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Abstract. We obtain new a priori estimates for spatially inhomogeneous so-
lutions of a kinetic equation for granular media, as first proposed in [3] and,
more recently, studied in [1]. In particular, we show that a family of con-
vex functionals on the phase space is non-increasing along the flow of such
equations, and we deduce consequences on the asymptotic behaviour of solu-
tions. Furthermore, using an additional assumption on the interaction kernel
and a “potential for interaction”, we prove a global entropy estimate in the
one-dimensional case.

1. Introduction. We are concerned with kinetic models of granular media as de-
rived in [3, 4, 1]. More precisely, let d ≥ 1 be an integer, and consider a system of
N identical particles (e.g., grains) moving in R

d. Assume that the particles move
freely up to an instant when two of them occupy the same position; then they collide
(inelastically) at this position according to an interaction rule to be defined later.
After collision, they acquire new velocities, and then continue to move freely until
another collision occurs. Let xi(t) ∈ R

d and vi(t) ∈ R
d denote the respective posi-

tion and velocity of particle i ∈ {1, 2, · · · , N} at time t ∈ [0,∞), and let (x0i , v
0
i ) be

its initial position and velocity. Then (very formally) the motion of the N particles
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is described by the system of ODE’s considered in [3]




ẋi(t) = vi(t)

v̇i(t) = α
∑N

j=1 δ(xi − xj)∇W (vj − vi)

xi(0) = x0i ; vi(0) = v0i

(1)

whereW is an interaction potential describing the interaction rule between particles,
and α > 0 is a constant measuring the degree of the inelasticity of the collisions
between particles. Here δ denotes the Dirac measure centered at the origin. The
second equation in (1), having a measure in the right-hand side, does not really
make sense. A reasonable way to correct this conceptual error from [3] is to replace
the Dirac measure δ by a C∞

c (Rd) approximation ξε, where eventually ε → 0 (see
[4]). The mollified equation of (1) then becomes






ẋi(t) = vi(t)

v̇i(t) = α
∑N

j=1 ξε(xi − xj)∇W (vj − vi)

xi(0) = x0i ; vi(0) = v0i .

(2)

The mollified system (2) expresses the fact that collisions between particles occur
when they are within a distance ε > 0 to each other, as opposed to (1) where
collisions are only allowed when the particles are exactly at the same position.

Since the number of particles is assumed to be very large, N → ∞, it is rea-
sonable to describe the system with a kinetic equation. In this case, following the
arguments in [3, 4, 1], one can show that when N → ∞ and α → 0 with the scal-
ing limit assumption Nα → λ, where λ > 0 is a parameter, the kinetic equation
corresponding to the system (2) is

∂tf + v · ∇xf = λdivv [(Gε ⋆ f)f ] , f |t=0 = f0 (3)

where

Gε(x, v) = ξε(x)∇W (v)

and the convolution Gε ⋆ f is with respect to both variables x and v, i.e.,

[Gε ⋆ f ](t, x, v) =

∫

Rd×Rd

Gε(x − y, v − u)f(t, y, u) dy du

=

∫

Rd×Rd

ξε(x − y)∇W (v − u)f(t, y, u) dy du. (4)

Here, f(t, x, v) denotes the one-particle distribution function, that is, the probability
density of particles which at time t > 0 occupy a position x ∈ R

d and move with
a velocity v ∈ R

d, and f0(x, v) is the corresponding initial probability density. In
fact, f(t, x, v) (resp. f0(x, v)) can be viewed as the limit of the discrete probability

measure µt =
1
N

∑N
j=1 δ(xj(t),vj(t)) (resp. µ0 = 1

N

∑N
j=1 δ(x0

j
,v0

j)
) as the number of

particles N → ∞, where (xj(t), vj(t)) solves (2) for j = 1, 2, · · · , N , (see [15]).
Finally, sending ε→ 0 in (4), we formally have,

lim
ε→0

[Gε ⋆ f ](t, x, v) =

∫

Rd

∇W (v − u)f(t, x, u) du = (∇W ∗v f)(t, x, v)

so that the kinetic equation associated with the discrete system (1) is the limiting
equation of (3) as ε→ 0, which reads

∂tf + v · ∇xf = λdivv

(
(∇W ∗v f)f

)
, f |t=0 = f0, (5)
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where the convolution ∇W ∗v f is with respect to the velocity variable only i.e.
(∇W ∗v f)(x, v) =

∫
Rd ∇W (v−u)f(x, u)du. Throughout the paper, we will assume

that

• the Cauchy datum f0 is a bounded probability density on the phase space
(x, v) ∈ R

d ×R
d, f0 ∈ L1 ∩L∞(Rd ×R

d), f0 ≥ 0,
∫
Rd×Rd f0(x, v)dxdv = 1, it

is compactly supported i.e. there exist R1 > 0 and R2 > 0 such that

supp(f0) ⊂ BR1 ×BR2 ⊂ BR ×BR with R := max(R1, R2), (6)

which in particular implies:
∫

Rd×Rd

(|x|2 + |v|2)f0(x, v)dxdv < +∞. (7)

• the interaction potential W : Rd → [0,∞) is strictly convex, C2, and radially
symmetric, i.e.,

W (z) = w(|z|), (8)

where w : [0,∞) → [0,∞) is a strictly convex, non-decreasing C2 function
with w′(0) = 0.

