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Abstract

In this paper, we focus on efficient risk-sharing rules for the concave
dominance order. For a univariate risk, it follows from a comonotone

dominance principle, due to Landsberger and Meilijson [25], that ef-
ficiency is characterized by a comonotonicity condition. The goal of
this paper is to generalize the comonotone dominance principle as
well as the equivalence between efficiency and comonotonicity to the
multi-dimensional case. The multivariate setting is more involved (in
particular because there is no immediate extension of the notion of
comonotonicity) and we address it using techniques from convex du-
ality and optimal transportation.

Keywords: concave order, stochastic dominance, comonotonicity, effi-
ciency, multivariate risk-sharing.

1 Introduction

In this paper, we study Pareto efficient allocations of risky consumptions
of several goods in a contingent exchange economy. We shall consider a
framework where goods are imperfect substitutes and agents have incomplete
preferences associated with the concave order.

There is a distinguished tradition in modelling preferences by concave
dominance. Introduced in economics by Rothschild and Stiglitz [32], the
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concave order has then been used in a wide variety of economic contexts. To
give a few references, let us mention efficiency pricing (Peleg and Yaari [30],
Chew and Zilcha [10]), measurement of inequality (Atkinson [3]), finance
(Dybvig [15], Jouini and Kallal [23]).

With respect to most of the aforementioned literature, the novelty of this
paper is to deal with the multivariate case, i.e. the case where consumption
is denominated in several units which are imperfectly substitutable. These
units can be e.g. consumption and labor; or future consumptions at various
maturities; or currency units with limited exchangeability. The hypothesis of
the lack of, or of the imperfect substituability between various consumption
units arises in many different fields of the economic and financial literatures.
This amounts to the fact that one can no longer model consumption as a
random variable, but as a random vector.

The aim of the paper is to find testable implications of efficiency (for the
concave order) on observable data (for instance, insurance contracts) and a
tractable parametrization of efficient allocations. In the case of univariate
risk, this tractable characterization exists: the comonotonicity property. In-
deed, since the early work of Borch [5], Arrow [1], [2] and Wilson [36], it is
well-known that efficient allocations of risk between expected utility maxi-
mizers fulfill the mutuality principle or equivalently are comonotone. It may
easily be proven that these allocations are efficient for the concave order. It is
also well-known that if agents have preferences compatible with the concave
dominance (we shall refer to them as being risk averse), then efficient allo-
cations must be comonotone, otherwise there would be mutually profitable
transfers among agents (see le Roy and Werner [26]).

An important step in the theory of efficient risk-sharing was made by
Landsberger and Meilijson [25] who proved (for two agents and a discrete set-
ting) that any allocation of a given aggregate risk is dominated in the sense of
concave dominance by a comonotone allocation. Moreover, this dominance
can be made strict if the initial allocation is not itself comonotone. This
result that we shall refer to as the comonotone dominance principle has been
extended to the continuous case by limiting arguments (see [13] and [28]). It
implies the comonotonicity of efficient allocations for the concave order. The
equivalence between comonotonicity and efficiency was only proved recently
by Dana [12] for the discrete case and by Dana and Meilijson [13] for the con-
tinuous case. Therefore comonotonicity fully characterizes efficiency and it
is a testable and tractable property. Townsend [35] proposed to test whether
the mutuality principle holds in three poor villages in southern India and
did find that individual consumptions comove positively with village aver-
age consumption. From a theoretical point of view, comonotone allocations
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form a tractable class which is convex and almost compact, in a sense to
be made precise later on. Existence results may then be obtained for many
risk-sharing problems by restricting attention to comonotone allocations (see
for instance [24] in the framework of risk measures, or [8], [9] for classes of
law invariant and concave utilities). Furthermore, even though the comono-
tone dominance principle has been essentially used in the case of particular
classes of utility functions, it is a very general principle that may be useful for
incomplete preferences, which are compatible with the concave dominance.

In this paper, we will first revisit in detail the comonotone dominance re-
sult in the univariate case. In particular, we will give a direct proof under the
assumption that the underlying probability space is non-atomic. Our proof
does not rely on the discrete case and a limiting argument, but instead uses
the theory of monotone rearrangements (see [7] for other applications). We
will then prove that any efficient allocation for the concave order is a solution
of a risk-sharing problem between expected utility maximizers and that effi-
cient allocations coincide with comonotone allocations. Let us mention that
a totally different proof of Landsberger and Meilisjon’s result, based on a
certain variational problem, will follow from our analysis of the multivariate
case.

The remainder and central part of the paper will be devoted to the exten-
sion of the comonotone dominance result and its application to the charac-
terization of efficient allocations to the multivariate setting. While the case
of a univariate risk has been very much investigated, it is far less so for the
multivariate case. This is mainly due to the fact that in the multivariate risk
framework, it was not obvious until recently what the appropriate notion of
comonotonicity should be. Ekeland, Galichon and Henry in [18] have intro-
duced a notion of multivariate comonotonicity to characterize comonotonic
multivariate risk measures, which they call µ-comonotonicity. We shall say
that an allocation (X1, ..., Xp) (with each Xi being multivariate) is comono-
tone if there is a random vector Z and convex and differentiable maps ϕi
such that Xi = ∇ϕi(Z) (in [18], µ is then the distribution of Z). While this
is indeed an extension of the univariate definiton, this is by no means the
only possible one. In a recent paper [31], Puccetti and Scarsini review var-
ious possible other multivariate extensions of the notion of comonotonicity
and emphasize the fact that naive extensions do not enjoy some of the main
properties of the univariate concept. In fact, it turns out that, as we show in
this paper, the notion of comonotonicity which is related to efficient risk allo-
cations is (up to some regularity subtleties), the one of [18]. We shall extend
the comonotone dominance principle to the multivariate case and apply it
to characterize Pareto efficiency. The statements will be however more com-
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plicated than in the univariate case and will involve taking weak closures at
some points and also to introduce strict convexity in a quantified way. This
stems from the fact that multivariate comonotone allocations of a given risk
do not form neither a convex nor a compact (up to constants) set contrary to
the univariate case (counterexamples will be given). While the results of [18]
are strongly related to maximal correlation functionals and to the quadratic
optimal transportation problem (and in particular Brenier’s seminal paper
[6]) the present approach will rely on a slightly different optimization prob-
lem that has some familiarities with the multi-marginals optimal transport
problem of Gangbo and Świȩch [20].

The paper is organized as follows. Section 2 gives some definitions and
tools from rearrangement theory. Section 3 deals with the univariate case,
revisiting the dominance result of [25] with a new proof and applications to
Pareto risk-sharing. Our notion of multivariate comonotoncity is introduced
in section 4, an analogue of the comonotone dominance principle is stated
and efficient sharing-rules are then characterized. The proofs of the multi-
variate results are given in section 5, they are based on convex duality for
an optimization problem on measures that is in the spirit of optimal trans-
portation theory (although slightly different). Finally, section 6 concludes
the paper.

2 Preliminaries

2.1 Definitions and notations

Given as primitive is a probability space (Ω,F ,P). For every (univariate or
multivariate) random vector X on such space, the law of X is denoted L(X).
Given X and Y two random vectors, we will say that X and Y are equivalent
in distribution, which we denote X ∼ Y , if L(X) = L(Y ).

Definition 2.1. Let X and Y be bounded random vectors with values in Rd,
then X dominates Y (for the concave order), which we shall denote X < Y ,
if and only if E(ϕ(X)) ≤ E(ϕ(Y )) for every convex function ϕ : Rd → R.
If, in addition, E(ϕ(X)) < E(ϕ(Y )) for every strictly convex function ϕ,
then X is said to dominate Y strictly.

The concave order is usually defined with concave utilities rather than
with convex loss functions. Clearly the definition above coincides with the
standard one. We use convex functions to be consistent with the standard
conventions from convex analysis, a field which we shall extensively use in
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the multivariate case (Legendre transforms, infimal convolutions, convex du-
ality). Note that if X < Y , then E(X) = E(Y ) so that comparing risks
for < only makes sense for random vectors with the same mean. In words,
X < Y means that E(X) = E(Y ) and X is riskier (or more spread) than
Y . In this paper, we will focus on the concave order rather than on the sec-
ond order stochastic dominance which is widely used in economics. For the
sake of completeness, we recall that given two real-valued bounded random
vectors X and Y , X is said to dominate Y for second-order stochastic domi-
nance (notation X�2Y ) whenever E(u(X)) ≥ E(u(Y )) for every concave and
nondecreasing function u : Rd → R. It is easy to see then that X < Y if
and only if X�2Y and E(X) = E(Y ). We refer to Rothschild and Stiglitz
[32] and Föllmer and Schied [19] for various characterizations of second-order
stochastic dominance in the univariate case and to Müller and Stoyan [29]
for the multivariate case.

