimal control problem as cost. The
decoupled case is more involved since it is nonlinear in the transport
plan. We fully treat the linear quadratic case and show that even in
this case existence may fail for the decoupled problem.

Keywords: optimal transport, optimal control.

1 Introduction

In the classical optimal transport problem, a planner has to find some cou-
pling or transport plan between two nonnegative measures of equal total mass
(say 1) so as to minimize average cost. The Monge-Kantorovich problem is
then the linear program consisting in finding a cost minimizing measure hav-
ing prescribed marginals on variables, say x and y. Such problems have been
very much studied in recent years in particular for their various applications
in PDE’s, geometry, probability theory (see the recent books of Villani [15],
[16])... Interestingly, transport/assigment problems have their modern roots
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in planning problems (optimally transporting coal from mines to steel fac-
tories for instance) and the pionneering works of Kantorovich in the USSR
and Koopmans in the West were awarded by the Nobel prize in economics in
1975. Typical applications are optimal allocation of resources or assignment
problems; for other economic applications, we refer to the recent work of
Ekeland [5], [6] and Chiappori, McCann and Nesheim [4] relating matching
problems and hedonic equilibria to optimal transport theory.

If, to fix ideas, we think of a firm having to assign N workers of different
skills x to N tasks of different difficulties y, the assignment problem simply
consists in assigning a task to each worker (for instance assigning most dif-
ficult tasks to most skilled workers). It is however reasonable to think that,
in addition to designing such an assignment, the firm has the possibility to
act directly on the workers’ types using some (costly) control variable like
internal training. The same of course applies to the task type y that may
change with time if, for example, some investments are made to make the
task easier or quicker to execute. This is where optimal control comes into
play. The problems we consider in the present paper are precisely intended
to deal with such situations where a planner or firm has at disposal as deci-
sion variables not only the initial assignment but also control variables that
affect the (possibly stochastic) dynamics of the state variables x and y. More
precisely, we consider the case where the planner chooses the initial coupling
between x and y, initially distributed according to respective probabilities µ0

and ν0, and a control variable governing the evolutions of the characteristics
x and y. It is assumed that a pair (worker/task) that is initially formed at
time 0 with initial characteristics (x, y) will remain paired or married during
a fixed period although its characteristics may evolve with time, this captures
the idea that for instance workers are assigned a certain task during some
minimal period.

We will consider two different cases that we respectively call the coupled
and the decoupled case and will compare them. In the coupled case, one
optimizes over initial transport plans and control for each initial pair (x, y).
The coupled problem thus amounts to solve a standard optimal transport
where the cost function simply is the value function of some optimal control
problem. In the decoupled case, we will assume that y is constant in time and
the control variable for x has to be chosen independently of y (for instance the
planner offers the same training to all the workers of same skill, independently
of the task they will be assigned). This case is much more involved since
it is not linear (and not even lower semicontinuous) in the transport plan.
Under quite general assumptions it turns out that the coupled and decoupled
problems have the same value but that the latter may fail to have solutions
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(a counter-example will be given in section 4).

The paper is organized as follows. In section 2, the coupled problem is
introduced, an existence result is proved and some cases of uniqueness are
given. In section 3, we study the decoupled problem which, contrary to the
coupled case, gives rise to a nonlinear optimization problem over transport
plans. Finally, section 4 is devoted to a linear quadratic deterministic case
that we treat in details and for which we compare the coupled and the de-
coupled case, we also give some counterexamples.

2 The coupled case

2.1 The optimization problem

We consider a finite horizon framework on the period [0, T ]. The state equa-
tion for the joint dynamics of Zt = (Xt, Yt) is

dZt = b(Zt, ut)dt+ σ(Zt, ut)dWt, t ∈ [0, T ] (2.1)

where Wt is a standard 2d-dimensional Brownian motion on some filtered
probability space and (ut)t∈[0,T ] is an admissible control process i.e. it is a
progressively measurable process with values in a control space U , assumed
for simplicity to be a compact metric space. We will denote by U the set of
admissible controls. We assume that b ∈ C(R2d×U,R2d), σ ∈ C(R2d×U,M2d)
(M2d denoting the space of 2d×2d matrices with real entries) and that there
is some constant K1 such that for every (z1, z2, u) ∈ R2d × R2d × U one has

|b(z1, u)− b(z2, u)|+ |σ(z1, u)− σ(z2, u)| ≤ K1|z1 − z2|. (2.2)

The Lipschitz assumption (2.2) guarantees the existence and uniqueness of
a strong solution to (2.1) for every initial condition Z0 = (x, y) and every
admissible control process u ∈ U . We will denote Zx,y,u

t this solution in the
sequel.