Typical examples of such interaction potentials are W (v) = |v|p/p where p ≥ 2, see
[3, 4, 16]. We are interested in global estimates for solutions to the kinetic equation
(5). Let us remark that the spatially homogeneous case (i.e. f depending on t and
v only) associated with (5) has been very much studied (see [3, 8, 9, 14, 6, 10] and
the references therein), and existence, uniqueness and long-time behavior are well
understood in this case. In fact, the spatially homogeneous version of (5) can be
seen as the Wasserstein gradient flow of the interaction energy associated to λW ,
and then well-posedness results can be viewed as a consequence of the powerful
theory of Wasserstein gradient flows (see [2]).

In contrast, for the spatially inhomogeneous kinetic equation (5), very few exis-
tence results are available in the literature. Understanding under which conditions
one can hope for global existence or on the contrary expect explosion in finite time
is an open question. Regarding the question of existence of solutions to the kinetic
equation (5), local existence and uniqueness of a classical solution was proved in
one dimension in [3] for the potential W (v) = |v|3/3 when the initial datum f0 is a
non-negative integrable function satisfying f0 ∈ C1 ∩W 1,∞(R × R) with compact
support in the velocity space. As for global existence of solutions to (5), it was also
proved in [3] again in one dimension and for the cubic potential, for a compactly (in
position and velocity) suppported f0 and under an additional smallness assumption
on the parameter λ, i.e. λ < λ0 for some λ0 = λ0 (f0) depending on the support and
L∞ norm of the initial datum f0. The global existence proof of [3] uses the method
of characteristics, a fixed point argument and an a priori L∞ bound. We will show
in section 2.1 that this L∞ a priori bound naturally extends to any dimension d ≥ 1,
and to any interaction potential of the form W (v) = |v|p/p, provided p > 3− d.

In [1], the first author has extended the local existence result of [3] to more
general interaction potentials W and to any dimension, d ≥ 1. More precisely,
he proved that when W satisfies the assumptions imposed above, and 0 ≤ f0 ∈
L1 ∩L∞(Rd ×R

d) with compact support in the velocity space, then (5) has a weak
solution in some time interval [0, T0), where T0 = 1

C‖f0‖L∞

and C is a constant that

depends on the dimension d and the velocity support of f0. The proof given in
[1] is based on a splitting of the kinetic equation (5) into a free transport equation
in x, and a collision equation in v that is interpreted as the gradient flow of a
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convex interaction energy with respect to the quadratic Wasserstein distance. The
splitting scheme of [1] just requires an L∞ bound on f0, so as soon as one has an
L∞ bound up to some time T ≥ T0, one can extend the solution after time T . One
can therefore define maximal solutions on some interval [0, T ∗) with T ∗ ∈ [T0,+∞]
and in case where such solutions are not global i.e. T ∗ < +∞, ‖ft‖L∞ necessarily
tends to +∞ as t→ T ∗. As for the long-time behavior of solutions when T ∗ = +∞,
to our knowledge, there were no results in the literature.

Still, the general global existence/non existence question is mainly open: what
happens for other values of the parameter λ > 0? Do solutions still exist globally in
time, or do they concentrate in finite time (i.e., is there a formation of a Dirac in
finite time)? Answering this question in full generality is clearly very difficult, and
we cannot provide an answer in this note. However, we are able to provide some
a priori estimates which shed some light on these issues. As we shall see later, our
a priori estimates seem to suggest that the global in time existence or eventually
finite-time blow-up of solutions to (5) depends on the nature of the interaction
potential W .

Section 2 is devoted to preliminary results. In section 3, we observe that integrals
of convex functions of (x− tv, v) are nonincreasing along the flow of (5) and deduce
various consequences from this observation, in particular the asymptotic behavior of
solutions to (5). In section 4, we obtain, in dimension one, a global entropy bound
under the assumption that W ′′ is subquadratic near zero and show, considering the
quadratic kernel, that this bound cannot be true in general.

