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Abstract

Motivated by the sharp L1 Gagliardo-Nirenberg inequality, we prove by el-
ementary arguments that given two increasing functions F and G, solving the
variational problem

inf

{

E±(u) =

∫

Rn

d |∇u| ±
∫

Rn

F (|u|) :

∫

Rn

G(|u|) = 1

}

amounts to solve a one-dimensional optimization problem. Under appropriate con-
ditions on the nonlinearities F and G, the infimum is attained and the minimizers
are multiple of characteristic functions of balls. Several variants and applications
are discussed, among which some sharp inequalities and nonexistence and exis-
tence results to some PDEs involving the 1-Laplacian.
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1 Introduction

In what follows, we will assume that n is a given integer with n ≥ 2, |.| will denote both
the euclidean norm of R

n and the absolute value function, Bρ the open ball with radius
ρ and center 0 for |.|, Ln the n-dimensional Lebesgue measure and γn := Ln(B1). If u :
R

n → R is a measurable function, its total variation is defined by:

‖∇u‖M(Rn) := sup

{
∫

Rn

u divΦ : Φ ∈ C1
c (R

n, Rn), |Φ(x)| ≤ 1 ∀x ∈ R
n

}

.
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When ‖∇u‖M(Rn) < ∞, u will be said to be of finite total variation, and we will often
write

‖∇u‖M(Rn) =

∫

Rn

d |∇u|

to emphasize the fact that ∇u is a vector-measure. Note that if ∇u ∈ L1(Rn), then the
total variation of u is simply

∫

Rn |∇u| = ‖∇u‖L1(Rn). For q ∈ [1,∞], we define

D1,q(Rn) := {u ∈ Lq(Rn) : ‖∇u‖M(Rn) < ∞}

and BV(Rn) = D1,1(Rn). We also define 1∗ := n/(n − 1).
Given two increasing functions F and G on [0,∞) such that F (0) = G(0) = 0 and

lim∞ G = ∞, we use a symmetrization argument and a one-dimensional optimization
to find a condition which ensures existence of a minimizer to the variational problem

m± := inf

{
∫

Rn

d |∇u| ±
∫

Rn

F (|u|) :

∫

Rn

G(|u|) = 1

}

.

Under this condition, we determine explicitly the value m± and all the minimizers
u of this problem (they are all characteristic functions of balls). This is the main
result of this paper which is presented in theorem 2.1 of the next section. In section
3, we extend this theorem to arbitrary norms ‖.‖ of R

n and to more general functions
F which are difference of two increasing functions taking the value 0 at the origin.
Several applications are discussed in section 4, among which some sharp inequalities
and applications involving 1-Laplacian type PDEs. For example we show in section 4.1
that if we take F (t) = t ln t and G(t) = t, the main theorem yields the following sharp
”L1 logarithmic-Sobolev type” inequality:

∫

Rn

|u| ln(enγn|u|) ≤
∫

Rn

d|∇u| + ‖u‖L1(Rn) ln
(

‖u‖L1(Rn)

)

, ∀u ∈ BV(Rn)

which gives a quantitative form of the fact that u is in the Orlicz space L ln L provided
that u is in BV(Rn).

Our main results may be viewed as a generalization of the sharp L1 Gagliardo-
Nirenberg inequality that we now recall. First, the L1 Sobolev inequality reads as

‖u‖L1∗(Rn) ≤
1

nγ
1/n
n

‖∇u‖M(Rn) ∀u ∈ BV(Rn). (1)

Invoking the isoperimetric inequality, (nγ
1/n
n )−1 is the best constant and the only ex-

tremal functions are characteristic functions of balls. Now, let q and s be such that
1 ≤ q < s < 1∗ and write

1

s
=

(1 − θ)

q
+

θ

1∗
i.e. θ =

n(s − q)

s(n − q(n − 1))
.