To each initial condition (x, y) and each admissible control process u ∈ U
is associated a cost

E
( ∫ T

0

c(Zx,y,u
s , us)ds+ φ(Zx,y,u

T )
)
.

We assume that both c and φ are nonnegative and continuous and that there
exist a constant K2 and an exponent k ≥ 1 such that for every (z1, z2, u) ∈
R2d × R2d × U :

|c(z1, u)−c(z2, u)|+ |φ(z1)−φ(z2)| ≤ K2|z1−z2|(1+ |z1|k−1 + |z2|k−1). (2.3)
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The last ingredient in the problem is a pair of Borel probability measures
µ0 and ν0 on Rd giving respectively the distributions of the initial state for
x and for y. The initial distribution γ for the joint process Z is chosen by
the controller, it is a coupling between µ0 and ν0 and thus belongs to the set
of transport plan Π(µ0, ν0) consisting of all Borel probability measures γ on
Rd×Rd having µ0 and ν0 as marginals. We shall finally assume the following
on µ0 and ν0: ∫

Rd

|x|kdµ0(x) +

∫
Rd

|y|kdν0(y) < +∞. (2.4)

The controller’s optimization problem then reads as

inf
γ∈Π(µ0,ν0)

∫
Rd×Rd

(
inf
u∈U

E
( ∫ T

0

c(Zx,y,u
s , us)ds+ φ(Zx,y,u

T )
))
dγ(x, y) (2.5)

which can simply be rewritten as the optimal transport problem:

inf
γ∈Π(µ0,ν0)

∫
Rd×Rd

v(0, x, y)dγ(x, y). (2.6)

where v is the value function

v(t, z) := inf
u∈U

E
( ∫ T

t

c(Zz,u
s , us)ds+φ(Zz,u

T ) | Zz,u
t = z

)
, ∀(t, z) ∈ [0, T ]×R2d.

We won’t discuss whether the previous optimal control admits a solution (for
each fixed z). This issue relies on whether the value function is regular enough
so that one can define an optimal feedback control, this is of course tightly
related with the regularity for the corresponding Hamilton-Jacobi-Bellman
equation. Instead, we will focus on the optimal transport formulation (2.6).

2.2 Existence

It is now easy to check that the infimum in (2.6) is attained, although the
arguments are very standard in optimal transport (see [15]), we give a proof
for the sake of completeness.

Theorem 2.1. Under the assumptions of paragraph 2.1, the value of (2.6)
is finite and attained by some optimal transport plan.

Proof. First, it follows from assumption (2.3) and standard arguments in
control theory (see for instance [8], section IV.6) that v(0, .) has polynomial
growth and is continuous. More precisely, there is a constant K3 such that

0 ≤ v(0, x, y) ≤ K3(1 + |x|k + |y|k), ∀(x, y) ∈ R2d (2.7)
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and, for all (z1, z2) ∈ R2d × R2d:

|v(0, z1)− v(0, z2)| ≤ K3|z1 − z2|(1 + |z1|k−1 + |z2|k−1). (2.8)

It immediately follows from (2.7) and (2.4) that the value of (2.6) is finite.
Since Π(µ0, ν0) is tight and v(0, .) is continuous, for each n ∈ N∗, there is
some γn ∈ Π(µ0, ν0) such that∫

R2d

min(v(0, .), n)dγn ≤
∫

R2d

min(v(0, .), n)dγ, ∀γ ∈ Π(µ0, ν0). (2.9)

Again, by tightness of (γn)n, we may assume, taking a subsequence if neces-
sary, that γn converges narrowly to some γ ∈ Π(µ0, ν0). We thus have, for
every M > 0 and every γ ∈ Π(µ0, ν0):∫

R2d

min(v(0, .),M)dγ = lim
n

∫
R2d

min(v(0, .),M)dγn

≤ lim sup
n

∫
R2d

min(v(0, .), n)dγn

≤ lim sup
n

∫
R2d

min(v(0, .), n)dγ

=

∫
R2d

v(0, .)dγ

and then letting M → +∞ we conclude that γ solves (2.6).