In the univariate case, we recall that comonotonicity is defined by

Definition 2.2. Let X1 and X2 be two real-valued random variables on
(Ω,F ,P), then the pair (X1, X2) is comonotone if

(X1(ω
′) −X1(ω))(X2(ω

′) −X2(ω)) ≥ 0 for P ⊗ P-a.e. (ω, ω′) ∈ Ω2.

An Rp-valued random vector (X1, ..., Xp) on (Ω,F ,P) is said to be comono-
tone if (Xi, Xj) is comonotone for every (i, j) ∈ {1, ..., p}2.

It is well-known that comonotonicity of (X1, ..., Xp) is equivalent to the
fact that each Xi can be written as a nondecreasing function of the sum∑

iXi (see for instance Denneberg [14]). The extension of this notion to the
multivariate case (i.e when each Xi is Rd-valued) is not immediate and will
be addressed in section 4.

Given X ∈ L∞(Ω,Rd) a random vector of aggregate risk of dimension
d ≥ 1, we denote by A(X) the corresponding set of admissible allocations or
risk-sharing of X among p agents:

A(X) := {Y = (Y1, ..., Yp) ∈ L∞(Ω,Rd) :

p∑

i=1

Yi = X}.

For simplicity we have not written explicitly the dependence of A(X) on the
number p of agents.

For d = 1, we denote by com(X) the set of comonotone allocations in
A(X). Therefore (X1, ..., Xp) ∈ com(X) if and only if there are nondecreasing
functions fi summing to the identity such that Xi = fi(X). Note also that
the functions fi’s are then all 1-Lipschitz and then allocations in com(X) are
1-Lipschitz functions of X.
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Definition 2.3. Let X = (X1, ..., Xp) and Y := (Y1, ..., Yp) be in A(X), then
X is said to dominate Y if Xi < Yi for every i ∈ {1, ..., p}. If, in addition
there is an i ∈ {1, ..., p} such that Xi strictly dominates Yi then X is said to
strictly dominate Y. An allocation X ∈ A(X) is called Pareto-efficient (for
the concave order) if there is no allocation in A(X) that strictly dominates
X.

Remark 2.4. Dominance of allocations can also be defined as follows. Let
X = (X1, ..., Xp) and Y := (Y1, ..., Yp) be in A(X), then X dominates Y if
and only if

E(
∑

i

ϕi(Xi)) ≤ E(
∑

i

ϕi(Yi))

for every collection of convex functions ϕi : Rd → R. Moreover X strictly
dominates Y if and only if the previous inequality is strict for every collection
of strictly convex functions ϕi : Rd → R.

Remark 2.5. Note that (for d = 1) the concave order coincides with second
order stochastic dominance on A(X). Indeed if (X1, ..., Xp) and (Y1, ..., Yp)
belong to A(X) and if Xi �2 Yi for every i, then for all i, E(Xi) ≥ E(Yi).
Since

∑
i E(Xi) =

∑
i E(Yi) = E(X), we obtain that E(Xi) = E(Yi) for all i

and, as recalled above, the two dominances coincide on random variable with
same expectations.

2.2 Rearrangement inequalities and comonotonicity in

the univariate case

A fundamental tool for the univariate analysis is a supermodular version of
Hardy-Littlewood’s inequality which we now restate. We thus need to recall
the concepts of nondecreasing rearrangement of f : [0, 1] → R with respect
to the Lebesgue measure and that of a submodular function.

Two Borel functions on [0, 1], f and g, are equimeasurable with respect to
the Lebesgue measure denoted λ, if, for any uniformly distributed (on [0, 1])
random variable U , f(U) and g(U) have same distribution. Given f an inte-
grable function on [0, 1], there exists a unique right-continuous nondecreasing

function denoted f̃ which is equimeasurable to f , f̃ called the nondecreasing
rearrangement of f (with respect to the Lebesgue measure).

A function L : R2 → R is submodular if for all (x1, y1, x2, y2) ∈ R4 such
that x2 ≥ x1 and y2 ≥ y1:

L(x2, y2) + L(x1, y1) ≤ L(x1, y2) + L(x2, y1). (2.1)
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It is strictly submodular if for all (x1, y1, x2, y2) ∈ R4 such that x2 > x1 and
y2 > y1:

L(x2, y2) + L(x1, y1) < L(x1, y2) + L(x2, y1). (2.2)

A function L ∈ C2 is submodular if and only if ∂2
xyL(x, y) ≤ 0 for all (x, y) ∈

R2. If ∂2
xyL(x, y) < 0 for all (x, y) ∈ R2, then L is strictly submodular.

Important examples of submodular functions are as follows. If ϕ : R → R

is convex (strictly convex) and L(x, y) = ϕ(x − y), then L is submodular
(strictly submodular). Similarly (x, y) 7→ u(x + y) is submodular for any
concave u.

The submodular version of Hardy-Littlewood’s inequality then reads as:

Lemma 2.6. Let f and g be in L∞([0, 1],B, λ) and f̃ , g̃ be their nondecreas-
ing rearrangements and L be submodular. We then have, for any random
variable U uniformly distributed on [0, 1]

E(L(f̃(U), g̃(U))) ≤ E(L(f(U), g(U))).

Moreover if L is continuous and strictly submodular, then the inequality is
strict unless f and g are comonotone, that is fulfill:

(f(t) − f(t′))(g(t) − g(t′)) ≥ 0 λ⊗ λ-a.e. .

Let us give simple applications of Lemma 2.6 that will be very useful for
the construction of comonotone allocations dominating a given allocation.

Lemma 2.7. Let f be in L∞([0, 1],B, λ) and f̃ be its nondecreasing rear-
rangement. Then, for any uniformly distributed random variable U and any
increasing and bounded function g on [0, 1], one has

1. g(U) − f̃(U) < g(U) − f(U), with strict dominance if f is not nonde-
creasing,

2. ‖g(U) − f̃(U)‖Lp ≤ ‖g(U) − f(U)‖Lp for any p ∈ [1,∞].

3. If 0 ≤ f ≤ id, then 0 ≤ f̃ ≤ id.

Proof. Let ϕ : R → R be convex (strictly) and L(x, y) = ϕ(x − y), then L

is submodular (strictly). From Lemma 2.6, we have E(ϕ(g(U) − f̃(U))) ≤
E(ϕ(g(U) − f(U))) with a strict inequality whenever ϕ is strictly convex
and f is not nondecreasing, proving the first assertion. To prove the second
assertion, we take ϕ(x) = |x|p for any p ∈ [1,∞[, the case p = ∞ is obtained
by passing to the limit. To prove the last statement, we first remark that
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if f ≥ 0 then f̃ ≥ 0 since it is equimeasurable to f . We then define the
submodular function (x, y) 7→ (x− y)+. If f ≤ id , it follows from lemma 2.6
that

0 = E((f(U) − U)+) ≥ E((f̃(U) − U)+)

so that f̃ ≤ id.

2.3 Characterization of comonotonicity by maximal cor-

relation

We now provide another characterization of comonotonicity based on the
notion of maximal correlation. From now on, we assume that the underlying
probability space (Ω,F ,P) is non-atomic which means that there is no A ∈ F
such that for every B ∈ F if P(B) < P(A) then P(B) = 0. It is well-known
that (Ω,F ,P) is non-atomic if and only if a random variable U ∼ U ([0, 1])
(that is U is uniformly distributed on [0, 1]) can be constructed on (Ω,F ,P).

Let Z ∈ L1(Ω,F ,P) and define for every X ∈ L∞(Ω,F ,P) (both Z and
X being univariate here) the maximal correlation functional:

̺Z(X) := sup
X̃∼X

E(ZX̃) = sup
Z̃∼Z

E(Z̃X) = sup
Z̃∼Z, X̃∼X

E(Z̃X̃). (2.3)

The functional ̺Z has extensively been discussed in economics and in finance,
therefore we only recall a few useful facts. Let F−1

X be the quantile function
of X, that is the pseudo-inverse of distribution function FX ,

F−1
X (u) := inf {y : FX (y) > u} .