2. Preliminaries. The following notations will be used in the paper. For a Borel
set B ⊂ R

d, |B| will denote the Lebesgue measure of B, and 1B will be the char-
acteristic function of B. The support of a function f will be denoted by supp(f),
and BR (resp. BR(x)) will stand for the closed ball in R

d centered at the origin
(resp. at x) with radius R. Throughout the paper C will denote a positive constant
that may change values from one line to another. In what follows f will denote a
solution of (5) defined on a maximal time interval [0, T ∗) with T ∗ ∈ (0,+∞]. We
shall sometimes denote f(t, x, v) as ft(x, v) and f(t, ., .) as ft, and for convenience,
we sometimes omit the volume elements in the integrals.

We start by recalling some properties of the kinetic equation (5); we refer to [1]
for the proofs.

• Mass conservation: the total mass,
∫
Rd×Rd f(t, x, v) dxdv, is conserved

along (5):
∫

Rd×Rd

f(t, x, v) dxdv =

∫

Rd×Rd

f0(x, v) dxdv ∀ t ∈ [0, T ∗), (9)

so ft are probability densities since we have assumed that f0 has total mass 1.
• Momentum conservation: the momentum,

∫
Rd×Rd vf(t, x, v) dxdv, is con-

served along (5):
∫

Rd×Rd

vf(t, x, v) dxdv =

∫

Rd×Rd

vf0(x, v) dxdv ∀ t ∈ [0, T ∗). (10)

• Decrease of moments of order p ≥ 2: all the p-moments in v for p ≥
2,
∫
Rd×Rd |v|

pf(t, x, v) dxdv, decrease along (5). This implies (letting p →

∞) that the velocity support of a solution f(t, x, v) to (5) stays compactly
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supported for all times [1],

supp (f(t, x, .)) ⊂ BR2 ∀x ∈ R
d, t ∈ [0, T ∗). (11)

And since the equation satisfied by x in the characteristic system associated
with (5) is

ẋ(t) = v(t) ∈ BR2 , x(0) = x0 ∈ BR1 ,

it easily follows that

supp (ft) ⊂ BR1+tR2 ×BR2 . (12)

In fact, we shall actually see in remark 2 in section 3 a slightly more precise
result:

supp (ft) ⊂ Q(t) := {(x, v) : (x− tv, v) ∈ BR1 ×BR2}, (13)

which in particular implies that

supp (ft(x, .)) ⊂ S(x, t) := BR1
t

(x
t

)
∩BR2 , (14)

and then also

| supp (ft(x, .)) | ≤ ωd

(
min(

R1

t
, R2)

)d
, diam(supp (ft(x, .))) ≤ 2min(

R1

t
, R2),

(15)
where ωd := |B1|.

2.1. L∞ a priori bound in R
d for potentials W (v) = |v|p/p. Assume here that

W (v) = |v|p/p with p > 3 − d. Following [3, section 3], we also assume that (5)
has a classical solution f ∈ C1

(
[0,+∞)× R

d × R
d
)
. We have the following L∞ a

priori bound on ft, t ∈ [0,∞).

Lemma 2.1. If λ < λ0 := 1
4Cγ‖f0‖L∞

, where C > 0 is a constant depending on d,

p and R = max(R1, R2), and γ =
∫∞

0 h(t)p+d−2 dt < ∞ with h(t) := min(R,R/t),
then

sup
t∈[0,∞)

‖ft‖L∞ ≤ 2‖f0‖L∞ . (16)

Proof. Denoting F = −∇W ∗v f , the characteristic system associated with (5) is

Ẋ(t, x, v) = V (t, x, v) V̇ (t, x, v) = λF (t,X(t, x, v), V (t, x, v))

X(0, x, v) = x, V (0, x, v) = v.

Then rewriting (5) as

∂tf + v · ∇xf + λF · ∇vf = λf(∆W ∗v f), f |t=0 = f0,

we have along the characteristics, that f solves

d

dt
[f (t,X(t), V (t))] = λ [f(∆W ∗v f)] (t,X(t), V (t)) .

Integration over [0, t] yields

f (t,X(t), V (t)) = f0(x, v) + λ

∫ t

0

[f(∆W ∗v f)] (s,X(s), V (s)) ds. (17)
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Now, we estimate f(t, x, v) (∆W ∗v f) (t, x, v). Let us first recall that from (14),
supp (f(t, ·, x)) ⊂ S(x, t) = BR1

t

(xt ) ∩ BR2 . Since S(x, t) has diameter less than

2h(t) and measure less than ωdh(t)
d, and using ∆W (u) = (p+ d− 2)|u|p−2 we get:

f(t, x, v) (∆W ∗v f) (t, x, v) ≤ ‖ft‖L∞1S(x,t)(v)

∫

S(x,t)

∆W (v − u)ft(x, u)du

≤ C‖ft‖
2
L∞ |S(x, t)| diam(S(x, t))p−2 ≤ C‖ft‖

2
L∞h(t)p+d−2.

Combining the previous inequality with (17), integrating over time and setting
δ := supt∈[0,∞) ‖ft‖L∞ , we thus have

δ ≤ ‖f0‖L∞ + λCγδ2. (18)

Then using the continuity of t 7→ ft, we conclude (16) provided λ < λ0 :=
1

4Cγ‖f0‖L∞

.

