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Abstract

This paper deals with risk-sharing problems between many agents,
each of whom having a strictly concave law invariant utility. In the
special case where every agent’s utility is given by a concave integral
functional of the quantile of her individual endowment, we fully char-
acterize the optimal risk-sharing rules. When there are many agents,
these rules cannot be computed analytically. We therefore give a sim-
ple convergent algorithm and illustrate it on several examples.

Keywords: risk-sharing, comonotonicity, sup-convolution, calculus of
variations, numerical approximation.

1 Introduction

Risk-sharing problems have their roots in the seminal works of Arrow [1], [2]
and Borch [3] in insurance and have received a lot of attention since. Starting
from the case of two-agents having preferences given by expected utilities,
the theory has developed in recent years in particular to incorporate more
general law invariant preferences such as rank-dependent utilities or monetary
risk measures in the financial literature (see Dana [9], Jouini, Schachermayer
and Touzi, [13], Carlier and Dana [6], [7], [8] as well as the book by Föllmer
and Schied [11] and the references therein).

For suitable law invariant (or quantile-based) and concave utilities, the
abstract risk-sharing problem may be brought down to the maximization of
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some concave functional over the set of comonotone allocations. When utili-
ties are integral functionals of the quantile (which covers the rank-dependent
utility case and more generally the so-called rank-linear utility case), this
enables one to rewrite the problem as a tractable variational problem sub-
ject to a comonotonicity constraint. This reformulation is a key point in the
papers mentioned above to analyze and actually solve many instances of the
two-agents case.

The theoretical analysis of the many agents-case is not significantly harder
than in the two-agents case. However, the analysis of optimality conditions
is more involved since many more cases may arise in the many agents case.
Typically, optimal risk-sharing rules exhibit ranges of aggregated risk for
which a subset of agents is fully insured by the others. In the two-agents
case, optimal solutions are combinations of three regimes: agent 1 insures
agent 2, agent 2 insures agent 1 or the solution is interior and thus given by
some first-order condition. If there are more agents, there are many more
possibilities for the comonotonicity constraint to be binding. We thus claim
that the difficulty of the many agents case is in fact a matter of combinatorics
and that the search for an efficient computational scheme is therefore natural.

The paper is organized as follows. In section 2, we reformulate a class of
risk-sharing problems as tractable variational problems subject to a comono-
tonicity constraint. More precisely, some notations and preliminaries are
given in paragraph 2.1, the two-agents case is then addressed in paragraph
2.2, we finally show a stability by sup-convolution result in paragraph 2.3
which enables to reformulate the risk-sharing problem as a comonotonicity
constrained variational problem. Optimality conditions for such problems
are established in section 3. Finally, a simple and easy to implement algo-
rithm is described in section 4 in which convergence is established and various
numerical simulations are presented.

2 Reformulation of a class of risk-sharing prob-

lems

Let (Ω,F , P) be a nonatomic probability space i.e. a probability space such
that there is no A ∈ F such that P(A) > 0 and P(B) ∈ {0, P(A)} for every
B ∈ F with B ⊂ A. The nonatomicity of (Ω,F , P) is well-known to be
equivalent to the existence of a uniformly distributed random variable on
(Ω,F , P). Given a random variable X on (Ω,F , P), the law of X is denoted
L(X). If X and Y are two random variables X on (Ω,F , P), we shall denote
by X ∼ Y the fact that L(X) = L(Y ).
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In the sequel, we will only consider essentially bounded random variables
-or risks- on (Ω,F , P). We will denote for short by L∞+ the nonnegative cone
of L∞(Ω,F , P).

Let C be the class of utility functions V : L∞+ → R that :

• are strictly concave,

• are monotone, i.e. V (X) ≥ V (Y ) whenever (X, Y ) ∈ L∞+ × L∞+ and
X ≥ Y a.s.,

• law invariant, i.e. V (X) = V (Y ) whenever (X, Y ) ∈ L∞+ × L∞+ and
L(X) = L(Y ),

• satisfy the following Fatou property:

V (X) ≥ lim sup
n

V (Xn)

whenever (Xn)n is bounded in L∞+ and Xn converges a.s. to X.

Given an aggregate risk X0 ∈ L∞+ and d + 1 agents, i = 1, ..., d + 1, each of
whom having a utility Vi in the class C, the optimal risk-sharing of X0 among
those agents is determined by solving the sup-convolution problem:

(
d+1

�
i=1

Vi

)
(X0) := sup

{
d+1∑
i=1

Vi(Xi), Xi ∈ L∞+ ,
d+1∑
i=1

Xi = X0

}
. (2.1)

The sup-convolution
d+1

�
i=1

Vi is said to be exact if the previous supremum is

attained (and then it is attained at a unique point by strict concavity). Our
aim is to reformulate the previous risk-sharing problem in a more tractable
way using the notion of comonotone allocations. Before we do so, we shall
need some preliminaries.