From Hardy-Littlewood’s inequalities, we have

̺Z(X) =

∫ 1

0

F−1
X (t)F−1

Z (t)dt

and the supremum is achieved by any pair (Z̃, X̃) of comonotone random
variables (F−1

Z (U), F−1
X (U)) for U uniformly distributed. By symmetry, one

can either fix Z or fix X. Fixing for instance Z, the supremum is achieved
by F−1

X (U) where U ∼ U ([0, 1]) and satisfies Z = F−1
Z (U). When Z is non-

atomic, there exists a unique U = FZ(Z) such that Z = F−1
Z (U) and the

supremum is uniquely attained by the non-decreasing function of Z, F−1
X ◦

FZ(Z):
̺Z(X) = E(ZF−1

X ◦ FZ(Z)) (2.4)
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Clearly ̺µ is a subadditive functional and we have

̺Z

(
∑

i

Xi

)
≤
∑

i

̺Z(Xi). (2.5)

Proposition 2.8. Let (X1, ..., Xp) be in L∞(Ω,F ,P). The following asser-
tions are equivalent:

1. (X1, ..., Xp) are comonotone,

2. for any Z ∈ L1(Ω,F ,P) nonatomic,

̺Z

(
∑

i

Xi

)
=
∑

i

̺Z (Xi) , (2.6)

3. For some Z ∈ L1(Ω,F ,P) nonatomic, (2.6) holds true.

Proof. For the sake of simplicity, we restrict ourselves to p = 2 and set
(X1, X2) = (X, Y ).

1 implies 2 for any Z since F−1
X+Y = F−1

X +F−1
Y for X and Y comonotone.

To show that 3 implies 1, assume that for some Z non atomic, we have (2.6)
or equivalently from (2.5) that

̺Z(X + Y ) ≥ ̺Z(X) + ̺Z(Y )

Let ZX+Y (resp ZX and ZY ) be distributed as Z and solve supZ̃∼Z E(Z̃X)
(resp ̺Z(X) and ̺Z(Y )). We then have:

E(ZX+Y (X + Y )) ≥ E(ZXX) + E(ZY Y )

As E(ZX+YX) ≤ E(ZXX) and E(ZX+Y Y ) ≤ E(ZY Y ), we obtain that
E(ZX+YX) = E(ZXX) = ̺Z(X) and E(ZX+Y Y ) = E(ZY Y ) = ̺Z(Y ), hence
from (2.4), X = F−1

X ◦FZX+Y
(ZX+Y )) and Y = F−1

Y ◦FZX+Y
(ZX+Y )) proving

their comonotonicity.

Proposition 2.8 was the starting point of Ekeland, Galichon and Henry
[18], for providing a multivariate generalization of the concept of comono-
tonicity. In the sequel we shall further discuss this multivariate extension
and compare it with the one we propose in the present paper.
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3 The univariate case

3.1 An extension of Landsberger and Meilijson’s dom-
inance result

A landmark result, originally due to Landsberger and Meilijson [25] states
that any allocation is dominated by a comonotone one. The original proof
was carried in the discrete case for two agents and the results were extended
to the general case by approximation. We give a different proof based on
rearrangements, which is of interest per se since it does not require approxi-
mation arguments and slightly improves on the original statement by proving
strict dominance of non-comonotone allocations. Like in Landsberger’s and
Meilijson’s work, our argument is constructive in the case of two agents – but
the two constructions are different. Contrary to Landsberger and Meilijson,
we need however to assume, as before that the probability space (Ω,F ,P) is
non-atomic.

Theorem 3.1. Let X be a bounded real-valued random variable on the non-
atomic probability space (Ω,F ,P) and let X = (X1, ..., Xp) ∈ A(X) be an
allocation. There exists a comonotone allocation in A(X) that dominates X.
Moreover, if X is not comonotone, then there exists such an allocation that
strictly dominates X.

Proof. Let us start with the case p = 2 and let (X1, X2) ∈ A(X). It follows
from Ryff’s polar factorization theorem (see [34]) that X can be written as
X = F (U) with U uniformly distributed and F := F−1

X is nondecreasing.
By Jensen’s conditional inequality E(Xi|X) dominates Xi and thus we may
assume that the Xi’s are functions of X hence of U :

X1 = f0(U), X2 = g0(U), f0(x) + g0(x) = F (x), ∀x ∈ [0, 1]

for Borel and bounded functions f0 and g0. Let us then define

X1
1 = f1(U), X1

2 = g1(U) := F (U) − f1(U), with f1 := f̃0.

By construction, X1
1 ∼ X1 and it follows from lemma 2.7 that X1

2 dominates
X1

1 . Let us also remark that if (X1, X2) is not comonotone, then either f0

or g0 is not nondecreasing. Let us assume without loss of generality that f0

is not nondecreasing. It thus follows again from lemma 2.7 that X1
2 strictly

dominates X2. We then define a sequence (Xk
1 , X

k
2 ) by taking alternated

rearrangements as follows:

(Xk
1 , X

k
2 ) = (fk(U), gk(U))

10



with for every k ∈ N:

f2k+1 = f̃2k, g2k+1 = F − f2k, g2k+2 = g̃2k+1, f2k+2 = F − g2k+2.

By construction, the sequence (Xk
1 , X

k
2 ) belongs to A(X) and is monotone

for the concave order. Moreover, the sequences fk and gk are bounded in
L∞ (use lemma 2.6 again). It thus follows from Helly’s theorem that the
sequences of nondecreasing functions (f2k+1) and (g2k) admit (pointwise and
in Lp) converging subsequences. Moreover since (fk(U)) is monotone for
the concave order if f and f ′ are two cluster points of (f2k+1), then f(U)
and f ′(U) have same law hence f = f ′ since both are nondecreasing. This
proves that the whole sequence (f2k+1) converges to some nondecreasing f
and similarly, the whole sequence (g2k) converges to some nondecreasing g.
Since (f(U), F (U) − f(U)) and (F (U) − g(U), g(U)) are limit points of the
sequence (Xk

1 , X
k
2 )) that is monone for the concave order then one has f(U) ∼

F (U) − g(U) and g(U) ∼ F (U) − f(U) and then

f = F̃ − g, g = F̃ − f.

Now, if we had F − g 6= f then by lemma 2.7, F − f would strictly domi-
nate g which is absurd. We then have f = F − g and the whole sequence
(Xk

1 , X
k
2 ) therefore converges to the comonotone allocation (f(U), g(U)) that

dominates (X1, X2). Moreover, this dominance is strict if (X1, X2) is not it-
self comonotone since in this case (up to switching the role of X1 and X2)
we have seen that (X1

1 , X
1
2 ) already strictly dominates (X1, X2).

Let us now treat the case p = 3, the case p ≥ 4 generalizes straightfor-
wardly by induction. Let (X1, X2, X3) ∈ A(X), it follows from the previous
step that there are F1 and F2 in A(X) with Fi being a nondecreasing func-
tions of X and such that F1 dominates X1 +X2 and F2 dominates X3. Since
F1 dominates X1+X2, there is a bistochastic linear operator T (see [11]) such
that F1 = T (X1 + X2) = T (X1) + T (X2). Let us then define Y1 = T (X1)
and Y2 = T (X2), we have Y1 + Y2 = F1 and Yi dominates Xi i = 1, 2.
It follows from the previous step that there are Z1 and Z2 summing to F1,
comonotone (hence nondecreasing in F1 hence in X) such that Zi dominates
Yi for i = 1, 2. Set then Z3 := F2, we then have (Z1, Z2, Z3) is comonotone,
belongs to A(X) and dominates (X1, X2, X3).

Let us finally prove that dominance can be made strict if the initial allo-
cation is not comonotone. Let X = (X1, ..., Xp) ∈ A(X) and let us assume
that X is not comonotone. It follows from the previous steps that there is
a Y = (Y1, ..., Yp) ∈ A(X) that is comonotone and dominates X. Since X
is not comonotone there is an i for which Xi 6= Yi, and then the allocation
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(X + Y)/2 strictly dominates X. There is finally a comonotone allocation
Z ∈ A(X) that dominates (X + Y)/2 and thus strictly dominates X.