Remark 1. As explained in the proof of [3, Theorem 3.2], the above L∞ a priori-
bound is the main step to obtain the global existence of a classical solution to
(5), provided the parameter λ is small enough, λ < λ0, as defined in Lemma 2.1.
One could of course rephrase the previous result in terms of smallness of the initial
datum instead of the parameter λ: the previous L∞ bound similarly holds if λ = 1
and ‖f0‖L∞ < 1

4Cγ .

For simplicity, we assume from now on that λ = 1, otherwise we just replace the
interaction potential W by λW . Then the kinetic equation (5) becomes

∂tf + v · ∇xf = divv

(
(∇W ∗v f)f

)
, f |t=0 = f0. (19)

2.2. A reverse H-theorem. The fact that solutions of (19) obey a reverse H-
theorem was first observed in [3]; more precisely, the following was established in
[1].

Lemma 2.2. If U : [0,∞) → R is C1(0,∞), convex and satisfies U(0) = 0, then
the functional U(f)(t) :=

∫
Rd×Rd U (f(t, x, v)) dxdv is nondecreasing along (19):

dU(f)

dt
=

∫

Rd×Rd×Rd

∆W (v − u) [PU (f)] (t, x, v)f(t, x, u) dxdudv ≥ 0, (20)

where PU (r) = rU ′(r) − U(r) denotes the pressure associated with U .
In particular if U(r) = r ln r, then the entropy satisfies

d

dt

∫

Rd×Rd

ft ln ft dxdv =

∫

Rd×Rd×Rd

∆W (v − u)f(t, x, v)f(t, x, u) dxdu dv ≥ 0.

(21)

Proof. Since U is convex and U(0) = 0, then PU (r) ≥ 0 for all r > 0. Also
since U(0) = 0, we have that U (f(t, x, v)) = 0 on the subset of (x, v) ∈ R

d ×
R

d where f(t, x, v) vanishes; so the internal energy can be written as U(f)(t) :=
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∫
[f>0] U (f(t, x, v)) dxdv. Therefore, we can assume w.l.o.g. that f > 0 in U(f)(t).

Integrating by parts, we have

dU(f)

dt
=

∫

Rd×Rd

U ′(f) divv (f(∇W ∗v f)) dxdv −

∫

Rd×Rd

U ′(f) divx(vf) dxdv

=

∫

Rd×Rd

fU ′(f) divv (∇W ∗v f) dxdv +

∫

Rd×Rd

U ′(f)∇vf · (∇W ∗v f) dxdv

+

∫

Rd×Rd

f∇x (U
′(f)) · v dxdv

=

∫

Rd×Rd

fU ′(f) divv (∇W ∗v f) dxdv +

∫

Rd×Rd

∇v (U(f)) · (∇W ∗v f) dxdv

+

∫

Rd×Rd

∇x (PU (f)) · v dxdv

=

∫

Rd×Rd

PU (f) divv (∇W ∗v f) dxdv,

that is (20). If U(r) = r ln r, then PU (r) = r and (21) follows.

Note in particular that all Lp norms of ft are nondecreasing in t, by choosing
U(r) = rp in Lemma 2.2.

3. Asymptotics. Let us define the density gt (solution evaluated on the free flow)
by
∫

Rd×Rd

ϕ(y, v)gt(y, v)dydv =

∫

Rd×Rd

ϕ(x − tv, v)ft(x, v)dxdv, ∀ϕ ∈ Cc(R
d × R

d)

so that g0 = f0 and gt(y, v) = ft(y + tv, v). Denoting by Cb(R
d × R

d) the space of
continuous and bounded functions on R

d × R
d, we then have the following result;

the key step in the proof is an adaptation of an argument of Illner and Rein [13]:

Theorem 3.1. Let ft be a solution of (19) globally defined on the time interval
[0, T ∗), and gt be the density defined as above. Then we have

1. for every ϕ convex on R
d × R

d, the map

t ∈ [0, T ∗) 7→

∫

Rd×Rd

ϕ(y, v)gt(y, v)dydv =

∫

Rd×Rd

ϕ(x− tv, v)ft(x, v)dxdv

is nonincreasing,
2. there exists a probability measure g∗ on R

d×R
d such that gt converges weakly

to g∗ as t→ T ∗ i.e.

lim
t→T∗

∫

Rd×Rd

ϕ(y, v)gt(y, v)dydv =

∫

Rd×Rd

ϕ(y, v)dg∗(y, v) (22)

for every ϕ ∈ Cb(R
d × R

d).