2.3 Some cases of uniqueness

Our aim now is to exhibit some special cases where there is uniqueness of an
optimal transport plan for (2.6) and this plan is given by a transport map,
that is of the form γ = δS(x)⊗µ0 for some measure preserving map S between
µ0 and ν0 (which corresponds to a deterministic optimal coupling).

It is indeed well-known (see [10], [12] [3]) that if the transportation cost
v(0, ., .) satisfies a certain structural condition called the generalized Spence-
Mirrlees or twist condition and if µ0 is regular enough (absolutely continuous
for instance) then there is uniqueness of an optimal transportation plan that
is in fact given by a transport map. We won’t insist here on the twist
condition and the regularity required on µ0 in general. Let us indicate some
particular cases instead:
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• d = 1, v(0, ., .) of class C2 (say) and the cross-derivative ∂xyv(0, x, y) is
everywhere strictly positive, in this case, as soon as µ0 is atomless, there
is a unique transport plan that is given by the unique nondecreasing
map (or monotone rearrangement) pushing µ0 forward to ν0,

• v(0, x, y) = c0(x − y) with c0 strictly convex and differentiable (see
[11]) and µ0 absolutely continuous and compactly supported, then there
is also a unique optimal transport plan and the latter is given by a
transport map,

• of particular interest is the quadratic case c0(z) = |z|2 which was first
solved by Brenier [2], in this case, uniqueness of an optimal plan, once
again given by a transport map, holds as soon as µ0 and ν0 have second
moments and µ0 does not give mass to sets of Hausdorff dimension less
than d− 1 (see McCann [13]).

Uncontrolled case Let us first consider the uncontrolled case where
b = b(z) is a Lipschitz vector field, σ =

√
2I2d, the running cost c = c(z) and

the terminal cost φ = φ(z) satisfy the same assumptions as in section 2.1. In
this case, it is well-known that the function

v(t, z) := E
( ∫ T

t

c(Zs)ds+ φ(ZT ) | Zt = z
)
, (t, z) ∈ (0, T )× R2d

is the unique solution with polynomial growth of the backward linear parabolic
equation

∂tv + ∆v + b · ∇v = −c, v|t=T = φ. (2.10)

As seen in the previous paragraph, in the optimal transportation problem
(2.6), the cost to take into account is v(0, .), the value at time 0 of the
solution of (2.10).

Let us treat in details the case b = 0 and φ = 0. In this case, (2.10) is
simply the heat equation

∂tv + ∆v = −c, v|t=T = 0,

so that

v(0, .) =

∫ T

0

(Gt ? c)(.)dt with Gt(z) =
1

(4πt)d/2
exp

(
− |z|2

4t

)
. (2.11)

Then the optimal transportation problem (2.6) reads as:

inf
γ∈Π(µ0,ν0)

∫
Rd×Rd

( ∫ T

0

(Gt ? c)(x, y)dt
)
dγ(x, y).
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In the particular case of the quadratic transportation cost c(x, y) = |x−y|2
2

, a
direct computation leads to:

v(0, x, y) = T
( |x− y|2

2
+ 1

)
.

Consequently, the infimum of (2.6) is T (W 2(µ0, ν0)+1) where W 2 stands for
the squared-2-Wasserstein distance:

W 2(µ0, ν0) := inf
γ∈Π(µ0,ν0)

∫
Rd×Rd

|x− y|2dγ(x, y).

It is well-known that for the quadratic cost, if µ0 does not give mass to small
sets (i.e. Borel sets of Hausdorff dimension less than d − 1) then there is a
unique optimal transport plan that is in fact induced by a transport map S.
Moreover S is characterized by S = ∇u with u convex (see [2], [9], [13], [11]).