Remark 3.2. Theorem 3.1 may be also applied if aggregate risk is non negative
and allocations are restricted to be non negative. Indeed, from lemma 2.7, if
X1 ≥ 0 and X2 ≥ 0, then for each k, Xk

1 ≥ 0, Xk
2 ≥ 0 and non negativity

holds true for their pointwise limit. As far as the second step of the proof of
theorem 3.1 is concerned, it is enough to remark that, if Z < X and X ≥ 0,
then E(Z−) ≤ E(X−) = 0 so that Z ≥ 0.

Since the first step of the proof of theorem 3.1 consists in constructing in
an algorithmic way an <-monotone sequence of allocations that converge to
a dominating one, let us now illustrate this construction on an example.

Example 3.3 (The normal case). Assume that X ∼ N(0, σ2
X) and let X =

(X1, ..., Xp) ∈ A(X) be normal (we only consider normal allocations of X in
this example). Let us first remark that X is <-dominated by Y = (Y1, ..., Yp)
where Yi = E(Xi | X) (strictly if some Yi is not a function of X). As
E(Xi | X) = αiX + βi for all i, we may restrict attention to affine functions
of X, αiX + βi which sum to X.

Let us then consider an allocation of the form (αX, (1 − α)X) (which is
comonotone if and only if α ∈ [0, 1]). If this pair is not comonotone, without
loss of generality, we may assume that α > 1. Let us apply the first part
of the algorithm, using the fact that for any γ ∈ R, L(γX) = L(−γX).
X1

1 = αX, X2
1 = (1 − α)X, X2

2 = (α − 1)X, X1
2 = (2 − α)X, X1

3 =
(α−2)X, X2

3 = (2−α)X, X1
2n = (2n−α)X, X2

2n = (α− (2n−1)), X1
2n+1 =

(α−2n)X, X2
2n+1 = (2n+1−α)X. If 2n ≤ α ≤ 2n+1, the algorithm termi-

nates after 2n iterations, the pair X1
2n+1 = (α−2n)X, X2

2n+1 = (2n+1−α)X
is comonotone.

3.2 Application to efficiency for the concave order

Theorem 3.4. Let X be a bounded real-valued random variable on the non-
atomic probability space (Ω,F ,P) and let X = (X1, ..., Xp) ∈ A(X), then the
following statements are equivalent:

1. X is efficient,

2. X ∈ com(X),

12



3. there exist continuous and strictly convex functions (ψ1, ..., ψp) such
that X solves

inf{
∑

i

E(ψi(Yi)) :
∑

i

Yi = X},

4. for every Z ∈ L1(Ω,F ,P) nonatomic one has

̺Z

(
∑

i

Xi

)
=
∑

i

̺Z (Xi) ,

where ̺Z is the maximal correlation functional defined by (2.3).

Proof. 1 implies 2 : the fact that efficient allocations of X are comonotone
directly follows from theorem 3.4. 2 implies 3: if X = (X1, ..., Xp) ∈ com(X),
let us write Xi = fi(X) for some nondecreasing and 1-Lipschitz functions fi:
[m,M ] → R (with M := EsssupX, m := EssinfX) summing to the iden-
tity map. Extending the fi’s by fi(x) = fi(M) + (x − M)/p for x ≥ M
and fi(x) = fi(m) + (x −m)/p for x ≤ m we get 1-Lipschitz nondecreasing
functions summing to the identity everywhere. Now let ϕ(x) :=

∫ x
0
fi(s)ds

for every x, the functions ϕi are by construction, convex and C1,1 and
have quadratic growth at ∞. The convex conjugates ψi := ϕ∗

i are strictly
convex and continuous functions and by construction one has for every i,
X ∈ ∂ψi(Xi) a.s., which implies that (X1, ..., Xp) minimizes E(

∑
i ψi(Yi))

subject to
∑

i Yi = X which proves 3. 3 implies 1 since the functions ψi’s
are strictly convex, if (X1, ..., Xp) satisfies 3 then it is an efficient allocation
of X. Finally, the equivalence between 2 and 4 follows from proposition 2.8.

As an immediate consequence, we have the following properties of efficient
allocations:

Corollary 3.5. Under the same assumptions as above, the set of efficient
allocations of X is convex and compact in L∞ up to zero-sum translations
(which means that it can be written as {(λ1, ..., λp) :

∑p
i=1 λi = 0} + A0

with A0 compact in L∞). In particular, the set of efficient allocations of X
is closed in L∞.

Proof. Let M := EsssupX, m := EssinfX and define K0 as the set of func-
tions (f1, ..., fp) ∈ C([m,M ],Rp) such that each fi nondecreasing, fi(0) = 0
and

∑p
i=1 fi(x) = x for every x ∈ [m,M ] and let

K := K0 + {(λ1, ..., λp) :

p∑

i=1

λi = 0}.

13



Convexity directly follows from theorem 3.4 and the convexity of K. Let us
remark that elements of K0 have 1-Lipschitz components and are bounded,
compactness of K in C([m,M ],Rp) then follows from Ascoli’s theorem. The
compactness and closedness claims then directly follow.

Convexity and compactness of efficient allocations is a quite remarkable
feature and as we will show later it is no longer true in the multivariate case.
Note also that efficient allocations are regular : they are 1-Lipschitz functions
of aggregate risk.

4 The multivariate case

Our aim in this section is to generalize the previous results from the univariate
to the multivariate case, by showing that:

1. any allocation is dominated by a comonotone one,

2. any non comonotone allocation is strictly dominated by a comonotone
one,

3. efficient sharing allocations of X coincide with comonotone ones.

What is not clear a priori, to address these generalizations, is what the
appropriate notion of comonotonicity is in the multivariate framework.

4.1 From random vectors to joint laws

From now on, we consider the situtation where there are p agents and risk is d-
dimensional. We shall always assume in the sequel that the underlying prob-
ability space (Ω,F ,P) is non-atomic. X is a given Rd-valued L∞ random vec-
tor modelling an aggregate random multivariate risk, while X = (X1, ...., Xp)
is a given L∞ sharing of X among the p agents that is

X =

p∑

i=1

Xi.

We set γ0 := L(X) that is the joint law of the initial allocation ofX andm0 :=
L(X). As previously, we denote by A(X) the set of admissible allocations or
individual endowments:

A(X) := {Y = (Y1, ..., Yp) ∈ L∞(Ω,Rd) :

p∑

i=1

Yi = X}.
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Since we will be dealing with law invariant utilities, we will not work with
the set of feasible allocations A(X) but instead with the set of probability
measures {L(Y), Y ∈ A(X)}. If γ is a probability measure on (Rd)p then we
denote by γi its i-th marginal (in particular for γ = L(Y) then γi = L(Yi))
and we denote by ΠΣγ the probability measure on Rd defined by

∫

Rd

ϕ(z)dΠΣγ(z) =

∫

Rd×p

ϕ(

p∑

i=1

xi)dγ(x1, ..., xp), ∀ϕ ∈ C0(R
d,R). (4.1)

(where C0 denotes the space of continuous function that tend to 0 at ∞). It
follows from this definition that if γ = L(Y) then ΠΣγ = L(

∑
Yi). Hence,

if Y ∈ A(X) and γ = L(Y) then by definition ΠΣγ = m0 = L(X). In other
words, if γ = L(Y) with Y ∈ A(X) then
∫
ϕ(x1 + ...+ xd)dγ(x1, ..., xd) =

∫
ϕ(z)dm0(z), ∀ϕ ∈ C0(R

d,R). (4.2)

Let us also remark that γ is compactly supported since Y is bounded. Now,
the fact that {L(Y), Y ∈ A(X)} is exactly the set of compactly supported
probability measures γ on (Rd)p such that ΠΣγ = m0 = ΠΣγ0 (i.e that satisfy
(4.2)) follows from the next lemma:

Lemma 4.1. If (Ω,F ,P) is non-atomic, γ is a compactly supported proba-
bility measure on (Rd)p and satisfies (4.2) then there exists a random vector
Y = (Y1, ..., Yp) ∈ A(X) such that L(Y) = γ. Hence we have

{L(Y), Y ∈ A(X)} = M(m0)

where M(m0) is the set of compactly supported probability measures on (Rd)p

such that ΠΣγ = m0 = ΠΣγ0.