Proof. 1. Let ϕ = ϕ(y, v) be some (smooth, say) convex function. Following [13],
we have,

d

dt

( ∫

Rd×Rd

ϕ(x − tv, v)ft(x, v)dxdv
)
= −

∫

Rd×Rd

∇yϕ(x− tv, v) · vft(x, v)dxdv

+

∫

Rd×Rd

ϕ(x− tv, v)∂tft(x, v)dxdv.
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To compute the second term, we set ψt(x, v) := ϕ(x − tv, v), use (19) and perform
integrations by parts (recall that ft is compactly supported thanks to (12)), to get:

d

dt

( ∫

Rd×Rd

ϕ(x − tv, v)ft(x, v)dxdv
)
= −

∫

Rd×Rd

∇yϕ(x− tv, v) · vft(x, v)dxdv

+

∫

Rd×Rd

∇yϕ(x− tv, v) · vft(x, v)dxdv

−

∫

Rd×Rd

∇vψt(x, v)(∇W ∗v ft)(x, v)ft(x, v)dxdv

= −

∫

Rd×Rd×Rd

∇W (v − u) · ∇vψt(x, v)ft(x, u)ft(x, v)dxdudv

= −

∫

Rd×Rd×Rd

∇W (u− v) · ∇vψt(x, u)ft(x, v)ft(x, u)dxdvdu,

and then using the fact that ∇W is odd, we get

d

dt

∫

Rd×Rd

ϕgt = −
1

2

∫

R3d

∇W (u−v)·(∇uψt(x, u)−∇vψt(x, v))ft(x, v)ft(x, u)dxdvdu.

(23)
We finally use the radial symmetry of W :

∇W (u − v) = w′(|u− v|)
u− v

|u − v|

and the convexity of ψt(x, .) to deduce that the right hand side of (23) is nonpos-
itive. The case of a general not necessarily smooth convex ϕ follows by standard
approximation arguments.

2. Applying 1. to ϕ(y, v) := |y|2 + |v|2 we see that

sup
t∈[0,T∗)

∫

R2d

(|y|2 + |v|2)gt(y, v)dydv ≤

∫

R2d

(|x|2 + |v|2)f0(x, v)dxdv. (24)

In particular the family of probability measures (gt)t∈[0,T∗) is tight. Thanks to
Prokhorov’s theorem, this implies that there exists a probability measure g∗ on
R

d × R
d (with finite second moment) and a sequence tn converging to T ∗ such

∫

Rd×Rd

ϕ(y, v)gtn(y, v)dydv →

∫

Rd×Rd

ϕ(y, v)dg∗(y, v), ∀ϕ ∈ Cb(R
d × R

d). (25)

Now we shall use assertion 1. to prove that the whole family gt converges weakly
to g∗ as t → T ∗. Let us first take a convex function ϕ such that for some C ≥ 0,
one has

− C ≤ ϕ(y, v) ≤ C(1 + |y|+ |v|), ∀(y, v) ∈ R
d × R

d. (26)

We know from assertion 1. that
∫
Rd×Rd ϕgt dxdv is nonincreasing. Since it is also

bounded from below, it converges as t→ T ∗. We shall now prove that it necessarily
converges to

∫
Rd×Rd ϕdg

∗(x, v). For R > 0, let χR be some smooth cutoff function:
0 ≤ χR ≤ 1 with χR = 1 on BR ×BR and χR = 0 outside of BR+1 ×BR+1. Then
on the one hand, thanks to (24), we have for some constantM and every t ∈ [0, T ∗)

∫

Rd×Rd

|ϕ|(1− χR)d(gt + g∗)(x, v) ≤
M

1 +R
.

On the other hand, thanks to (25), for any R > 0,

lim
n→∞

∫

Rd×Rd

χRϕgtndxdv =

∫

Rd×Rd

χRϕdg
∗(x, v).
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Since we have∣∣∣∣
∫

Rd×Rd

ϕgtndxdv −

∫

Rd×Rd

ϕdg∗(x, v)

∣∣∣∣ ≤
∣∣∣∣
∫

Rd×Rd

χRϕgtn −

∫

Rd×Rd

χRϕdg
∗

∣∣∣∣

+

∫

Rd×Rd

|ϕ|(1 − χR)d(gtn + g∗)

≤

∣∣∣∣
∫

Rd×Rd

χRϕgtn −

∫

Rd×Rd

χRϕdg
∗

∣∣∣∣+
M

1 +R
,

we deduce that
∫
Rd×Rd ϕgtndxdv converges to

∫
Rd×Rd ϕdg

∗(x, v). Using the mono-

tonicity of t 7→
∫
Rd×Rd ϕgtdxdv, we deduce that

∫
Rd×Rd ϕgtdxdv converges to∫

Rd ϕdg
∗(x, v) as t→ T ∗.