2.1 Preliminaries

Let X be a bounded random variable on (Ω,F , P) and let FX(t) = P(X ≤
t), t ∈ R denote its distribution function. The generalized inverse of FX (or
quantile function of X) is defined by:

F−1
X (t) = inf{z ∈ R : FX(z) > t}, for all t ∈ (0, 1). (2.2)
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The random variable X and the quantile function F−1
X are then equimeasur-

able in the sense that for every continuous function ϕ one has:

E(ϕ(X)) =

∫ 1

0

ϕ(F−1
X (t))dt.

Let us now recall the well known Hardy-Littlewood inequality (see [12], [15],
[4]).

Proposition 2.1. Let X and Y be in L∞+ then one has

E(XY ) ≤
∫ 1

0

F−1
X (t)F−1

Y (t)dt = sup
Z∼Y

E(XZ)

and for every concave u : R → R one has

E(u(X − Y )) ≤
∫ 1

0

u(F−1
X (t)− F−1

Y (t))dt.

Definition 2.2. Let X and Y be in L∞(Ω,F , P), then X dominates Y in
the sense of second order stochastic dominance (which we denote by X � Y )
if E(u(X)) ≥ E(u(Y )) for every concave increasing function u : R → R.

Various characterizations of stochastic dominance are well-known (see [16])
among which:

X � Y ⇔
∫ t

0

F−1
X (t)dt ≥

∫ t

0

F−1
Y (t)dt, ∀t ∈ [0, 1],

which is equivalent to∫ 1

0

g(t)F−1
X (t)dt ≤

∫ 1

0

g(t)F−1
Y (t)dt, ∀g bounded nondecreasing. (2.3)

The next statement is originally due to Ryff [17] in the case (Ω,F , P) is
[0, 1] endowed with its Borel field and the Lebesgue measure, we believe it is
well-known but give a short proof for the sake of completeness:

Lemma 2.3. Let X and Y be in L∞+ , then X � Y if and only if there is

a sequence Zn of the form Zn =
∑Nn

i=1 λn
i Y

n
i with λn

i ≥ 0,
∑Nn

i=1 λn
i = 1 and

each Y n
i ∼ Y , such that Zn converges a.s. to X.
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Proof. Assume first that Zn is of the form mentioned above and Zn converges
a.s. to X, then for each concave u, one has E(u(Zn)) ≥ E(u(Y )) and one
concludes with Lebesgue’s dominated convergence theorem (the Zn’s being
uniformly bounded).

Conversely, assume X � Y and let us prove that X ∈ K where K is the
closed convex hull in L1 of the set {Z ∈ L1, Z ∼ Y } (clearly K ⊂ L∞+ since
Y ∈ L∞+ ). If X /∈ K it follows from Hahn’s-Banach theorem that there exists
P ∈ L∞ and ε > 0 such that

E(PX) ≥ sup
Z∼Y

E(PZ) + ε.

With Hardy-Littlewood’s inequality, this yields∫ 1

0

F−1
P F−1

X ≥
∫ 1

0

F−1
P F−1

Y + ε

which contradicts X � Y because of inequality (2.3) recalled above. We
thus deduce that X is the L1 (and thus also a.s. taking a subsequence if
necessary) limit of a sequence Zn of the form mentioned in the statement of
the lemma.

As a consequence of the previous lemma, we have the following compati-
bility result which is originally due to Dana [9]:

Lemma 2.4. If a utility function V is in the class C then it is compatible with
second order stochastic dominance that is V (X) ≥ V (Y ) whenever (X, Y ) ∈
L∞+ × L∞+ and X � Y .

Proof. Assume X � Y , using lemma 2.3, X is an a.s. limit of a sequence Zn

as in lemma 2.3. Since V is concave and law invariant, V (Zn) ≥ V (Y ) and
by the Fatou property, we get V (X) ≥ V (Y ).

A notion that will play an important role in the sequel is that of comono-
tonicity that we now recall,

Definition 2.5. Let X1 and X2 be two real-valued random variables on
(Ω,F , P), then the pair (X1, X2) is called comonotone if

(X1(ω
′)−X1(ω))(X2(ω

′)−X2(ω)) ≥ 0 for P⊗ P-a.e. (ω, ω′) ∈ Ω2.