Proof. For notational simplicity, let us assume d = 1, p = 2, X takes values
in [0, 2] a.s. (so that m0 has support in [0, 2]) and γ is supported by [0, 1]2.
For every n ∈ N∗ and k ∈ {0, ..., 2n+1}, set

Xn :=

2n+1∑

k=0

k

2n
1Ak,n, where Ak,n :=

{
ω ∈ Ω : X(ω) ∈

[ k
2n
,
k + 1

2n

[}

and

Ck,n :=

{
(y1, y2) ∈ [0, 1]2 : y1 + y2 ∈

[ k
2n
,
k + 1

2n

[}
.

Let us decompose the strip Ck,n into a partition by triangles

Ck,n =
⋃

k≤i+j≤k+1

T i,jk,n, T
i,j
k,n := Ck,n ∩

[ i
2n
,
i+ 1

2n

[
×
[ j
2n
,
j + 1

2n

[
.
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Since ΠΣ(γ) = m0 we have:

P(Ak,n) = γ(Ck,n) =
∑

k≤i+j≤k+1

γ(T i,jk,n)

and since (Ω,F ,P) is non-atomic, it follows from Lyapunov’s convexity the-
orem (see [27]) that there exists a partition of Ak,n into measurable subsets
Ai,jk,n such that

γ(T i,jk,n) = P(Ai,jk,n), ∀(i, j) ∈ {0, ..., 2n} : k ≤ i+ j ≤ k + 1. (4.3)

Choose (y1, y2)
i,j
k,n ∈ T i,jk,n and define

Yn = (Y n
1 , Y

n
2 ) :=

2n+1∑

k=0

∑

k≤i+j≤k+1

(y1, y2)
i,j
k,n1Ai,j

k,n
.

We may also choose inductively the partition of Ak,n by the Ai,jk,n to be finer
and finer with respect to n. By construction, we then have

max
(
‖Xn −X‖L∞, ‖Xn − Y n

1 − Y n
2 ‖L∞, ‖Yn+1 − Yn‖L∞

)
≤ 1

2n

so that Yn is a Cauchy sequence in L∞ thus converging to some Y = (Y1, Y2).
One then has Y1 + Y2 = X and passing to the limit in (4.3), we easily get
that L(Y) = γ.

In the sequel, we shall work with the set of joint laws M(m0) instead of
the set of admissible allocations A(X). Doing so, we will gain both some
linearity and some compactness. Slightly abusing notations, we will call
allocations joint laws in M(m0). Also, for compactness issues, we fix some
closed ball B (centered at 0) in Rd such that m0 is supported by Bp and we
will restrict ourselves to the set of elements of M(m0) supported by pB (that
is we will only consider risk-sharings of X whose components take value in
B). We shall then denote

MB(m0) := {γ ∈ M(m0) : γ(Bp) = 1}.

4.2 Efficiency and comonotonicity in the mutivariate

case

In this section, we shall define several notions of dominance (large and strict),
efficiency and of comonotonicity in terms of joint law.

Let C be the cone of convex and continuous functions on B.
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Definition 4.2. Let γ and π be in MB(m0) then γ dominates π whenever
∫

Bp

∑

i

ϕi(xi)dγ(x1, ..., xp) ≤
∫

Bp

∑

i

ϕi(xi)dπ(x1, ..., xp) (4.4)

for every functions (ϕ1, ..., ϕp) ∈ Cp. If, in addition, inequality (4.4) is strict
whenever the functions ϕi are further assumed to be stricly convex, then γ
is said to dominate strictly π. The allocation γ ∈ MB(m0) is said to be
efficient if there is no other allocation in MB(m0) that strictly dominates it.

One mathematical drawback of the previous definition stems from the
fact that strict convexity is not a closed property which makes it difficult
to attack the notion of efficiency by means of functional analytic methods.
That is why we propose in what follows a somehow quantified version of
strict dominance. Let ω := (ω1, ..., ωp) be a family of C1 and strictly convex
functions on Rd, ω-dominance is then defined by

Definition 4.3. Let γ and π be in MB(m0) then γ ω-strictly dominates π if
inequality (4.4) is strict whenever the functions ϕi are such that ϕi − ωi ∈ C
for i = 1, ..., p. The allocation γ ∈ MB(m0) is said to be ω-efficient if there
is no other allocation in MB(m0) that ω-strictly dominates it.

At this point, let us make a few remarks concerning ω-strict dominance.

Remark 4.4. Let γ and π be in MB(m0) then γ ω-strictly dominates π if
and only if γ dominates π and

∫

Bp

∑

i

ωi(xi)dγ(x1, ..., xp) <

∫

Bp

∑

i

ωi(xi)dπ(x1, ..., xp). (4.5)

In particular for any λ > 0, γ ω-strictly dominates π if and only if γ λω-
strictly dominates π. Of course, γ strictly dominates π if and only if γ
ω-strictly dominates π for any family of strictly convex functions ω.

Remark 4.5. Given γ0 ∈ MB(m0) it is easy to check (taking test functions
ϕi = |xi|n and letting n → ∞) that any γ ∈ M(m0) dominating γ0 (with-
out the a priori restriction that it is supported on Bp) actually belongs to
MB(m0). Hence our choice to only consider allocations supported by Bp is
in fact not a restriction. Indeed, if γ is supported by Bp then efficiency of γ
in the usual sense, i.e. without restricting to competitors supported by Bp,
is equivalent to efficiency among competitors supported by Bp.

Remark 4.6. To clarify the concept of ω-strict dominance, let us consider the
benchmark case where ωi(x) = 1

2
|x|2. Then for any ϕ in C2(B) such that

D2ϕ > 0 (in the sense of symmetric matrices) on B one has that ϕ − λωi
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is convex for small enough λ > 0. In particular, for this quadratic choice
of ωi, if γ ω-strictly dominates π, then inequality (4.4) is strict whenever
the functions ϕi belong to C2(B) and have a strictly positive hessian. More
generally, γ ω-strictly dominates π if inequality (4.4) is strict whenever the
functions ϕi are convex and their hessian matrix (in the sense of distributions)
is bounded from below on B by a strictly positive multiple of the identity
matrix (which is a slightly stronger condition than strict convexity).

We shall now define comonotonicity starting from the following remark,
instead of trying directly to generalize the univariate concept. Let ψ :=
(ψ1, ..., ψp) be a family of strictly convex continuous functions (defined on B)
for any x ∈ pB, let us consider the following infimal convolution problem:

�iψi(x) := inf

{
∑

i

ψi(yi) : yi ∈ B,
∑

i

yi = x

}
.

This problem admits a unique solution which we shall denote

Tψ(x) := (T 1
ψ(x), ..., T pψ(x)).

Note that, by construction

∑

i

T iψ(x) = x, ∀x ∈ pB. (4.6)

The well-defined map x 7→ Tψ(x) gives the optimal way to share x so as to
minimize the total cost when each individual cost is ψi. It thus corresponds
to assigning to each agent a strictly convex cost. Of course, this map defines
an efficient allocation γψ defined by:

γψ := (T 1
ψ, ..., T

p
ψ)♯m0

that is ∫

Bp

f(y1, ..., yp)dγψ(y) :=

∫

pB

f(Tψ(x))dm0(x)

for any f ∈ C(Bp). We then define comonotonicity as follows:

Definition 4.7. An allocation γ ∈ MB(m0) is strictly comonotone if there
exists a family of strictly convex continuous functions ψ := (ψ1, ..., ψp) such
that γ = γψ. Given a family of strictly convex functions in C1(B) ω :=
(ω1, ..., ωp), an allocation γ ∈ MB(m0) is ω-strictly comonotone if there exists
a family of convex continuous functions ψ := (ψ1, ..., ψp) such that ψi−ωi ∈ C
for every i and γ = γψ.
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By construction, any strictly comonotone allocation is efficient and any
ω-strictly comonotone allocation is ω-efficient. To study a kind of converse
implication, we shall need the following (which is natural since neither ω-
efficient nor ω-strictly comonotone allocations form a closed set in general):

Definition 4.8. An allocation γ ∈ MB(m0) is comonotone if there exists
a sequence of strictly comonotone allocations that weakly star converges to
γ. Given a family of strictly convex functions in C1(B), ω := (ω1, ..., ωp),
an allocation γ ∈ MB(m0) is ω-comonotone, if there exists a sequence of
ω-strictly comonotone allocations that weakly star converges to γ.