Let us now take ϕ ∈ C2
c (R

d ×R
d) supported on BR ×BR, and let Φ be a convex

nonnegative function on R
d×R

d which satisfies (26) for some C and coincides with
|y|2 + |v|2 on BR+1 × BR+1. Then for M such that M ≥ ‖D2ϕ‖L∞ , MΦ − ϕ is
convex (and obeys a sublinear estimate of type (26)). Since ϕ is the difference of the
two convex functions (with at most linear growth) MΦ and MΦ− ϕ, the previous
step implies that (22) holds for any ϕ ∈ C2

c (R
d × R

d). Passing from C2
c (R

d × R
d)

to Cb(R
d×R

d) in (22) then follows from (24) and classical truncation/mollification
arguments.

The previous result has a certain number of straightforward but useful conse-
quences.

Remark 2. If f0 = g0 has a support included in a compact and convex set K then
taking dist(.,K) as convex test function in assertion 1, we deduce that

∫

Rd×Rd

dist((y, v),K)gt(y, v)dydv ≤

∫

Rd×Rd

dist((x, v),K)f0(x, v)dxdv = 0

so that supp(gt) ⊂ K for every t hence supp(ft) ⊂ {(x, v) : (x − tv, v) ∈ K}. In
particular taking K = BR1 ×BR2 we exactly obtain (13).

Remark 3. Taking ϕ(y, v) = |y|2, we immediately deduce from assertion 1. that
∫

Rd×Rd

|x− tv|2ft(x, v)dxdv ≤

∫

Rd×Rd

|x|2f0(x, v)dxdv

and then ∫

Rd×Rd

|
x

t
− v|2ft(x, v)dxdv ≤

1

t2

∫

Rd×Rd

|x|2f0(x, v)dxdv. (27)

Remark 4. The marginals of gt converge weakly as t → T ∗ to the corresponding
marginals of g∗; in particular the v-marginal of ft weakly converges to that of g∗ as
t→ T ∗ (and not only up to a subsequence) which we shall denote η∗ i.e.

lim
t→T∗

∫

Rd×Rd

ϕ(v)ft(x, v)dxdv =

∫

Rd

ϕ(v)dη∗(v), ∀ϕ ∈ Cb(R
d). (28)
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Remark 5. Identity (23) actually tells us more than just the fact that
∫
R2d ϕgtdydv

is nonincreasing in t since it also implies that the right-hand side of (23) is integrable
with respect to t. Taking for instance ϕ(y, v) = |y|2, we actually get

∫ T∗

0

t2
∫

R3d

∇W (v − u) · (v − u)ft(x, v)ft(x, u)dxdvdudt < +∞ (29)

which as soon as W is strictly convex will also imply that for every δ > 0 one has
∫ T∗

0

t2
∫

{(x,u,v)∈R3d : |u−v|≥δ}

ft(x, v)ft(x, u)dxdvdudt < +∞. (30)

In the special case (as considered in [3]) where W (z) = 1
3 |z|

3, the previous
estimate (29) becomes

∫ T∗

0

t2
(∫

R3d

|u− v|3ft(x, u)ft(x, v)dxdudv
)
dt < +∞. (31)

When W (z) = 1
3 |z|

3, taking as convex test function ϕ(y, v) = |y|q with q > 2, we
similarly obtain

t

∫

R3d

|u− v|(u− v) · (|x− tu|q−2(tu−x)−|x− tv|q−2(tv−x))ft(x, u)ft(x, v)dxdudv

is integrable with respect to t. First, using homogeneity, and setting a := u − x/t,
b = v − x/t, we can rewrite

t(u− v) · (|x− tu|q−2(tu− x)− |x− tv|q−2(tv− x)) = tq(a− b) · (|a|q−2a− |b|q−2b).

Then we use the well-known inequality (see for instance Lemma 4.4 in [12]):

(a− b) · (|a|q−2a− |b|q−2b) ≥ µ|a− b|q

which holds for any (a, b) ∈ R
d × R

d and for a positive constant µ depending on
q > 2 and d, to deduce that

∫ T∗

0

tq
(∫

R3d

|u− v|q+1ft(x, u)ft(x, v)dxdudv
)
dt < +∞.