A family of random variable (X1, ..., Xd+1) on (Ω,F , P) is said to be comono-
tone if (Xi, Xj) is comonotone for every (i, j) ∈ {1, ..., d + 1}2.
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Roughly speaking (X1, ..., Xd+1) is comonotone if all the Xi’s evolve in the
same direction (or coevolve) and we recall that it is well-known that it is
equivalent to the fact that each Xi can be written as a nondecreasing func-
tion of the sum

∑
i Xi (see for instance [10]). Given X ∈ L∞+ , the set of

allocations (X1, ..., Xd+1) ∈ L∞+ that sum to X and are comonotone can then
be parametrized by Xi := xi(X) where the xi’s are nondecreasing function
that sum to the identity map (on the range of X but this can be extended to
the whole line if necessary). Obviously, each map xi is 1-Lipschitz and there-
fore, by Ascoli’s theorem, this parametrization of comonotone allocations
with a fixed sum is compact.

Comonotonicity is well-known to be a key property in risk-sharing prob-
lems as soon as agents have preferences that are compatible with second order
stochastic dominance. Indeed, an important result of Landsberger and Meil-
ijson [14] states that any allocation is dominated (for second order stochastic
dominance) by a comonotone one.

2.2 The two-agents case

In this paragraph, we study in details the case of two agents (d = 1).

Proposition 2.6. Let V1 and V2 be two utilities in the class C and X0 ∈ L∞+ ,
there exists a unique (X1, X2) ∈ L∞+ × L∞+ such that X1 + X2 = X0 and

V1�V2(X0) = V1(X1) + V2(X2).

Moreover (X1, X2) is comonotone hence there exist two nondecreasing func-
tions x1 and x2 : [F−1

X0
(0), F−1

X0
(1)] → R such that x1(t) + x2(t) = t for all

t ∈ [F−1
X0

(0), F−1
X0

(1)] and (X1, X2) = (x1(X0), x2(X0)).

Proof. Let us first suppose that X0 has no atom (i.e. FX0 is continuous, or
equivalently F−1

X0
increasing). Let X1 and X2 be in L∞+ such that X1 + X2 =

X0, it follows from Jensen’s inequality that E(Xi | X0) � Xi so that in
the sup-convolution, it is enough to maximize over pairs (X1, X2) that are
measurable functions of X0. Let X1 = f(X0) and X2 := X0 − f(X0) be
such a pair. Since X0 is nonatomic there exists a nondecreasing map (or
monotone rearrangement) f̃ such that f̃(X0) ∼ f(X0) with 0 ≤ f̃(X0) ≤ X0

(see [18]). Then set Y1 := f̃(X0) and Y2 := X0 − f̃(X0). Since Y1 ∼ X1,
V (Y1) := V1(X1), we now claim that V2(Y2) ≥ V2(X2) and to prove it, thanks
to lemma 2.4, it is enough to prove that Y2 � X2. Let u be a concave
function, we have

E(u(Y2)) = E(u(X0 − f̃(X0)) =

∫ 1

0

u(F−1
X0

(t)− f̃(F−1
X0

(t)))dt
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but since f̃(F−1
X0

) = F−1
X1

, by proposition 2.1, we get

E(u(X2)) = E(u(X0 −X1)) ≤
∫ 1

0

u(F−1
X0

(t)− F−1
X1

(t))dt = E(u(Y2)).

All this proves that given an admissible pair (X1, X2) one may find a better
one of the form (f(X0), X0− f(X0)) where f is a non decreasing function on
[F−1

X0
, F−1

X0
] → R such that 0 ≤ f(t) ≤ t for every t ∈ [F−1

X0
(0), F−1

X0
(1)] → R.

In particular, one can find a sequence of such maps fn such that

lim
n

V1(fn(X0)) + V2(X0 − fn(X0)) = V1�V2(X0).

Since the functions fn are all nondecreasing and bounded by ‖X0‖∞, it follows
from Helly’s theorem that there is some (not relabeled) sequence that con-
verges pointwise to some function f , hence (fn(X0), X0−fn(X0)) is bounded
in L∞ and converges a.s. to (f(X0), X0 − f(X0)). The Fatou property guar-
antees then that

V1(f(X0)) + V2(X0 − f(X0)) = V1�V2(X0).

This proves existence of a maximizer in the sup-convolution problem (that
is the sup-convolution is exact at X0), uniqueness follows from the strict
concavity of V1 and V2. Finally, it remains to show that (f(X0), X0− f(X0))
is comonotone i.e. X0 − f(X0) is nondecreasing in X0. To prove this last
claim, we apply the same trick as before : let g be nondecreasing such that
0 ≤ g(t) ≤ t and g(X0) ∼ X0 − f(X0), then X0 − g(X0) � f(X0) so that

V1(X0 − g(X0)) + V2(g(X0)) ≥ V1(f(X0)) + V2(X0 − f(X0))

and therefore (X0 − g(X0), g(X0)) is optimal as well and by uniqueness this
yields X0−f(X0) = g(X0). The supremum is thus uniquely attained at some
comonotone pair.