Linear control and zero transportation cost Let us now consider
the linear drift b(Zt, ut) = ut with constant diffusion σ =

√
2I2d and the

quadratic running cost c(z, u) = c(u) = u2

2
. We also assume that φ ∈ C2(R2d)

and satisfies the same assumptions as before. The value function:

v(t, z) := inf
u∈U

E
( ∫ T

t

c(us)ds+ φ(ZT ) | Zt = z
)
, (t, z) ∈ (0, T )× R2d

is then the viscosity solution of the Hamilton-Jacobi-Bellman equation:

∂tv + ∆v +
|∇v|2

2
= 0, v|t=T = φ. (2.12)

Performing the usual Hopf-Cole transformation V (T − t, z) = ev(t,z)/2, Φ :=
eφ/2, transforms (2.12) into the heat equation for V :

∂tV −∆V = 0, V |t=0 = Φ. (2.13)

As soon as Φ has polynomial growth, this gives the explicit expression

v(t, .) = 2 log(GT−t ? Φ(.))

where G is again the heat kernel as in (2.11). In the unidimensional case, one
may thus check whether v(0, ., .) satifies the cross-derivative criterion recalled
above. Indeed, by a direct compuation, ∂xyv(0, ., .) > 0 is equivalent to

(GT ? ∂xyΦ)(GT ? Φ) > (GT ? ∂xΦ)(GT ? ∂yΦ).
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Calculus of variations Let us now consider the simple deterministic
case where the variable y is constant with respect to time, where the state
equation for X is simply Ẋ = u and where the running and terminal costs
respectively take the form

c(x− y) + F (u), and φ(x− y)

where c, φ and F are bounded from below, smooth and strictly convex func-
tions, with Λid ≥ D2F ≥ λid for some Λ > 0, λ > 0. Let us further assume
for simplicity that µ0 and ν0 are compactly supported. In this case the value
function is given by

v(0, x, y) = inf
X∈H1, X(0)=x

∫ T

0

(
c(X(t)− y) + F (Ẋ(t))

)
dt+ φ(X(T )− y).

We then rewrite the value as v(0, x, y) = w(x− y) where

w(z) = inf
X∈H1, X(0)=z

∫ T

0

(
c(X(t)) + F (Ẋ(t))

)
dt+ φ(X(T )).

It is now easy to check that w is a C1 and strictly convex function. Then,
it is well-known (see [11], [9], [3]) that the corresponding optimal transport
problem

inf
γ∈Π(µ0,ν0)

∫
w(x− y)dγ(x, y)

possesses a unique solution that is given by an optimal transport map S as
soon as µ0 is absolutely continuous with respect to the Lebesgue measure
(see [11]). In this simple case again, we then have existence and uniqueness
of an optimal plan that is further given by a transport map. We will again
use this example in the decoupled variant of section 3.

2.4 Alternative formulations

We now describe formally an alternative formulation of (2.5). Given γ0 ∈
Π(µ0, ν0) as initial coupling of X and Y and an admissible control that we
assume to be of Markovian type i.e. of the form ut = ut(Xt, Yt), let t ∈ [0, T ]
and γu

t be the joint probability law of (Xt, Yt) (this is purely formal since the
dependence of the Markovian control u on x, y may not be regular enough
to define a flow to the SDE (2.1)):∫

R2d

ϕdγu
t :=

∫
R2d

E(ϕ(Zx,y,u
t ))dγ0(x, y), ∀ϕ ∈ C∞

c (R2d).
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Then γu
t (again formally) solves the Fokker-Planck equation (controlled by

u):

∂tγ −
1

2
tr

(
σ(z, ut(z))σ(z, ut(z))

∗D2γ
)

+ div(b(z, ut(z))γ) = 0, γ|t=0 = γ0.

(2.14)
The total cost becomes linear with respect to γu and simply reads as:∫ T

0

( ∫
R2d

c(z, ut(z))dγ
u
t (z)

)
dt+

∫
R2d

φ(z)dγu
T (z) (2.15)

which suggests as an alternative formulation of (2.5) to minimize (2.15) over
initial conditions γ0 ∈ Π(µ0, ν0) and controls u, the dynamics of γu being
governed by the PDE (2.14).

Let us also mention that it is well-known that (2.6) admits the dual
formulation:

sup
{∫

Rd

ϕdµ0 +

∫
Rd

ψdν0 : ϕ(x) + ψ(y) ≤ v(0, x, y)
}
. (2.16)

3 The decoupled case

In the coupled problem considered previously, the situation is rather simple
since the problem amounts first to compute the value function and then
to solve the optimal transport problem where the cost is precisely this value
function. However, this requires that the optimizer is able to design a control
that depends on both state variables x and y. If one thinks of x as being
workers’ skills and y the difficulty of some task (constant in time to fix ideas),
it may be reasonable to assume in certain cases that the control governing
the evolution of x (training, education...) is the same for every worker of
type x independently of the task y he will be assigned. In this case, one faces
a somehow decoupled variant of the previous problem.