This implies that for every δ > 0
∫ T∗

0

tq
(∫

{(x,u,v)∈R3d : |u−v|≥δ}

ft(x, u)ft(x, v)dxdudv
)
dt < +∞. (32)

Inequalities like (27)-(31)-(32) indicate that in some sense, conditionally on the
position, the velocity distribution concentrates on a single velocity. To give a mean-
ing to this, we shall rescale the position by dividing it by t. More precisely, under
the assumption that global in time solutions exist (T ∗ = ∞), we have the following
asymptotic result:

Proposition 1. Assume that there is global existence i.e. T ∗ = +∞, and let g∗ be
as in Theorem 3.1 and η∗ be the v-marginal of g∗. Then

lim
t→∞

∫

Rd×Rd

ϕ
(x
t
, v
)
ft(x, v)dxdv =

∫

Rd

ϕ(v, v)dη∗(v)

for every ϕ ∈ Cb(R
d × R

d).
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Proof. Clearly (setting ϕ̃(y, v) = ϕ(y+v, v)), the desired result amounts to proving
that

lim
t→∞

∫

Rd×Rd

ϕ̃
(y
t
, v
)
gt(y, v)dydv =

∫

Rd×Rd

ϕ̃(0, v)dg∗(y, v) =

∫

Rd

ϕ̃(0, v)dη∗(v).

Introducing the cutoff function χR as in the proof of Theorem 3.1, we have
∣∣∣∣
∫

Rd×Rd

ϕ̃
(y
t
, v
)
gt(y, v)dydv −

∫

Rd×Rd

ϕ̃(0, v)dg∗(y, v)

∣∣∣∣

≤

∫

Rd×Rd

χR

∣∣∣ϕ̃
(y
t
, v
)
− ϕ̃(0, v)

∣∣∣ gt(y, v)dydv

+ 2 sup |ϕ̃|

∫

Rd×Rd

(1− χR)gt

+

∣∣∣∣
∫

Rd×Rd

ϕ̃(0, v)gt(y, v)dydv −

∫

Rd×Rd

ϕ̃(0, v)dg∗(y, v)

∣∣∣∣ .

Thanks to the moment bound (24), we have
∫

Rd×Rd

(1−χR)gt ≤

∫

{(x,v)∈R2d: |x|2+|v|2≥R2}

gt ≤
1

R2

∫

Rd×Rd

(|x|2+|v|2)f0(x, v)dxdv.

Let ε > 0 and choose R > 0 such that the right-hand side of the inequality above
is less than ε/3. Using Theorem 3.1, we know that for t large enough,

∣∣∣∣
∫

Rd×Rd

ϕ̃(0, v)gt(y, v)dydv −

∫

Rd×Rd

ϕ̃(0, v)dg∗(y, v)

∣∣∣∣ ≤
ε

3
.

Since ϕ̃ is uniformly continuous on compact sets, for t large enough, we also have
∫

Rd×Rd

χR

∣∣∣ϕ̃
(y
t
, v
)
− ϕ̃(0, v)

∣∣∣ gt(y, v)dydv ≤ sup
|v|≤R, |z|≤R/t

|ϕ̃(z, v)− ϕ̃(0, v)| ≤
ε

3
.

All this proves the desired result.

4. Entropy bounds in dimension one. For this section, we further assume that
d = 1. In this one-dimensional geometry, the “potential for interaction” first used
by Bony (see [7, 11, 5]) provides additional control.

Lemma 4.1. The following estimate holds
∫ T∗

0

∫

R3

(u − v)2ft(x, u)ft(x, v)dxdudvdt < +∞ (33)

Proof. For t ∈ [0, T ∗), define

I(t) :=

∫

R4

(u− v)1{x<y}ft(x, u)ft(y, v)dxdudydv

(where 1{x<y} = 1 if x < y and 0 otherwise). By our bound on the velocity support,
I is bounded. To compute the time derivative of I, it is convenient to observe that
(19) can be rewritten as

∂tf + v∂xf = F (34)

where F = ∂v(f(W
′ ∗v f)) satisfies

∫

R

F (x, v)dv = 0,

∫

R

vF (x, v)dv = 0 (35)
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(the first equality comes from the fact that f(x, .)(W ′ ∗v f(x, .)) has compact sup-
port, the second one is obtained by an integration by parts and using the fact that
W ′ is odd). We then have

dI

dt
(t) =

∫

R4

(u− v)1{x<y}(∂tft(x, u)ft(y, v) + ft(x, u)∂tft(y, v))dxdudydv

=

∫

R4

(u− v)1{x<y}(−u∂xft(x, u) + Ft(x, u))ft(y, v))dxdudydv

+

∫

R4

(u − v)1{x<y}(−v∂xft(y, v) + Ft(y, v))ft(x, u))dxdudydv.

Thanks to (35), the integrals containing F are zero, and using
∫

R

∂xf(x, u)1{x<y}dx = f(y, u) and

∫

R

∂xf(y, u)1{x<y}dy = −f(x, u),

we are left with

dI

dt
(t) = −

∫

R3

(u− v)2ft(x, u)ft(x, v)dxdudv.

The bound (33) is then obtained by integration and using the fact that I is bounded
from below.