Let us now treat the case where X0 is arbitrary in L∞+ . A theorem of
Ryff (cite) enables to write X0 = F−1

X0
(U0) with U0 uniformly distributed.

For n ∈ N∗ then define Xn
0 := F−1

X0
(U0) + n−1U0, since Xn

0 is nonatomic, we
deduce from the previous step that there exist, for every n ≥ 0, a pair of
nondecreasing 1-Lipschitz functions xn

1 and xn
2 summing to the identity such

that
V1�V2(X

n
0 ) = V1(x

n
1 (Xn

0 )) + V2(x
n
2 (Xn

0 )).

By Ascoli’s Theorem, we may extract some converging (and not relabeled)
subsequence from (xn

1 , x
n
2 ) and denote (x1, x2) its limit. Since (xn

1 (Xn
0 ), xn

2 (Xn
0 ))

is bounded and converges a.s. to (X1, X2) = (x1(X0), x2(X0)) we deduce
from the Fatou property that this comonotone pair is the unique maximizer
in the sup-convolution problem for X0.
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2.3 Stability by sup-convolution and existence for d+1
agents

In this section, our aim is to generalize the existence result 2.6 to the case
of d + 1 agents. To do so, we need previously to prove a stability by sup-
convolution result.

Proposition 2.7. Let V1 and V2 be two utilities in the class C, then V1�V2

also belongs to C.

Proof. Let X0, Y0 ∈ L∞+ × L∞+ , then by Proposition 2.6, V1�V2(X0) and
V1�V2(Y0) are exact that is, there exist nondecreasing functions x1, y1, and
x2, y2 such that V1�V2(X0) = V1(x1(X0)) + V2(x2(X0)) and V1�V2(Y0) =
V1(y1(Y0)) + V2(y2(Y0)). Let us prove step by step that V1�V2 belongs to C.

• Strict concavity: Let λ ∈ [0, 1], X0, Y0 ∈ L∞+ × L∞+ , since V1�V2 is a
supremum and using the concavity of V1 and V2, one gets

V1�V2(λX0 + (1− λ)Y0) > V1(λx1(X0) + (1− λ)y1(Y0))

+V2(λx2(X0) + (1− λ)y2(Y0))

> λ[V1(x1(X0)) + V2(x2(X0))]

+(1− λ)[V1(y1(Y0)) + V2(y2(Y0))].

We then easily deduce that V1�V2 is strictly concave.

• Monotonicity: Let X0, Y0 ∈ L∞+ × L∞+ such that X0 > Y0. Since V1

and V2 are monotone and y1, y2 are nondecreasing, one has

V1�V2(X0) > V1(y1(X0)) + V2(y2(X0))

> V1(y1(Y0)) + V2(y2(Y0)) = V1�V2(Y0).

• Law invariance property: Let X0, Y0 ∈ L∞+ ×L∞+ such that X0 ∼ Y0.
We then have by law invariance of V1 and V2

V1�V2(X0) = V1(x1(Y0)) + V2(x2(Y0)) 6 V1�V2(Y0),

reversing the role of X0 and Y0 then yields V1�V2(X0) = V1�V2(Y0).

• Fatou property: Let (Xn)n be a bounded sequence in L∞+ that con-
verges a.s. to a limit X. Then for every n ≥ 1, there exist nondecreas-
ing and 1−Lipschitz nonnegative functions xn

1 , x
n
2 such that

V1�V2(Xn) = V1(x
n
1 (Xn)) + V2(x

n
2 (Xn)),
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and, by Ascoli’s Theorem, up to a not relabeled subsequence, xn
1 and

xn
2 converge uniformly to some x1 and x2 so that xn

i (Xn) converges a.s.
to xi(X). We thus have

lim sup
n

V1�V2(Xn) 6 lim sup
n

V1(x
n
1 (Xn)) + lim sup

n
V2(x

n
2 (Xn))

≤ V1(x1(X)) + V2(x2(X))

≤ V1�V2(X)

from which we deduce the Fatou property for V1�V2.

Inductively, one immediately deduces from the previous proposition that if

V1, ...., Vd+1 all belong to the class C then so does
d+1

�
i=1

Vi.

Theorem 2.8. Let X0 ∈ L∞+ and V1, ..., Vd+1 be in the class C. Then there

exists a unique X = (X1, ..., Xd+1) ∈ (L∞+ )d+1 such that
∑d+1

i=1 X i = X0 and

d+1

�
i=1

Vi(X0) =
d+1∑
i=1

Vi(X i).

Moreover X is comonotone hence there exist d+1 nondecreasing functions xi:
[F−1

X0
(0), F−1

X0
(1)] → R such that

∑d+1
i=1 xi(t) = t for all t ∈ [F−1

X0
(0), F−1

X0
(1)]

and X = (x1(X0), ..., xd+1(X0)).