Definitions 4.7 and 4.8 will be discussed with more details in paragraph
4.4. To understand the previous notions of comonotonicity it is important
to understand precisely the structure of the maps Tψ. Let us first ignore
regularity issues and further assume that the functions ψi are smooth as well
as their Legendre transforms ψ∗

i . If we ignore the constraints xi ∈ B then
the optimality conditions implies that there is some multiplier p = p(x) such
that

∇ψi(T iψ(x)) = p hence T iψ(x) = ∇ψ∗
i (p)

using (4.6) we get

x =
∑

j

∇ψ∗
j (p) hence p = ∇(

∑

j

ψ∗
j )

∗(x)

so that

T iψ(x) = ∇ψ∗
i

(
∇(
∑

j

ψ∗
j )

∗(x)

)
.

The maps T iψ are then composed of gradient of convex functions and sum
up to the identity. In dimension 1, gradients of convex functions simply
are monotone maps (and then so are composed of such maps), in higher
dimensions, we see a richer and more complicated structure emerging.

If we do not ignore any more the constraints that xi ∈ B but still assume
that the ψi’s are smooth then the optimality conditions read as the existence
of a p and a λi ≥ 0 such that

∇ψi(T iψ(x)) = p− λiT
i
ψ(x)

together with the complementary slackness conditions

λi = 0, if T iψ(x) lies in the interior of B.
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4.3 A multivariate dominance result and equivalence
between efficiency and comonotonicity

Let us fix an allocation X ∈ A(X) such that X ∈ Bp a.s. and set γ0 = L(X)
so that γ0 ∈ MB(m0). We are also given ω := (ω1, ..., ωp) a family of C1

and strictly convex functions on B as in section 4.2. Our first main result in
the multivariate case is a dominance result that is very much in the spirit of
what we have already seen in dimension 1, namely that every allocation is
ω-dominated by an ω-comonotone one.

Theorem 4.9. Let γ0 = L(X) and ω be as above. Then there exists γ ∈
M(m0) that is ω-comonotone and dominates γ0. Moreover if γ0 is not itself
ω-comonotone then γ ω-strictly dominates γ0.

The full proof of this result will be given in section 5. It heavily relies on
some linear optimization program and its dual from which we can characterize
some γ satisfying the claim of the previous theorem. Hence in some sense
our proof is constructive.

Theorem 4.9 states that any allocation is dominated by an ω-comonotone
allocation and that this dominance is ω-strict if the initial allocation is not
itself ω-comonotone. In terms of efficiency, we thus have the following

Theorem 4.10. Let γ ∈ MB(m0) and ω be as before. Then

1. if γ is strictly ω-comonotone then it is ω-efficient and thus efficient,

2. if γ is ω-efficient then it is ω-comonotone,

3. the closure for the weak-star topology of ω-efficient allocations coincides
with the set of ω-comonotone allocations.

Proof. 1. follows from the definition. 2. follows from theorem 4.9 and 3.
follows from 1. and 2.

If we further specify ωi(x) := |x|2
2

for every i, then we obtain as an imme-
diate corollary:

Theorem 4.11. Let γ ∈ MB(m0) and ω be quadratic as above. Then there
is an equivalence between:

1. γ is in the weak star closure of weakly efficient allocations, i.e. the set
of allocations π for which there is no other allocation π′ such that

∫

Bp

∑

i

ϕi(xi)dπ
′(x) <

∫

Bp

∑

i

ϕi(xi)dπ(x)
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for every ϕ1, ..., ϕp such for any i there exists αi > 0 such that D2ϕi ≥
αi id on B.

2. γ is ω-comonotone.

4.4 Remarks on multivariate comonotonicity

Comparison with the notion of µ-comonotonicity of [18]. The notion
of multivariate comonotonicity we consider in this paper is to be related to
the notion of µ-comonotonicity proposed by Ekeland, Galichon and Henry in
[18]. Recall the alternative characterization of comonotonicity given in the
univariate case in proposition 2.8 : X1 and X2 are comonotone if and only if
̺µ (X1 +X2) = ̺µ (X1) + ̺µ (X2) for a measure µ that is regular enough. In
dimension d, [18] have introduced the concept of µ-comonotonicity, based on
this idea: if µ is a probability measure on Rd which does not give positive mass
to small sets, two random vectors X1 and X2 on Rd are called µ-comonotone
if and only if

̺µ (X1 +X2) = ̺µ (X1) + ̺µ (X2)

where the (multivariate) maximum correlation functional (see e.g. [33] or
[18]) is defined by

̺µ (X) = sup
Ỹ∼µ

E
(
X · Ỹ

)
.

The authors of [18] show that X1 and X2 are µ-comonotone if and only if
there are two convex functions ψ1 and ψ2, and a random vector U ∼ µ such
that

X1 = ∇ψ1 (U) and X2 = ∇ψ2 (U)

holds almost surely. Therefore, our present notion of multivariate comono-
tonicity approximately consists in declaring X1 and X2 comonotone if and
only if there is some measure µ such that X1 and X2 are µ-comonotone.
There are, however, qualifications to be added. Indeed, [18] require some
regularity on the measure µ. In the current setting we do not impose reg-
ularity restrictions on µ; but we impose restrictions on the convexity of ψ1

and ψ2 to define our notion of ω-comonotonicity before passing to the limit.
Although not equivalent, these two sets of restrictions originate from the
same concern: two random vectors are always optimally coupled with very
degenerate distributions, such as the distribution of constant vectors. There-
fore we need to exclude these degenerate cases in order to avoid a definition
which would be void of substance. This is the very reason why we introduced
the strictly convex functions ωi’s.
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Comonotone allocations do not form a bounded set. In the scalar
case, comonotone allocations are parametrized by the set of nondecreasing
functions summing to the identity map. This set of functions is convex and
equilipschitz hence compact (up to adding constants summing to 0). This
compactness is no longer true in higher dimension (at least when ω = 0
and we work on the whole space instead of B) and we believe that this is a
major structural difference with respect to the univariate case. For simplicity
assume that p = 2, as outlined in paragraph 4.2, a comonotone allocation
(X1, X2) of X is given by a pair of functions that are composed of gradient
of convex functions and sum to the identity map. It is no longer true, in
dimension 2 that this set of maps is compact (up to constants). Indeed let
us take n ∈ N∗, ψ1 and ψ2 quadratic

ψi(x) =
1

2

〈
S−1
i x, x

〉
, i = 1, 2, x ∈ R2

with

S1 =

(
1
2

1
8
√
n

1
8
√
n

1
2n

)
, S2 =

(
1
2

−1
8
√
n

−1
8
√
n

1
2n

)
,

the corresponding map Tψ is linear and T 1
ψ is given by the matrix

S1(S1 + S2)
−1 =

(
1
2

√
n

8
1

8
√
n

1
2

)

this is an unbouded sequence of matrices which proves the unboundedness
claim.

Comonotone allocations do not form a convex set. Another differ-
ence with the univariate case is that the set of maps of the form Tψ used to
define comonotonicity is not convex. To see this (again in the case p = d = 2),
it is enough to show that the set of pairs of 2 × 2 matrices

K := (S1(S1+S2)
−1, S2(S1+S2)

−1), Si symmetric, positive definite, i = 1, 2}

is not convex. First let us remark that if (M1,M2) ∈ K then M1 and M2

have a positive determinant. Now for n ∈ N∗, and ε ∈ (0, 1) consider

S1 =

(
1

√
1 − ε√

1 − ε 1

)
, S2 =

(
1 −

√
1 − ε

−
√

1 − ε 1

)
,

and

S ′
1 =

(
1

√
n− ε√

n− ε n

)
, S ′

2 =

(
1 −

√
n− ε

−
√
n− ε n

)
,
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this defines two elements of K:

(M1,M2) = (S1(S1 + S2)
−1, S2(S1 + S2)

−1),

and
(M ′

1,M
′
2) = (S ′

1(S
′
1 + S ′

2)
−1, S ′

2(S
′
1 + S ′

2)
−1).

If K was convex then the matrix

M1 +M ′
1 =

(
1

√
1−ε
2

+
√
n−ε
2n√

1−ε
2

+
√
n−ε
2

1

)
,

would have a positive determinant which is obviously false for n large enough
and ε small enough.