Recalling the interpolation inequality

‖u‖Ls(Rn) ≤ ‖u‖1−θ
Lq(Rn) ‖u‖θ

L1∗(Rn), (2)
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we deduce from (1) and (2) the L1 Gagliardo-Nirenberg inequality

‖u‖Ls(Rn) ≤
(

1

nγ
1/n
n

)θ

‖∇u‖θ
M(Rn) ‖u‖1−θ

Lq(Rn), ∀u ∈ D1,q(Rn). (3)

Now we remark that characteristic functions of balls are also extremals in the interpola-
tion inequality (2). This proves that (nγ

1/n
n )−θ is the best constant in the L1 Gagliardo-

Nirenberg inequality (3) and that characteristic functions of balls are extremals in (3)
(and they are the only ones again by standard isoperimetry). By a scaling argument, the
optimal constant in (3) is related to the variational problem m+ with F (t) = tq/q and
G(t) = ts. The aim of the present paper is then precisely to generalize these well-known
facts (extremality of characteristic of balls and expression of the best constant) to more
general variational problems involving the total variation.

We end this introduction by remarking that in the special case where F (t) = t and
G(t) = ts with s < 1∗ (i.e. the special case q = 1 in the Gagliardo-Nirenberg inequality
(3)), one may recover our main result by optimal transportation arguments using a
duality method as in [5, 3]. This is not surprising because the sharp Lp Gagliardo-
Nirenberg inequalities for p > 1 are obtained via optimal transportation (see [5]) when
q = 1+s(p−1)/p (and q = p(s−1)/(p−1)), and q = 1 is the limit case as p → 1; for more
discussions on this topic, we refer to [1, 2]. Note that for p > 1, these inequalities are first
derived in their sharp form by Del Pino and Dolbeault [6] . Let us recall that, as shown in
the previous paragraph, all the sharp L1 Gagliardo-Nirenberg inequalities can be derived
directly from the L1 Sobolev inequality via the interpolation inequality, and there exists
a proof of the sharp L1 Sobolev inequality (equivalently the isoperimetric inequality)
via optimal transportation [10, 5]. But we emphasize that the optimal transportation
approach does not require the isoperimetric inequality, contrarily to the proof presented
in this work.

2 Main result

We consider the following variational problems:

m+ := inf

{

E+(u) =

∫

Rn

d |∇u| +
∫

Rn

F (|u|) :

∫

Rn

G(|u|) = 1

}

(4)

and

m− := inf

{

E−(u) =

∫

Rn

d |∇u| −
∫

Rn

F (|u|) :

∫

Rn

G(|u|) = 1

}

. (5)

In both variational problems above, it is intended that the minimization is performed
over functions u having finite total variation and satisfying the constraint

∫

Rn G(|u|) = 1.

Throughout this section, we will assume that F and G are two continuous, strictly
increasing functions [0,∞) → [0,∞) such that F (0) = G(0) = 0, and that F and G
are C1 on (0,∞) and lim∞ G = ∞. The assumptions on G imply that if u is such that
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G(|u|) ∈ L1 then u vanishes at infinity in the sense that {|u| > t} has finite measure for
every t > 0 (more precisely G(t)Ln({|u| > t}) ≤ 1 so that limt→∞Ln({|u| > t}) = 0).
For such a function u, one can then define the Schwarz symmetrization or radially-
symmetric decreasing rearrangement of u, u?, by:

u?(x) := sup {t ≥ 0 : Ln({|u| > t}) > γn|x|n} ,

i.e., u? is the only radially-symmetric decreasing function whose level sets have the same
measure as those of |u|. By equimeasurability of rearrangements, we have

∫

Rn

F (|u|) =

∫

Rn

F (|u?|),
∫

Rn

G(|u|) =

∫

Rn

G(|u?|),

and by Pòlya-Szegö principle, we have

∫

Rn

d |∇u?| ≤
∫

Rn

d |∇ (|u|) | ≤
∫

Rn

d |∇u|.

This yields E±(u?) ≤ E±(u) provided u has finite total variation and u∗ is admissible
for (4)-(5) when u is. Our main result is given by the following

Theorem 2.1. Defining m+ and m− respectively by (4) and (5), one has:

m± = inf
α>0

H±(α) (6)

with

H±(α) := nγ1/n
n

α

G(α)(n−1)/n
± F (α)

G(α)
.