Proof. For the sake of simplicity, let us prove the Theorem for d + 1 = 3.
Introducing the notation W2 = V2�V3, the maximization problem reads as:

sup{V1(X1) + W2(Y2); X1 ∈ L∞+ , Y2 ∈ L∞+ , X1 + Y2 = X0}.

By Proposition 2.7, we know that W2 ∈ C. Then Proposition 2.6 say that
there exists a unique solution (X1 = x1(X0), Y 2 = y2(X0)) ∈ L∞+ × L∞+ such
that x1,y2 are nondecreasing, x1(X0) + y2(X0) = X0, and

V1�W2(X0) = V1(x1(X0)) + W2(y2(X0)).

We then solve the sub-problem

sup{V2(X2) + V3(X3); X2 ∈ L∞+ , X3 ∈ L∞+ , X2 + X3 = y2(X0)}.

By the same arguments, there exists a unique comonotone solution (X2 =
z2(y2(X0)), X3 = z3(y2(X0)) ∈ L∞+ × L∞+ satisfying the same properties
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as in Proposition 2.6. Finally, it is easy to see that (X1 = x1(X0), X2 =
x2(X0), X3 = x3(X0)), where x2 := z2 ◦ y2 and x3 := z3 ◦ y2, is the unique

solution of the sup-convolution
3

�
i=1

Vi(X0), with the desired properties.

Inductively, one can prove the Theorem for every d.

Remark 2.9. One may wonder if it is really necessary to proceed inductively
to prove the previous result. On the one hand, we believe that proving
stability of the class C by supremal convolution (that is by aggregation)
as we did in proposition 2.7 has its own interest. On the other hand, the
rearrangement trick we used in the two-agents case, does not generalize to
more agents.

Remark 2.10. In the previous statements, we have used strict concavity of
the elements of C for uniqueness purpose only. Strict concavity is in fact quite
restrictive since it rules out the case of monetary risk measures. We now claim
that strict concavity, though convenient, is in fact not necessary to obtain
the existence of at least one optimal comonotone solution in the supremal
convolution problem. To see this, it is enough to proceed by approximation
and use the compactness of comonotone allocations.

2.4 Reformulation

It follows from the previous results that the risk-sharing problem (2.1) be-
tween d + 1 agents, each of whom has a utility in C, and for aggregate risk
X0, can be simply reformulated as

sup
x∈A

J(x), with J(x) :=
d∑

i=1

Vi (xi(X0)) + Vd+1

(
X0 −

d∑
i=1

xi(X0)

)
(2.4)

where
A := {x ∈ W 1,∞([a, b], Rd) : ẋ ∈ ∆ a.e., x(a) ∈ S},

a := F−1
X0

(0), b := F−1
X0

(1),

and ∆ and S are the two simplices:

∆ := {u ∈ Rd
+,

d∑
i=1

ui ≤ 1}, S := {x ∈ Rd
+,

d∑
i=1

xi ≤ a}.

This reformulation is more tractable than the initial one since maximization is
now performed over a more concrete set of functions over an interval, namely
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the convex and compact set A. As we shall see in the next paragraph, the
fact that constraints are given by simplices will be very convenient to express
necessary conditions.

Of course this reformulation is not very helpful if we keep the previous
level of generality on utility functions. This is why we shall now further spec-
ify the utilities and restrict them to a subclass for which they have a simple
expression in terms of quantiles. From now on, we shall restrict utilities to
belong to the class of Rank-Linear Utilities (RLU for short), such utilities
are of the form

VL(X) :=

∫ 1

0

L(t, F−1
X (t))dt. (2.5)

This class of utilities is already quite large since it contains expected utilities
as well as the Rank-Dependent Utilities defined by Choquet expectations.
Utilities in this class are obviously law invariant and satisfy the Fatou prop-
erty as soon as L is continuous (say). RLU have been studied in details in
[7], where it is proved in particular that for VL defined by (2.5) (with a C2

function L to simplify), the following statements are equivalent:

1. VL is compatible with second order stochastic dominance and mono-
tone,

2. ∂xL ≥ 0, ∂xxL ≤ 0 and ∂txL ≤ 0 on [0, 1]× R

3. VL is concave, monotone and σ(L∞(Ω), L1(Ω)) upper semi-continuous.

Now for a utility of the form (2.5), if x is a nondecreasing function and X0

is nonatomic with an increasing distribution function (say), one has

VL(X0) =

∫ 1

0

L(t, x(F−1
X0

(t))dt =

∫ b

a

L(FX0(s), x(s))dµ0(s),

where µ0 is the law of X0. In this framework, (2.4) takes the form of a simple
variational problem with

J(x) :=

∫ b

a

( d∑
i=1

Li(FX0(s), xi(s)) + Ld+1(FX0(s), s−
d∑

i=1

xi(s))
)
dµ0(s).