5 Proofs and variational characterization

Our proofs will very much rely on the following linear programming problem
(which we believe to have its own interest):

(P∗) sup
γ∈K(γ0)

−
∫

Bp

∑

i

ωi(xi)dγ(x)

where K(γ0) consists of all γ ∈ MB(m0) such that for each i the marginal
γi dominates the corresponding marginal of γ0 i.e.:

∫

Bp

ϕ(xi)dγ(x) ≤
∫

Bp

ϕ(xi)dγ0(x), ∀ϕ convex on B.

Problem (P∗) presents some similarities with the multi-marginal Monge-
Kantorovich problem solved by Gangbo and Świȩch in [20]. In the opti-
mal transport problem considered in [20], one minimizes the average of some
quadratic function over joint measures having prerscribed marginals whereas
in (P∗) we have dominance constraints on the marginals. To shorten nota-
tions, let us set

η(x) := −
∑

i

ωi(xi), ∀x = (x1, ..., xp) ∈ Bp

(P∗) is the dual problem (see the next lemma for details) of

(P) inf
{∫

Bp

(∑

i

ϕi(xi) − ϕ0

(∑

i

xi

))
dγ0(x), (ϕ0, ..., ϕp) ∈ E

}
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where E consists of all families ϕ := (ϕ1, ...., ϕp, ϕ0) ∈ C(B)p × C(pB) such
ϕi ∈ C and ∑

i

ϕi(xi) − ϕ0

(∑

i

xi

)
≥ −

∑

i

ωi(xi).

It will also be convenient to consider

(Q) inf
{
J(ψ) , ψ = (ψ1, ..., ψp) : each ψi is such that ψi − ωi is convex

}

with

J(ψ) :=

∫

Bp

(∑

i

ψi(xi) − �iψi

(∑

i

xi

))
dγ0(x).

Note that by construction J(ψ) ≥ 0 for every admissible ψ and J(ψ) = 0 if
and only if γ0 = γψ.

Lemma 5.1. We have

max(P∗) = inf(P) = inf(Q) −
∫

Bp

∑

i

ωi(xi)dγ0(x)

Proof. Let us write (P) in the form

inf
ϕ=(ϕ1,...,ϕp,ϕ0)∈C(B)p×C(pB)

F (Λϕ) +G(ϕ)

where Λ is the linear continuous map C(B)p × C(pB) → C(Bp) defined by

Λϕ(x) :=
∑

i

ϕi(xi) − ϕ0

(∑

i

xi

)
, ∀x = (x1, ..., xp) ∈ Bp,

and F and G are the convex lsc (for the uniform norm of course) functionals
defined respectively by

F (θ) =

{ ∫
Bp θdγ0 if θ ≥ η

+∞ otherwise .

for any θ ∈ C(Bp) and

G(ϕ) =

{
0 if (ϕ1, ..., ϕp) ∈ Cp
+∞ otherwise.

for any ϕ = (ϕ1, ..., ϕp, ϕ0) ∈ C(B)p × C(pB). Since η is bounded on Bp,
it is easy to see that inf(P) is finite and choosing ϕ of the form (M, 0, ..., 0)
with M constant such that M ≥ η + 1 on Bp, we have G(ϕ) = 0 and F
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continuous at Λϕ, it thus follows from Fenchel-Rockafellar’s duality theorem
(see for instance [17]) that one has

inf(P) = max
γ∈M(Bp)

−F ∗(γ0 − γ) −G∗(Λ∗(γ − γ0)).

Note that the fact that the the sup is attained in the primal is part of the
theorem. The adjoint of Λ, Λ∗ is easily computed as : M(Bp) → M(B)p ×
M(pB) (where M denotes the space of Radon measures):

Λ∗γ = (γ1, ..., γp,−ΠΣγ), ∀γ ∈ M(Bp).

Direct computations give

F ∗(γ − γ0) =

{
−
∫
Bp ηdγ if γ ≥ 0

+∞ otherwise .

and

G∗(Λ∗(γ − γ0)) =

{
0 if γ ∈ K(γ0)
+∞ otherwise .

We then have that (P∗) is the dual of (P) in the usual sense of convex
programming and

max(P∗) = inf(P).

To prove that

inf(P) = inf(Q) −
∫

Bp

∑

i

ωi(xi)dγ0(x)

let us take ϕ admissible for (P) and set ψi := ωi + ϕi for i = 1, .., p, the
constraint then reads as

∑

i

ψi(xi) ≥ ϕ0

(∑

i

xi

)
, ∀x ∈ Bp.

Now in (P), one wants to make ϕ0 as large as possible without violating this
constraint, the best ϕ0 given (ϕ1, ..., ϕp) is then

ϕ0 = �iψi,

this proves the desired identity.

Lemma 5.2. Let ψi be such that ψi−ωi ∈ C for every i and g = (g1, ..., gp) ∈
Cp then

lim
δ→0+

1

δ
[J(ψ + δg) − J(ψ)] =

∑

i

∫

B

gi(xi)d(γ
i
0 − γiψ)

=

∫

Bp

∑

i

gi(xi)d(γ0 − γψ)(x)
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Proof. For δ > 0, we first have

1

δ
[J(ψ + δg) − J(ψ)] =

∑

i

∫

B

gi(xi)d(γ
i
0)−

∫

pB

1

δ

(
�i(ψi + δgi)(x) − �iψi(x)

)
dm0(x).

And let us remark that the integrand in the second term is bounded since g
is. Let us then fix some (x1, ..., xp) ∈ Bp and set x =

∑
i xi, yi := T iψ(x) and

yδi := Tψ+δg(x). Since
∑

i yi =
∑

i y
δ
i = x, we have as a direct consequence of

the definition of infimal convolutions:

1

δ

(
�i(ψi + δgi)(x) − �iψi(x)

)
≤
∑

i

gi(yi) (5.1)

and
1

δ

(
�i(ψi + δgi)(x) − �iψi(x)

)
≥
∑

i

gi(y
δ
i ). (5.2)

Using the compactness of B and the strict convexity of ψi, it is easy to check
that yδi → yi as δ → 0+. We thus deduce from (5.1) and (5.2) that

lim
δ→0+

1

δ

(
�i(ψi + δgi)(x) − �iψi(x)

)
=
∑

i

gi(T
i
ψ(x))

and this holds for every x ∈ pB. It then follows from Lebesgue’s dominated
convergence Theorem that

lim
δ→0+

1

δ
[J(ψ + δg) − J(ψ)] =

∑

i

∫

B

gi(xi)d(γ
i
0) −

∑

i

∫

pB

gi(T
i
ψ(x))dm0(x)

=
∑

i

∫

B

gi(xi)d(γ
i
0 − γiψ) =

∫

Bp

∑

i

gi(xi)d(γ0 − γψ)(x).

It follows from the previous lemma that, if ψ solves (Q), then γψ domi-
nates γ0. Hence, if we knew that (Q) possesses solutions, the existence of an
ω-strictly comonotone allocation dominating γ0 would directly follow. Unfor-
tunately, it is not necessarily the case that the infimum in (Q) is attained-or
at least we haven’t been able to prove without additional conditions- the dif-
ficulty coming from the fact that minimizing sequences need not be bounded
(see paragraph 4.4). Maybe additional assumptions on γ0 (here we recall
that we made no assumption such as absence of atoms) would guarantee
existence, but in the following, we shall overcome the difficulty by using
Ekeland’s variational principle:
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Lemma 5.3. Let ε > 0, there exists ψε admissible for (Q) such that

1. J(ψε) ≤ inf(Q) + ε

2.

lim sup
ε→0+

∫

Bp

∑

i

ϕi(xi)d(γψε
− γ0) ≤ 0

for every (ϕ1, ..., ϕp) ∈ Cp

3.

lim inf
ε→0+

∫

Bp

∑

i

ϕεi (xi)d(γψε
− γ0) ≥ 0

for ϕεi = ψi,ε − ωi (these are convex functions by definition).

Proof. For ε > 0, let fε be admissible for (Q) and such that

J(fε) ≤ inf(Q) + ε.