Moreover, if the set of minimizers of (6),

V± := {α > 0, H±(α) = m±}, (7)

is nonempty, then the set of minimizers of E± under the constraint
∫

Rn G(|u|) = 1 is
nonempty as well, and is explicitly given by

{uα(x0 + .), x0 ∈ R
n, α ∈ V } ∪ {−uα(x0 + .), x0 ∈ R

n, α ∈ V }

where

uα := αχBρα
and ρα :=

1

γ
1/n
n G(α)1/n

. (8)

Proof. By the rearrangement arguments recalled above, we see that up to replacing
u by u?, we can restrict the variational problems (4) and (5) to nonnegative, radially-
symmetric, l.s.c., nonincreasing functions, u, with finite total variation such that

∫

Rn G(u) =
1. For such a function u, there is a nonincreasing function β : R+ → R+ such that for
a.e. t ≥ 0, one has

At := {u > t} = Bβ(t). (9)
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Set
v := βn (10)

and recall that nγn is the (n− 1)-dimensional surface area of the unit sphere. Using the
Fleming-Rishel ([8]) co-area formula and Cavalieri formula, and denoting by P (A) the
perimeter of a ball A ⊂ R

n, one can write:

E±(u) =

∫ ∞

0

P (At)dt ±
∫ ∞

0

Ln ({F (u) > t}) dt

= nγn

∫ ∞

0

βn−1(t)dt ± γn

∫ F (∞)

0

βn(F−1(t))dt

= nγn

∫ ∞

0

v(n−1)/n(t)dt ± γn

∫ ∞

0

F ′(t)v(t)dt

=: J±(v).

Similarly, we have:
∫

Rn

G(u) = γn

∫ ∞

0

G′(t)v(t)dt.

Then, the variational problems (4)-(5) transform into the optimization problem:

m± = inf{J±(v) : v ∈ K}, (11)

where K denotes the set of nonnegative nonincreasing functions v : (0,∞) → (0,∞)
that satisfy the linear constraint

∫ ∞

0

G′(t)v(t)dt = 1/γn. (12)

We shall now show that the minimizer of (11), if it exists, is attained at some function
v of the form

χ[0,α]

γnG(α)
. For every α > 0, define then

wα :=
χ[0,α]

γnG(α)
.

One has wα ∈ K, and by construction J±(wα) = H±(α). This obviously yields

m± ≤ inf
α>0

J±(vα) = inf
α>0

H±(α).

To prove the converse inequality, we first remark that any v ∈ K can be represented as

v(t) =

∫ ∞

0

wα(t)dµv(α) for a.e. t > 0, (13)

for some probability measure µv on [0,∞). Indeed, if v ∈ K, one can write v(t) =
θv([t,∞)) for a.e. t, where θv is a nonnegative measure on [0,∞). Setting dµv(α) =
γnG(α)dθv(α), we see that

v(t) =

∫ ∞

t

dθv(α) =

∫ ∞

t

dµv(α)

γnG(α)
=

∫ ∞

0

wα(t)dµv(α).
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To see that µv is a probability measure, we use Fubini’s Theorem, (12), and the fact
that G(0) = 0 to have:

∫ ∞

0

dµv(α) = γn

∫ ∞

0

G(α)dθv(α) = γn

∫ ∞

0

(
∫ α

0

G′(t)dt

)

dθv(α)

= γn

∫ ∞

0

G′(t)

(
∫ ∞

t

dθv(α)

)

dt = γn

∫ ∞

0

G′(t)v(t)dt = 1.

Now, consider an arbitrary v in K, and write it in the form (13) for some probability
measure µv on [0,∞). Since J± is concave, Jensen’s inequality gives that

J±(v) = J±

(
∫ ∞

0

wαdµv(α)

)

≥
∫ ∞

0

J±(wα)dµv(α) =

∫ ∞

0

H±(α)dµv(α) ≥ inf
α>0

H±(α).

Then
m± = inf

v∈K
J±(v) ≥ inf

α>0
H±(α),

which proves (6).

Next, assume that V± 6= ∅, let α ∈ V± and uα be defined by (8). Then the function
v ∈ K defined by (9)-(10) that is associated to uα is wα, and by a direct computation
E±(uα) = J±(wα) = H±(α) = m± so that uα is optimal in (4)-(5).

Furthermore, if ū is another optimal solution in (4)-(5) (hence vanishing at infinity
and of finite total variation), as before define u := ū?, v by formulas (9)-(10), and write
v in the form (13) for some probability measure µv on [0,∞). By the concavity of J±,
we have as before

m± = J±

(
∫ ∞

0

wαdµv(α)

)

≥
∫ ∞

0

H±(α)dµv(α) ≥ inf
α>0

H±(α) = m±,

so that
∫ ∞

0

(H±(α) − m±) dµv(α) = 0.