(2.6)
The next paragraphs are precisely devoted to the theoretical and numerical
study of such problems (under appropriate regularity and concavity assump-
tions).
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3 Optimality conditions

In this section, our aim is to give necessary and sufficient conditions for the
problem

sup
x∈A

J(x) with J(x) :=

∫ b

a

F (t, x(t))dt (3.1)

where we assume that F ∈ C([a, b] × Rd, R) is such that F (t, .) is strictly
concave and differentiable for every t ∈ [a, b] and ∇xF is continuous in its
two arguments.

Under these assumptions, problem (3.1) admits a unique solution x that
is characterized as follows:

Theorem 3.1. Problem (3.1) admits a unique solution x that is characterized
by the following:

• x ∈ A,

• for a.e. t, ẋi(t) = 0 for every i ∈ {1, ..., d} with i /∈ I(t) where

I(t) := {j ∈ {1, ..., d} : pj(t) = min
i=1,...,d

pi(t)}

and p is the adjoint variable:

p(t) = −
∫ b

t

∇xF (s, x(s))ds. (3.2)

• xi(a) = 0, ∀i ∈ {1, ...d} with i /∈ I(a).

Proof. Existence and uniqueness follow from standard arguments. Let us
denote by x the solution of (3.1), by concavity of J and convexity of A, x is
characterized by the variational inequalities

J ′(x) · (y − x) =

∫ b

a

∇xF (t, x(t)) · (y(t)− x(t))dt ≤ 0, ∀y ∈ A. (3.3)

Now for y ∈ A, defining p by (3.2) and integrating by parts yields

J ′(x) · y = −
∫ b

a

p · ẏ − p(a) · y(a)

12



so that (3.3) becomes∫ b

a

p · ẋ + p(a) · x(a) = inf
y∈A

{∫ b

a

p · ẏ + p(a) · y(a)

}
, (3.4)

now the rightmost member of the previous identity is easy to compute by
pointwise minimization over the simplex and is achieved exactly at those y’s
in A such that for a.e. t ∈ [a, b], ẏi = 0 as soon as i /∈ I(t) and yi(a) = 0 for
i /∈ I(a).

In the algorithm of next section, we shall take full advantage of the fact
that (3.4) amounts to linear programming over the simplex and is therefore
explicit. In particular, for x ∈ A and p the associated adjoint variable:

p(t) = −
∫ b

t

∇xF (s, x(s))ds, (3.5)

this characterizes the set of solutions of the linear programming problem

sup
y∈A

J ′(x) · y. (3.6)

In particular, a solution of (3.6) is given explicitly by:

y(t) = y(a) +

∫ t

a

u(s)ds, t ∈ [a, b], (3.7)

with

yi(a) =

{ a
#Ip(a)

if i ∈ Ip(a)

0 otherwise,
(3.8)

ui(t) =

{ 1
#Ip(t)

if i ∈ Ip(t)

0 otherwise.
(3.9)

and
Ip(t) := {j ∈ {1, ..., d} : pj(t) = min

i=1,...,d
pi(t)}.

For every x ∈ A, set

G(x) := {x+ρ(y−x), y ∈ argmaxh∈A J ′(x)·h, ρ ∈ argmaxλ∈[0,1], J(x+λ(y−x))}.

In the next section, we shall need the following elementary result:

Lemma 3.2. The set valued map x ∈ A 7→ G(x) has a closed graph and x,
the solution of (3.1), is characterized by the condition x ∈ G(x).
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Proof. Let (xn)n ∈ A converge to some x and zn = xn +ρn(yn−xn) converge
to some z and let us prove that z ∈ G(x). Taking subsequences if necessary,
we may assume that ρn converges to some ρ ∈ [0, 1] and yn converges uni-
formly to some y ∈ A so that z = x + ρ(y − x). Using the fact that J is of
class C1 enables us to pass to the limit in

J ′(xn) · (yn − h) ≥ 0, ∀h ∈ A, J(zn) ≥ J(x + ρ(yn − x)), ∀ρ ∈ [0, 1]

and therefore to deduce that z ∈ G(x).

It is obvious that x, the solution of (3.1), is such that x ∈ G(x). Now if
x ∈ G(x) then one has either ρ = 0 or x = y for some ρ ∈ [0, 1] and some
y ∈ A as in the definition of G(x). If x = y then J ′(x) · h is maximized over
A for h = x which is exactly the variational inequality characterizing the
solution of (3.1). If ρ = 0 and y 6= x then J(x + λ(y− x)) is maximized over
[0, 1] for λ = 0 so that J ′(x) · (y− x) ≤ 0 which again means that J ′(x) · h is
maximized over A for h = x.