We showed in Lemma 2.2 that the entropy is nondecreasing along the flow of (19).
However, the estimate of the previous lemma turns out to be useful to deduce an
entropy bound if the laplacian of the interaction kernel has subquadratic behavior
near zero:

Proposition 2. Assume that there exist δ > 0 and M ≥ 0 such that the interaction
kernel W satisfies:

W ′′(ξ) ≤Mξ2, ∀ξ ∈ [−δ, δ] (36)

and that
∫
R2 f0 ln(f0) < +∞. Then there exists C such that for a.e. t ∈ [0, T ∗),

one has ∫

R2

ft(x, v) ln(ft(x, v))dxdv ≤ C. (37)

Proof. The computation of the time-derivative of the entropy follows from Lemma
2.2:

d

dt

∫

R2

ft(x, v) ln(ft(x, v))dxdv =

∫

R3

W ′′(u− v)ft(x, u)ft(x, v)dxdudv.

Then we split the last integral in the right hand side into two parts, one on |u−v| ≤ δ
for which we use (36) and (33) to get

∫ T∗

0

∫

R3

1{|u−v|≤δ}W
′′(v − u)ft(x, u)ft(x, v)dxdudvdt ≤ C,

and for the other part where |u−v| > δ, recalling that f(x, .) has a compact support
(say included in [−R,R]) uniformly in x and t, we boundW ′′(v−u) by its supremum
on [−2R, 2R] and use (30) to obtain

∫ T∗

0

∫

R3

1{|u−v|>δ}W
′′(v − u)ft(x, u)ft(x, v)dxdudvdt ≤ C.

Those two estimates give the desired entropy bound (37).
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Typical examples of interaction potentials satisfying (36) are W (v) = |v|p/p
where p ≥ 4.

We have seen in Theorem 3.1 that gt (defined as gt(y, v) = ft(y + tv, v)) con-
verges weakly to some limit g∗ as t → T ∗ and also that as soon as f0 is compactly
supported, so is gt uniformly in t. Since obviously gt and ft have the same en-
tropy, we deduce that if W ′′ satisfies the subquadratic assumption (36) and f0
is compactly supported, then gt is uniformly integrable and, thanks to the lower
semicontinuity of the entropy, g∗ ∈ L1 and

∫
R2 g

∗(y, v) ln(g∗(y, v))dydv is finite.
Denoting by η∗ the v-marginal of g∗ (which is also the weak limit of the v-marginal
of ft as t→ T ∗), writing g∗(y, v) = η∗(v)g∗(y|v) and denoting by [−R,R] a segment
supporting g∗(., v) for every v, we then have

∫

R2

g∗(y, v) ln(g∗(y, v))dydv =

∫

R

η∗(v) ln(η∗(v))dv

+

∫

R

( ∫

[−R,R]

g∗(y|v) ln(g∗(y|v))dy
)
η∗(v)dv

≥

∫

R

η∗(v) ln(η∗(v))dv −
2R

e

(where in the last line we have used infg>0 g ln(g) = − 1
e and the fact that η∗ is a

probability measure) so that η∗ also has a finite entropy.
The next result concerning the quadratic kernel (which does not satisfy (36))

shows that additional assumptions on the kernel are necessary to derive global
entropy bounds. Applying Lemma 2.2 to the quadratic interaction potentialW (v) =
v2/2 in one-dimension, v ∈ R, we have:

Lemma 4.2. If W (v) = v2/2, v ∈ R, then ∀ t ∈ [0, T ∗),
∫

R×R

ft ln ft dxdv ≥

∫

R×R

f0 ln f0 dxdv +
1

2R
ln(1 + t). (38)

Proof. Using W (v) = v2/2 and d = 1 in (21), we have ∆W (v) = W ′′(v) = 1, so
that

d

dt

∫

R×R

ft ln ftdxdv =

∫

R

ρ(t, x)2 dx, ρ(t, x) :=

∫

R

f(t, x, v) dv.

Then, thanks to (13), we can rewrite the above expression as

d

dt

∫

R×R

ft ln ft dxdv = 2(1 + t)R

∫

R

ρ(t, x)2 dµ(x), where µ =
1

2(1 + t)R
1B(1+t)R

,

which gives (by Jensen’s inequality)

d

dt

∫

R×R

ft ln ft dxdv ≥
1

2(1 + t)R

(∫

B(1+t)R

ρ(t, x) dx

)2

=
1

2(1 + t)R
.

Integration over [0, t] yields (38).

In case T ∗ = +∞, letting t→ ∞ in (38), we have
∫
R×R

ft ln ft dxdv → ∞, which
shows that there can be no global entropy bound. Also note that the quadratic
kernel in dimension one does not satisfy the integrability requirement of Lemma
2.1.
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