And since J± is strictly concave, then µv must be the Dirac mass at some α ∈ V±.
Therefore, v = wα and then u = uα for some α ∈ V±. As a consequence, ū? = u =
uα, which implies that |ū| = αχA for some measurable set A with Ln(A) = Ln(Bρα).
Moreover, since |ū| is optimal, so is ū? = uα, and then E±(|ū|) = E±(uα), which implies
|ū| and uα have the same total variation, i.e., P (A) = P (Bρα). Now we can invoke the
isoperimetric inequality to conclude that A is a translate of Bρα , i.e., |ū| = uα(x0 + .) for
some x0 ∈ R

n. Finally, since |ū| is a characteristic function and ū and |ū| have the same
total variation, ū cannot be sign changing. This proves that all minimizers of (4)-(5)
are of the form ū = ±uα(x0 + .) for some x0 ∈ R

n and α ∈ V±.

Remark 1. The previous result actually gives a necessary and sufficient condition for
existence of a minimizer. If H± attains its infimum at some α ∈ (0, +∞) then theorem
2.1 applies : there exist minimizers and they are all characteristics functions of balls.
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If the infimum of H± is not attained on (0, +∞), then there is a minimizing sequence
uαn with αn either converging to 0 (dispersion) or ∞ (concentration) and there is no
minimizer in these cases.

3 Variants and extensions

3.1 More general nonlinearities

In the previous section, we assumed the monotonicity of F (which excludes for instance
the case F (t) = t ln(t)). In fact, the proof of theorem 2.1 extends in a straightforward
way to all functions F of the form F = F1 −F2, where F1 and F2 are continuous strictly
increasing functions [0,∞) → [0,∞), C1 on (0,∞) and satisfy F1(0) = F2(0) = 0.
Indeed, for u nonnegative, radially-symmetric and nonincreasing, and for v defined by
(9)-(10), following the proof of theorem 2.1, one has:
∫

Rn

F (u) =

∫

Rn

(F1(u) − F2(u)) = γn

∫ ∞

0

(F ′
1(t) − F ′

2(t))v(t)dt = γn

∫ ∞

0

F ′(t)v(t)dt

so that E±(u) = J±(v) as before. Therefore the entire proof of theorem 2.1 carries over
to the function F = F1 − F2 defined as above. We will see in the next section that this
extension of theorem 2.1 will enable us to treat examples of functions F of the form
F (t) = tβ ln(t) with 0 < β ≤ 1.

3.2 Other norms

Another possible extension of theorem 2.1 is when one defines the total variation of u
with respect to an arbitrary norm in R

n. Indeed, let ‖ ‖ be an arbitrary norm in R
n,

and denote by ‖ ‖∗ its dual norm, that is,

‖x‖∗ := sup
‖y‖≤1

(x · y).

Following Alvino, Ferone, Lions and Trombetti [4], for u of finite total variation on R
n,

we define the total variation of u with respect to the norm ‖ ‖ as
∫

Rn

d‖∇u‖ := sup

{
∫

Rn

u divΦ : Φ ∈ C1
c (Rn, Rn), ‖Φ(x)‖∗ ≤ 1, ∀x ∈ R

n

}

.

All the ingredients needed to extend theorem 2.1 to the case of an arbitrary norm (convex
symmetrization, co-area formula, Pòlya-Szegö principle and isoperimetric inequality)
can be found in Alvino, Ferone, Lions and Trombetti [4]. Consider then the problem

m := inf

{

E(u) =

∫

Rn

d‖∇u‖ +

∫

Rn

F (|u|) :

∫

Rn

G(|u|) = 1

}

, (14)

with F = F1 − F2, where F1, F2 and G are continuous, strictly increasing functions
[0,∞) → [0,∞), C1 on (0,∞) such that F1(0) = F2(0) = G(0) = 0, and lim∞ G = ∞.
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In (14), it is intended that the minimization is performed over functions u having finite
total variation such that

∫

Rn F1(|u|) < ∞ or
∫

Rn F2(|u|) < ∞ and
∫

Rn G(|u|) = 1. In
the next statement, Kρ denotes the open ball with radius ρ and center 0 for ‖.‖∗ and
κn := Ln(K1). We then have the following generalization of theorem 2.1.