4 Algorithm and numerical results

4.1 Algorithm and convergence

The algorithm we propose to solve (3.1) is a simple optimal step gradient
ascent-like method. The fact that the constraints are easy to handle relies
again on the fact that linear problems over the simplex are very simple. Our
algorithm is defined as follows :

• start from x0 ∈ A and define p0 as the corresponding adjoint:

p0(t) = −
∫ b

t

∇xF (s, x0(s))ds

• given (xk, pk) define yk by

yk(t) = yk(a) +

∫ t

a

uk(s)ds, t ∈ [a, b],

with

yk
i (a) =

{
a

#I
pk (t)

if i ∈ Ipk(a)

0 otherwise
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and

ui(t) =

{
1

#I
pk (t)

if i ∈ Ipk(t)

0 otherwise.
(4.1)

Then set
xk+1 := xk + ρk(yk − xk)

where
ρk = argmaxρ∈[0,1] J(xk + ρ(yk − xk))

is computed by a dichotomous method.
Finally let pk+1 be the adjoint state associated to xk+1:

pk+1(t) = −
∫ b

t

∇xF (s, xk+1(s))ds.

The convergence of this simple ascent algorithm is then given by:

Theorem 4.1. The sequence xk generated by the previous algorithm con-
verges to x, the solution of (3.1) as k →∞.

Proof. Since A is compact (for the uniform topology) and the sequence (xk)k

has values inA, it is enough to show that x is the unique cluster point of (xk)k.
Let x be such a cluster point, and let xkn be a subsequence converging to x,
taking a subsequence if necessary we may also assume that xkn+1 converges
to some z. Since G has a closed graph, z ∈ G(x) i.e. z has of the form z =
x+ρ(y−x) with y maximizing J ′(x)·y overA and ρ maximizing J(x+ρ(y−x))
over [0, 1]. By construction J(xk) is nondecreasing, consequently one has
J(x) = J(z). Now, if x 6= x, then by lemma 3.2, one has x /∈ G(x) so that
ρ > 0 and J ′(x)·(y−x) > 0 which implies that J(z) = J(x+ρ(y−x)) > J(x),
giving the desired contradiction. This proves that x is the only cluster point
of (xk) and thus that the whole sequence (xk) converges to x.

Let us now show some numerical results using the previous algorithm.

4.2 Numerical experiments

In this last part, we implement the algorithm introduced in section 4.1. More
precisely we study three particular cases for an uniform distribution of the
total risk X0 on [0, 1]. In a fourth case we compare the solutions for different
distributions of X0 and the last test aims at showing that the numerical pro-
cedure is robust for approaching solutions of risk sharing problems with linear
utilities. But before doing so we would like to mention that the algorithm
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gives very good results with a very quick convergence. Indeed, it is shown
on Figure 1-(a) how fast is the convergence of the value of the discretized
version of (3.1). We can also see on Figure 1-(b) that the infinite norm of the
difference between the discrete solutions of two successive iterations (i and
i + 1, with i = 1, .., N − 1) converges to zero with about the same speed. In
all our tests, the algorithm converges in very few iterations (between 5 and
15).
In the following examples, we always take a = 0 and b = 1.

(a) Value of (3.1) at each step of the proce-
dure

(b) Convergence of the solution:||xi+1−xi||∞

Figure 1: Numerical convergence for a 20 agents risk sharing

First case: product utilities In the reformulation (2.6), we take func-
tions of the form

Li(t, x) = (1− t)αi(1 + x)βi ,

for i = 1, ..., d+1. It is easy to see that for αi ≥ 0 and 0 < βi < 1, such func-
tions lead to utilities that belong to the class C. In this first numerical experi-
ment, we look at the case d+1 = 5 and we choose α := (2.8, 1.6, 2.2, 1.05, 1.3)
and β := (0.58, 0.52, 0.59, 0.53, 0.57). Figure 2 shows the optimal sharing for
these data and, more particularly, we paint the cumulative sharing in the
sense that the size of the risk supported by an agent is the difference be-
tween her labeled line (the lines are labeled on the right hand side of the
picture) and the nearest sub-line. Looking at Figure 2, one can for instance
notice that agent 4 fully insures the others for any risk with value smaller
than 0.34. Then, for risk values smaller than about 0.7, agent 3 and 4 insure
the others and finally, for big risk values, every agent support a part of the
risk.
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Figure 2: Risk Sharing for 5 agents

Second case: logarithmic utilities In this example, we make a differ-
ent choice for the functions Li. We take two logarithmic functions h1(t, x) :=
log(t1/2 + x + 1) and h2(t, x) := log(t2/3 + x + 1). We look at the case of 8
agents, five of them being of type Li = h1 (i = 3, 4, 5, 6, 7) and three of them
of type Li = h2 (i = 1, 2, 8). We paint the graph of the optimal sharing on
Figure 3. The continuous lines correspond to agents of type h1 and the dis-
continuous ones to those of type h2. We can see that for risk values between
0 and 0.3, the three agents of type h2 fully insure the others. Moreover and
without any surprise, we observe that agents of same type support the same
proportion of risk.