Let then kε > 0 be such that

lim
ε→0+

εkε[1 + ‖fε‖] = 0 (for instance kε =
1

ε1/2(1 + ‖fε‖)
). (5.3)

It follows from Ekeland’s variational principle (see [16] and [4]) that for every
ε > 0, there is some ψε admissible for (Q) such that

‖ψε − fε‖ ≤ 1

kε
, J(ψε) ≤ J(fε) ≤ inf(Q) + ε (5.4)

(where ‖h‖ stands for the sum of the uniform norms of the hi’s) and:

J(ψ) ≥ J(ψε) − kεε‖ψ − ψε‖, ∀ψ = (ψ1, ..., ψp) : ψi − ωi ∈ C, ∀i. (5.5)

Taking ψ = ψε+ δϕ with δ > 0 and ϕ ∈ Cp in (5.5), dividing by δ and letting
δ → 0+, we thus get thanks to lemma 5.2

∫

Bp

∑

i

ϕi(xi)d(γ0 − γψε
) ≥ −kεε‖ϕ‖. (5.6)

Using (5.3) and letting ε → 0+ we then obtain:

lim sup
ε→0+

∫

Bp

∑

i

ϕi(xi)d(γψε
− γ0) ≤ 0 (5.7)
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for every (ϕ1, ..., ϕp) ∈ Cp. Let us finally prove the last assertion of the
lemma; let us write ψε = ϕε + ω with ϕε ∈ Cp, then for δ ∈ (0, 1) we have
ψε−δϕε = (1−δ)ϕε+ω and then we may apply (5.5) to ψε−δϕε, this yields

1

δ
[J(ψε − δϕε) − J(ψε)] ≥ −kεε‖ϕε‖

letting δ → 0+ and arguing as in lemma 5.2, we obtain:
∫

Bp

∑

i

ϕεi (xi)d(γψε
− γ0) ≥ −kεε‖ϕε‖.

Thanks to (5.3) and (5.4), we have

kεε‖ϕε‖ ≤ kεε(‖ω‖+‖ψε−fε‖+‖fε‖) ≤ kεε‖ω‖+ε+kεε‖fε‖ → 0 as ε→ 0+.

This enables us to conclude that

lim inf
ε→0+

∫

Bp

∑

i

ϕεi (xi)d(γψε
− γ0) ≥ 0. (5.8)

Lemma 5.4. Let ψε be as in lemma 5.3 and set γε := γψε
then up to some

subsequence, γε weakly star converges to some γ (ω-comonotone by construc-
tion) such that γ ∈ MB(m0) and γ dominates γ0. Moreover γ solves (P∗).

Proof. By the Banach-Alaoglu-Bourbaki theorem, we may indeed assume
that γε weakly star converges to some γ. Obviously, γ is ω-comonotone and
ΠΣγ = ΠΣγ0 = m0 hence γ ∈ MB(m0). The fact that γ dominates γ0

directly follows from letting ε → 0+ in (5.7). Let us finally prove that γ
solves (P∗). Defining ϕε := ψε − ω as in lemma 5.3 we have:

J(ψε) =

∫

Bp

∑

i

ϕεi (xi)d(γ0 − γε) +

∫

Bp

ηd(γε − γ0) → inf(Q) as ε→ 0+.

Passing to the limit in (5.8) thus yields

inf(Q) ≤
∫

Bp

ηd(γ − γ0)

which with lemma 5.1 gives:
∫

Bp

ηdγ ≥ inf(Q) +

∫

Bp

ηdγ0 = max(P∗)

so that γ solves (P∗).
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Lemma 5.5. Let γ be as in lemma 5.4, then:

1. if γ0 solves (P∗) then γ0 is ω-comonotone,

2. γ ω-strictly dominates γ0 unless γ0 is itself ω-comonotone.

Proof. If γ0 solves (P∗), it follows from lemma 5.1 that inf(Q) = 0. For any
minimizing sequence ψε (not necessarily the one constructed in lemma 5.3)
of (Q) we thus have

0 = lim
ε→0+

J(ψε) = lim
ε→0+

∫

Bp

(∑

i

ψi,ε(xi) − �iψi,ε

(∑

i

xi

))
dγ0(x)

= lim
ε→0+

∫

Bp

(∑

i

ψi,ε(xi) −
∑

i

ψi,ε

(
T iψε

(∑

i

xi

)))
dγ0(x).

By density, we may consider a minimizing sequence ψε such that each ψε
belongs to C1(B). Let us fix (x1, ..., xp) and set x :=

∑
i xi, y

ε := Tψε
(x) can

be characterized as follows : there is a p ∈ Rd and nonnegative λi’s such that

∇ψi,ε(yεi ) = p− λiy
ε
i , λi = 0 if yεi /∈ ∂B,

∑

i

yεi = x. (5.9)

On the other hand since ωi is strictly convex and ψi,ε− ωi ∈ C for any a and
b in B2 one has

ψi,ε(b) − ψi,ε(a) ≥ ∇ψi,ε(a) · (b− a) + θi(|b− a|) (5.10)

where the function θi is defined by, for any t ∈ [0, diam(B)]

θi(t) := inf{ωi(b) − ωi(a) −∇ωi(a) · (b− a), (a, b) ∈ B2, |a− b| ≥ t}.

The function θi (modulus of strict convexity of ωi) is a nondecreasing function
such that θi(0) = 0 and θi(t) > 0 for t > 0. Combining (5.9) and (5.10), we
get
∑

i

ψi,ε(xi) −
∑

i

ψi,ε(y
ε
i ) ≥

∑

i

∇ψi,ε(yεi ) · (xi − yεi ) +
∑

i

θi(|xi − yεi |)

= p ·
∑

i

(xi − yεi ) −
∑

i

λiy
ε
i (xi − yεi ) +

∑

i

θi(|xi − yεi |)

≥
∑

i

θi(|xi − yεi |).

Hence the fact that J(ψε) → 0 as ε → 0+ gives

lim
ε→0+

∫

Bp

∑

i

θi(|xi − T iψε
(
∑

j

xj)|)dγ0(x) = 0
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so that
Tψε

(
∑

j

xj) − x→ 0 as ε→ 0+ for γ0-a.e. x.

By Lebesgue’s dominated convergence theorem, we thus have for all f ∈
C(Bp):
∫

Bp

f(x)dγ0(x) = lim
ε→0+

∫

Bp

f(Tψε
(
∑

j

xj))dγ0(x) = lim
ε→0+

∫

pB

f(Tψε
(x))dm0(x)

= lim
ε→0+

∫

Bp

fdγψε
.

Hence, γψε
weakly star converges to γ0 which proves that γ0 is ω-comonotone.

Let us now prove 2. If γ0 is not ω-comonotone then by 1., it does not
solve (P∗) and thus

∫
ηd(γ − γ0) > 0 so that

∫

Bp

∑

i

ωi(xi)dγ <

∫

Bp

∑

i

ωi(xi)dγ0

and then γ ω-strictly dominates γ0 (see remark 4.4).

6 Concluding remarks

In this paper, we have first revisited Landsberger and Meilijson’s comono-
tone dominance principle. We gave a self-contained proof using monotone
rearrangements. Actually, a second possible proof (based on the variational
scheme we introduced in the multivariate setting), which directly covers the
many agents case works as follows. Let X ∈ L∞, X = (X1, ..., Xp) ∈ A(X)
and γ0 := L(X). Let (ψn) be a minimizing sequence for problem (Q). There
is no reason for (ψn) to be bounded in general. However, in one dimension
each maps x 7→ T iψn

is monotone (as a composition of two monotone maps).
By Ascoli’s theorem, one may therefore assume that Tψn

(X) converges to
some comonotone allocation of X. By the same arguments as in section 5,
this comonotone allocation dominates X.

We have then extended the univariate theory of efficient risk-sharing to
the case of several goods without perfect substituability, and we derived
tractable implications. The main findings of this work are the following:

• the intrinsic difficulty of the multivariate case, as many features of
the univariate case do not extend to higher dimensions: computational
ease, the compactness and convexity of efficient risk-sharing allocations.
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• the relevance of specific techniques, in particular convex programming.
While the analysis in [18] rests upon optimal transportation techniques,
the present paper heavily relies on convex programming and variational
analysis (e.g. Ekeland’s variational principle) to handle this type of
questions. Indeed, most of the questions related to convex ordering
can be restated in terms of cone programming problem and can be
attacked by duality.

• the need for qualification. Contrary to the univariate case, the need to
quantify strict convexity as we did in this paper comes by no coinci-
dence. In fact, just as the authors of [18] impose regularity conditions
on their “baseline measure” to avoid degeneracy, we work with cones
which are strictly included in the cone of convex functions by quanti-
fying the strict convexity of the functions used.
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