Theorem 3.1. Defining m by (14), one has:

m = inf
α>0

H(α) (15)

with

H(α) := nκ1/n
n

α

G(α)(n−1)/n
+

F (α)

G(α)
.

Moreover, if the set
V := {α > 0, H(α) = m} (16)

is nonempty, then the set of minimizers of E under the constraint
∫

Rn G(|u|) = 1 is
nonempty and explicitly given by {uα(x0 + .), x0 ∈ R

n, α ∈ V } ∪ {−uα(x0 + .), x0 ∈
R

n, α ∈ V } where

uα := αχKρα
and ρα :=

1

κ
1/n
n G(α)1/n

. (17)

4 Applications

In this section, we apply the main theorem 3.1 to establish some sharp inequalities, and
to study existence or non-existence of solutions to some partial differential equations
involving the 1-Laplacian operator in R

n. Throughout this section, we assume that F
and G are as in section 3.

4.1 Inequalities

Under the assumptions and notations of subsection 3.2, we easily deduce from theorem
3.1 (where we use −F in place of F for convenience) the following proposition:

Proposition 4.1. Assume that F and G are such that the problem

inf
α>0

{

H(α) := nκ1/n
n

α

G(α)(n−1)/n
− F (α)

G(α)

}

(18)

has a solution α∞, and set

u∞ := α∞χKρ∞
where ρ∞ :=

1

κ
1/n
n G(α∞)1/n

, (19)

and

E(u) :=

∫

Rn

d‖∇u‖ −
∫

Rn

F (|u|).

8



Then the sharp inequality

∫

Rn

F (|u|) + E(u∞) ≤
∫

Rn

d‖∇u‖ (20)

holds for all functions u with finite total variation such that
∫

Rn G(|u|) = 1. Moreover,
equality occurs in (20) if and only if u = ±u∞(x0 + .) for some x0 ∈ R

n with u∞ defined
by (19) for some α∞ solving (18).

Applying proposition 4.1 with F (t) = t ln t and G(t) = t, we obtain the following
sharp inequality which roughly states that the entropy of u, EntLn(u) =

∫

Rn |u| ln |u|, is
bounded above by the total variation of u, up to some additive term n+ln(κn), provided
that u ∈ BV(Rn) with ‖u‖L1(Rn) = 1. In this sense, this inequality can be called: sharp
”L1 logarithmic Sobolev inequality”.

Corollary 4.2. For any function u in BV(Rn) such that
∫

Rn |u| = 1, we have

∫

Rn

|u| ln (enκn|u|) ≤
∫

Rn

d‖∇u‖, (21)

and the optimal functions u are such that ±κnu are characteristic functions of unit balls
in (Rn, ‖ ‖∗).

Proof. First we observe that F (t) = t ln t = F1(t) − F2(t) where F1(t) = t ln t +
√

t and
F2(t) =

√
t, so that F (t) = t ln t and G(t) = t are admissible in proposition 4.1. Then

(18) reads as

inf
α>0

{

H(α) = nκ1/n
n α1/n − ln α

}

,

and it is easy to see that its unique solution is α∞ = 1/κn. Hence ρ∞ = 1

κ
1/n
n α

1/n
∞

= 1,

u∞ = χK1/κn, and by a direct computation, we have E(u∞) = n + ln κn. Therefore,
(20) reads as (21) with the optimal functions ± 1

κn
χK1(x0 + .), x0 ∈ R

n. This completes
the proof.

Remark 2. It may be convenient to (equivalently) rewrite the inequality (21) of
corollary 4.2 as

∫

Rn

|u| ln(enκn|u|) ≤
∫

Rn

d‖∇u‖ + ‖u‖L1(Rn) ln
(

‖u‖L1(Rn)

)

, ∀u ∈ BV(Rn)

or
∫

Rn

|u| ln
(

enκn|u|
‖u‖L1(Rn)

)

≤
∫

Rn

d‖∇u‖, ∀u ∈ BV(Rn).
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Remark 3. In fact, by chosing F (t) = tβ ln t with 0 < β ≤ 1 and G(t) = t, inequality
(21) generalizes to

∫

Rn

|u|β ln |u| + E(u∞) ≤
∫

Rn

d‖∇u‖

for all BV(Rn) functions u satisfying
∫

Rn |u| = 1, where u∞ is defined by (19), and α∞

solves
inf
α>0

{

H(α) = nκ1/n
n α1/n − αβ−1 ln α

}

.