For the sake of simplicity, we will only consider in this section the deter-
ministic case where in addition y is constant in time and Ẋ = u (calculus
of variations). The running cost is given by some continuous Lagrangian
(x, u, y) ∈ R3d 7→ L(x, u, y) that is convex with q-growth in the variable u for
some q > 1, and the terminal cost is (x, y) ∈ R2d 7→ φ(x, y). We also assume
for simplicity that µ0 and ν0 are compactly supported. In this framework,
the coupled problem considered previously reads as

(P) inf
γ∈Π(µ0,ν0)

I(γ) =

∫
Rd×Rd

v(x, y)dγ(x, y)
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where

v(x, y) := inf
X∈W 1,q , X(0)=x

∫ T

0

L(X(t), Ẋ(t), y)dt+ φ(X(T ), y).

Of course, (P) possessses solutions as soon as v is continuous (or more gen-
erally lower semicontinuous). In the decoupled case, X is not allowed to
depend on y but has instead to minimize the conditional average of the cost.
More precisely, for γ ∈ Π(µ0, ν0), let us denote the disintegration of γ with
respect to its first marginal as γ = γx ⊗ µ0 and then define for every x:

vγ(x) := inf
X∈W 1,q , X(0)=x

∫
Rd

( ∫ T

0

L(X(t), Ẋ(t), y)dt+ φ(X(T ), y)
)
dγx(y).

Then, the decoupled problem is:

(Q) inf
γ∈Π(µ0,ν0)

J(γ) =

∫
Rd

vγ(x)dµ0(x).

The novel feature of this decoupled problem is that, contrary to the optimal
transport problem (P), it is nonlinear. In fact, since vγ(x) is concave in γx

(as an infimum of linear functionals of γx), (Q) is a concave minimization
problem over Π(µ0, ν0). Existence of a minimizer is a real issue here since
the criterion in (Q) may not be weakly lower semicontinuous (and in fact
even the measurability of x 7→ vγ(x) is not obvious and a counterexample to
lower semicontinuity will be given in the next section). Our aim now is not to
study existence or nonexistence issues in general but simply to remark that
(P) turns out to be a kind of relaxation of (Q) under quite weak assumptions:

Proposition 3.1. In addition to the previous assumptions, let us assume
that µ0 is atomless and that v(., .) is continuous, then one has

inf(Q) = min(P).

Moreover, γ solves (Q) if and only if it solves (P) and

vγ(x) =

∫
Rd

v(x, y)dγx(y) µ0-a.e..

In particular if S is an optimal transport for (P), i.e. δS(x) ⊗ µ0 solves (P),
then it also solves (Q).

10



Proof. Since vγ(x) ≥
∫

Rd v(x, y)dγ
x(y), one immediately deduces that inf(Q) ≥

min(P). Now, let us remark that if γ is given by a transport map that is
γ = δS(x) ⊗ µ0 then vγ(x) = v(x, S(x)) for µ0-a.e. x and then in this case
one has

∫
Rd vγdµ0 =

∫
Rd v(x, S(x))dµ0(x) =

∫
Rd×Rd vdγ. Since µ0 is atomless

the set of transport plans induced by transport maps is weakly-∗ dense in
Π(µ0, ν0) (see [1]). In particular, there is a minimizing sequence for (P) of
the form γn = δSn ⊗ µ0 where Sn]µ0 = ν0 for every n. One then has

inf(Q) ≤
∫
vγndµ0 =

∫
v(x, Sn(x))dµ0(x)

and passing to the limit one gets inf(Q) ≤ min(P). Let γ ∈ Π(µ0, ν0), γ
solves (Q) if and only if

J(γ) = inf(Q) = min(P) ≥ I(γ)

that is γ solves (P) and I(γ) = J(γ) i.e.

vγ(x) =

∫
Rd

v(x, y)dγx(y) µ0-a.e..

If we consider again the case

L(x, u, y) = c(x− y) + F (u), φ(x, y) = φ(x− y)

under the same convexity, growth and regularity assumptions as in the ex-
ample of subsection 2.3, then we immediately deduce that if µ0 is absolutely
continuous with respect to the Lebesgue measure, then the corresponding
decoupled problem admits a unique solution that is given by a transport
map.