Third case: logarithmic and product utilities We now turn to a
case involving more agents than in the previous ones: d + 1 = 20. The
functions Li are chosen between Li(t, x) = (1− t)αi(1+x)βi , for some αi and
βi satisfying the same assumptions as before, and Li(t, x) = log(tγi + x + 1),
γi ∈ (0, 1). We do not give more details about functions Li, the aim only
is to show a solution for a many agents case. Indeed, we can see the graph
of the solution on Figure 4. Let us remark for instance that actually, the
solution is comonotone, and that at most 12 agents share the risk.

17



Figure 3: Risk Sharing for 8 agents

Figure 4: Risk Sharing for 20 agents

18



Fourth case: comparative statics for different densities of X0 We
also want to show the impact of the law of the total amount of risk X0 on
the solutions of the problem.

(a) Gaussian density with µ = 0.1 (b) Optimal Risk Sharing for µ = 0.1

(c) Gaussian density with µ = 0.5 (d) Optimal Risk Sharing for µ = 0.5

(e) Gaussian density with µ = 0.9 (f) Optimal Risk Sharing for µ = 0.9

Figure 5: Plots of the solutions for three averages of a Gaussian distributions
of the total risk X0.

To do so, we take d+1 = 4 and functions Li(t, x) = (1−t)αi(1+x)βi , with the
particular choice α = (1.16, 1.89, 1.21, 2.92) and β = (0.52, 0.58, 0.54, 0.59).
We start with a comparison for three truncated and normalized gaussians
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(a) Uniform density (b) Optimal Risk Sharing for the Uniform
density

(c) Exponential density with λ = 4 (d) Optimal Risk Sharing for the Exponen-
tial density

(e) Quadratic density (f) Optimal Risk Sharing for the Quadratic
density

Figure 6: Plots of the solutions for three different distributions of the total
risk X0.

with variance σ2 = 0.01. More precisely, we plot on Figure 5 the graphs of
the density for three different values of the average µ = 0.1, 0.5, 0.9, and the
corresponding solutions. Let us note for instance that Agent 1 fully insures
the others for values lower than 0.57 when the average is small (0.1). This
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phenomenon disappears for bigger values of µ. We can also remark that
Agent 5 support a significant proportion of risk only for high values of X0

and µ. To sum up, we figure out that, in the Gaussian case, the higher is
the average of the risk, the most the agents share it (particularly for its big
values).
Nevertheless, it appears that this conclusion is not true in general (one should
not only consider the first moment of X0). To see that, we paint on Figure
6 the graphs of three other densities with the corresponding optimal risk-
sharing. The densities we study are, for t ∈ [0, 1]:

• (a)− (b): fX0(t) = 1 (Uniform density),

• (c)− (d): fX0(t) = λe−λt + e−λ (Exponential-like density),

• (e)− (f): fX0(t) = t2 + 2
3

(Quadratic density, say).

We easily see that, for the Exponential density (with λ = 4), the risk is
”more shared” (for all values in [0, 1]) than in the Uniform case. Moreover,
in the Quadratic case, we observe that the risk is shared only by three of the
four agents for its big values.

Fifth case: linear utilities approximation To close the numerical
tests, we want to point out the robustness of the algorithm for the approxi-
mation of the solutions of the problem with linear utilities. In this example,
we look at a 5 agents case and a Gaussian distribution of the aggregate risk
X0 (its density is painted on Figure 4.2-(a)). We then take utilities of the
form

Lε
i (t, x) = (1 + εxβi + (1− ε)x)(1− t)αi ,

with 0 < βi < 1 and αi > 0. The idea is to let ε → 0. We show the numerical
results for ε = 1 (Figure 4.2-(b)) , ε = 0.05 (Figure 4.2-(c)) and ε = 10−5

(Figure 4.2-(d)).
We finally give the distance (for the infinite norm) of the approximations to
the numerical limit. If xε denotes the numerical solution for a fixed ε, we
define this quantity by ||x10−5 − xε||∞, and we give the results on Figure 8,
for some values of ε in [0.02, 0.05]. We then observe a numerical convergence.
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(a) Density of X0 (b) ε = 1

(c) ε = 0.05 (d) ε = 10−5

Figure 7: Approximation of the solution of the problem for a linear utility

Figure 8: Distance of the approximations to the numerical limit
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