And the optimal functions are u = ±u∞(x0 + .), x0 ∈ R
n. Note that, even though it

may be difficult to compute α∞ explicitly when β 6= 1, its existence is ensured by the
condition β < 1.

4.2 Link with some PDE’s involving the 1-Laplacian

For simplicity, we will restrict to the Euclidean norm of R
n, though the results of this

section extend naturally to arbitrary norms as in section 3.2. If u is a nonnegative
solution of the variational problem

inf{E(u) :=

∫

Rn

d|∇u| +
∫

Rn

F (|u|) :

∫

Rn

G(|u|) = 1}, (22)

then, formally, u is a nonnegative solution of the 1-Laplacian PDE

−∆1u + F ′(u) = λG′(u), (23)

where λ ∈ R is a Lagrange multiplier for the constraint
∫

Rn G(|u|) = 1 and the 1-
Laplacian operator is (again formally) defined by

∆1u = div

( ∇u

|∇u|

)

.

The aim of this paragraph is to apply theorem 2.1 to derive nonexistence and exis-
tence results for some PDE’s involving the 1-Laplacian. We start by some preliminaries
on this operator. For q ∈ [1,∞] and q∗ the conjugate exponent of q ( 1

q
+ 1

q∗
= 1), we

first define
Xq∗ := {σ ∈ L∞(Rn, Rn) : div(σ) ∈ Lq∗(Rn, R)}.

For σ ∈ Xq∗ and u ∈ D1,q(Rn), (following for instance Demengel [7]), we define the
distribution σ · ∇u by

〈σ · ∇u, ϕ〉 = −
∫

Rn

(divσ)ϕu −
∫

Rn

(σ · ∇ϕ)u, ∀ϕ ∈ C1
c (Rn).

If σ ∈ Xq∗ and u ∈ D1,q(Rn), then it is easy to see that σ · ∇u is a Radon measure on
R

n which satisfies (in the sense of nonnegative measures)

|σ · ∇u| ≤ ‖σ‖∞|∇u|,
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hence in particular:

‖σ · ∇u‖M ≤ ‖σ‖∞
∫

Rn

d |∇u|.

It is also easy to check that
∫

Rn

σ · ∇u = −
∫

Rn

div(σ)u, ∀(u, σ) ∈ D1,q(Rn) × Xq∗

and
∫

Rn

d |∇u| = sup

{
∫

Rn

div(σ)u, σ ∈ Xq∗, ‖σ‖∞ ≤ 1

}

.

A natural and classical way to define the 1-Laplacian is via convex analysis. More
precisely, let q ∈ [1, +∞) and consider the following functional on Lq(Rn):

Jq(u) :=

{ ∫

Rn d |∇u| if u ∈ D1,q(Rn)
+∞ otherwise.

It is obvious that Jq is a convex (and positively homogeneous) l.s.c. functional on
Lq(Rn). For u ∈ Lq(Rn), recall that the subgradient of Jq at u, denoted ∂Jq(u), consists
of all p ∈ Lq∗(Rn) such that

Jq(v) − Jq(u) ≥
∫

Rn

p(v − u), ∀v ∈ Lq(Rn).

By definition, Jq is said to be subdifferentiable at u whenever ∂Jq(u) 6= ∅ (which in
particular implies that u ∈ D1,q(Rn)). The following characterization of ∂Jq is rather
classical and easy to prove:

Lemma 4.3. Let u ∈ Lq(Rn be such that Jq is subdifferentiable at u. Then one has

∂Jq(u) =
{

−div(σ), σ ∈ Xq∗, ‖σ‖∞ ≤ 1, σ · ∇u = |∇u|
}

.