4 The linear-quadratic deterministic case

In this paragraph, we treat a special case where the state variable Y remains
constant and the control on X is u = Ẋ. We will consider the case of a
quadratic running cost and zero terminal cost:

c(x, y, u) =
1

2
|x− y|2 +

1

2
|u|2, φ(x, y) = 0

and we will distinguish the coupled case (where u is allowed to depend on
both x and y) and the decoupled case where u depends on the initial condition
x but has to be the same for every y. Of course, in this quadratic framework,
we will also assume that µ0 and ν0 have finite second-order moments.
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4.1 The coupled case

In the coupled case, one first solves for every (x, y):

v(x, y) := inf
X∈H1(0,T,Rd), X(0)=x

∫ T

0

(1

2
|X(t)− y|2 +

1

2
|Ẋ(t)|2

)
dt.

By standard arguments, this problem has unique solution given by:

X(t, x, y) := a(t)(x− y) + y, with a(t) =
et−2T + e−t

1 + e−2T
, t ∈ [0, T ]. (4.1)

Replacing in v then leads to the optimal transportation problem:

1

2

∫ T

0

(a2 + ȧ2) inf
γ∈Π(µ0,ν0)

∫
Rd×Rd

|x− y|2dγ(x, y) (4.2)

which is simply the optimal transportation problem with quadratic cost.
Denoting by W 2(µ0, ν0) the squared-2-Wasserstein distance between µ0 and
ν0, we then have the following expression for the value of (4.2):

1

2
‖a‖2

H1W 2(µ0, ν0) with ‖a‖2
H1 =

1− e−2T

1 + e−2T
. (4.3)

4.2 The decoupled case

In the decoupled case, one has to minimize with respect to γ ∈ Π(µ0, ν0) and
(t, x) 7→ X(t, x) (independent of y) such that X(0, x) = x, the quantity∫

Rd×Rd

( ∫ T

0

(1

2
|X(t, x)− y|2 +

1

2
|Ẋ(t, x)|2

)
dt

)
dγ(x, y). (4.4)

By the disintegration theorem, every γ ∈ Π(µ0, ν0) admits a disintegration
with respect to its first marginal µ0 i.e. can be written as γ = γx⊗µ0 where
x 7→ γx is a Borel family of probability measures (naturally interpreted as
conditional probability of y given x). We will denote by gγ(x) the average of
γx:

gγ(x) :=

∫
Rd

ydγx(y), for µ0-a.e. x ∈ Rd.

Using the disintegration of γ with respect to µ0 and the conditional moment
gγ, it is convenient to rewrite the cost (4.4) as:∫

Rd

( ∫ T

0

(1

2
|X(t, x)|2 −X(t, x) · gγ(x) +

1

2
|Ẋ(t, x)|2

)
dt

)
dµ0(x)

+
T

2

∫
Rd

|y|2dν0(y).
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Minimizing in X(., x) for each fixed x then yields

X(t, x) = a(t)(x− gγ(x)) + gγ(x) (4.5)

where a is as in (4.1). Replacing in (4.4), then yields

vγ(x) =
1

2
‖a‖2

H1|x− gγ(x)|2 +
T

2

∫
Rd

|y − gγ(x)|2dγx(y). (4.6)

We thus find that the least cost, as a function of γ0 ∈ Π(µ0, ν0) only, is:

1

2
‖a‖2

H1

∫
Rd

|x|2dµ0(x) +
T

2

∫
Rd

|y|2dν0(y)

+
1

2

(
‖a‖2

H1 − T
) ∫

Rd

|gγ|2dµ0 − ‖a‖2
H1

∫
Rd

x · gγdµ0.

(4.7)

Recalling that ‖a‖2
H1 is given by (4.3), one easily gets ‖a‖2

H1−T < 0 for every
T > 0 (which is consistent with the concavity property of the decoupled
problem as noticed in section 3) and thus finding an optimal transport plan
amounts to:

inf
γ∈Π(µ0,ν0)

J(γ) = −A(T )

∫
Rd

|gγ(x)|2dµ0(x)− 2

∫
Rd×Rd

x · ydγ(x, y) (4.8)

where A(T ) is the positive constant:

A(T ) :=
T

‖a‖2
H1

− 1 =
e−2T (T + 1) + T − 1

1− e−2T
.

Of course when µ0 is absolutely continuous, there is an optimal transport
for the quadratic cost and then by proposition 3.1 it is also the unique solution
of (4.8). The particular and simple form of the functional J in (4.8) enables
us to deduce various counterexamples and some particular simple cases of
non existence when µ0 is atomless but may charge small sets.

The functional J is not lower semicontinuous: To see this, let us
take µ0 and ν0 equal and uniform on the segment [−1, 1], γn = δSn ⊗ µ0

where Sn is a sequence of µ0-measure preserving maps such that γn weakly-∗
converges to the independent coupling µ0⊗µ0, then

∫
|gγ|2dµ0 = 0 and then

lim sup
n

∫
|gγn|2dµ0 = lim sup ‖Sn‖2

L2 >

∫
|gγ|2dµ0

since otherwise Sn would converge to 0 in L2 and then one would have γ =
δ0 ⊗ µ0.
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A counterexample to existence: In view of the previous example,
one should in general suspect non existence for the minimization of J over
Π(µ0, ν0). Let us consider the two-dimensional case where µ0 is uniformly
distributed on the segment [0, 1] × {0} (it thus charges a small set but still
is atomless) and let ν0 be uniform on the square [0, 1]2. Assume that there
exists a minimizer γ of the decoupled problem. In this case, since µ0 is
atomless, using proposition 3.1, the explicit values of v(x, y) and vγ(x) given
by (4.6), we would then have for µ0-a.e. x

vγ(x) =
1

2
‖a‖2

H1|x− gγ(x)|2 +
T

2

∫
Rd

|y − gγ(x)|2dγx(y)

=

∫
Rd

v(x, y)dγx(y) =
1

2
‖a‖2

H1

∫
Rd

|x− y|2dγx(y)

=
1

2
‖a‖2

H1

(
|x− gγ(x)|2 +

∫
Rd

|y − gγ(x))|2dγx(y)
)
.

Which implies that γx should be a Dirac mass for µ0-a.e. x, it would thus
imply that γ is induced by a transport map S = (S1, S2). At this stage
it is not possible to conclude directly since there exist measure preserving
maps between µ0 and ν0, and even continuous ones such as Peano’s function
(see for instance [14]). To derive the desired contradiction, one has to use
further proposition 3.1 to deduce that S is also an optimal transport map
between µ0 and ν0 for the quadratic cost. Thus, by well-known arguments
(see [11], [15], [16]) there exists a convex function (x, y) ∈ [0, 1]2 7→ ψ(x, y)
such that (S1(x, 0), S2(x, 0)) ∈ ∂ψ(x, 0) for (Lebesgue)-a.e. x ∈ [0, 1] which
easily implies that S1(., 0) is nondecreasing and since S1(., 0) preserves the
Lebesgue measure this yields S1(x, 0) = x. Now since S(x, 0) = (x, S2(x, 0))
is Borel and measure-preserving between µ0 and ν0 we should have∫ 1

0

ϕ(x, S2(x, 0))dx =

∫
[0,1]2

ϕ(x, y)dxdy

for every Borel and bounded ϕ : [0, 1]2 → R, so that taking ϕ(x, y) =
(y − S2(x, 0))2 yields the desired contradiction.

The discrete case, different values for the coupled and decoupled
problems: Let us now consider the case where both µ0 and ν0 have finite
support, in this case (4.8) is in fact a finite-dimensional problem and it is easy
to check that it possesses solutions. However, because of atoms, proposition
3.1 does not apply and it is easy to find a case where the values are different.
To see this, let us choose d = 1, µ0 = δ0 and ν0 = 1

2
δ−1 + 1

2
δ1. The set of

transport plans reduces to the single element γ = 1
2
δ(0,1)+

1
2
δ(0,−1). Obviously,
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the transport plan γ is not induced by any transport map. In this example,
the solution of both the coupled and the decoupled problem is the transport
plan γ. A simple computation leads to find different values for the two
problems. More precisely, for a fixed horizon T > 0, one gets the difference:

inf(Q)− inf(P) = 1
2

(
T −||a||2H1

)
> 0. Note that in this very simple case, the

difference between the decoupled and coupled problem values is increasing
in the horizon T .
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