If one considers the variational problem

inf
u∈D1,q

{

Jq(u) +

∫

Rn

f(u(x))dx

}

(24)

where f is differentiable and satisfies

|f(u)| ≤ C|u|q, |f ′(u)| ≤ C|u|q−1,

then if u solves (24), Jq is subdifferentiable at u and the following Euler-Lagrange
equation is satisfied

0 ∈ ∂Jq(u) + f ′(u), (25)

which can be rewritten as
−∆1u + f ′(u) = 0

according to the following definition:
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Definition 4.4. Let g ∈ C0(R, R) and q ∈ [1, +∞). Then u ∈ D1,q(Rn) is said to be a
D1,q solution of the equation

−∆1u = g(u)

if there exists σ ∈ Xq∗ such that −div(σ) = g(u) (in the sense of distributions), ‖σ‖∞ ≤
1 and σ · ∇u = |∇u|.

Let us remark that σ needs not be unique in the previous definition. Note also that
it is required in the previous definition that g(u) ∈ Lq∗(Rn).

Let us now consider the variational problem (22) under the assumptions that F and
G are strictly increasing differentiable functions on R+ such that F (0) = G(0) = 0,
G(∞) = ∞ and there exist q ∈ (1,∞) and some positive constants A and B such that:

F (t) ≤ Atq, |F ′(t)| ≤ Btq−1, ∀t ∈ R+.

Theorem 4.5. If, in addition to the assumptions above, F is convex and G is concave
on R+ and λ ≥ 0, then the PDE:

{

−∆1u = λG′(u) − F ′(u)
u ≥ 0,

∫

Rn G(u) = 1
(26)

has no D1,q solution.

Proof. It is easy to check that our convexity assumptions actually imply that (26) is a
sufficient optimality condition for a nonnegative solution of (22). Theorem 2.1 asserts
that (22) admits solutions if and only if the function

H(α) = nγ1/n
n

α

G(α)(n−1)/n
+

F (α)

G(α)

achieves its minimum on (0,∞). Now we remark that G′(0+) > 0 (otherwise by concav-
ity and monotonicity G would identically be 0). This together with F ′(0+) = 0 implies
that H(0+) = 0 < H(α) for every α > 0. Therefore (22) does not possess any solution
and thus neither does (26).

The previous result applies in particular to G(t) = t and F (t) = tq/q (q > 1). We
have:

Corollary 4.6. If q > 1, then the PDE

−∆1u = 1 − uq−1 (27)

has no D1,q solution.

Proof. Using G(t) = t and F (t) = tq/q (q > 1) in theorem 4.5, we have that
{

−∆1u = λ − uq−1

u ≥ 0,
∫

Rn u = 1
(28)

has no D1,q solution. By a scaling argument, u solves (28) if and only uλ(x) := λ
1

1−q u
(

x
λ

)

solves (27). This completes the proof.
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Now, let us assume that F = F1 − F2 with F1, F2 and G satisfying the assump-
tions of subsection 3.2 and in addition F ′

1(0) = F ′
2(0) = G′(0) = 0 (so that t 7→

F1(|t|), F2(|t|), G(|t|) are differentiable at 0) and that there exists α∞ ∈ (0,∞) such
that

H(α∞) ≤ H(α) = nγ1/n
n

α

G(α)(n−1)/n
+

F (α)

G(α)
, ∀α ∈ (0, +∞).

We then have the following existence result:

Theorem 4.7. Under the assumptions above, the following PDE (where λ ∈ R is part
of the unknown)

{

−∆1u = λG′(u) − F ′(u)
u ≥ 0,

∫

Rn G(u) = 1
(29)

admits a BV = D1,1 solution.

Proof. Thanks to theorem 3.1, the function

u∞ := α∞χBρ∞
, with ρ∞ :=

1

γ
1/n
n G(α∞)1/n

is a minimizer of (22). Let us now prove that u∞ solves (29). Indeed, define

σ(x) =

{

−x/ρ∞ if x ∈ Bρ∞

−ρn−1
∞ x/|x|n if x 6∈ Bρ∞.

By construction, we have

‖σ‖∞ ≤ 1, div σ = − n

ρ∞

χBρ∞
and σ · ∇u∞ = |∇u∞| = α∞Hn−1 ∂Bρ∞

(where Hn−1 ∂Bρ∞ denotes the n − 1-dimensional Hausdorff measure on ∂Bρ∞). It
follows that −div σ ∈ ∂J1(u∞). Thus u∞ is a BV solution of (29) provided that

−div σ =
n

ρ∞
χBρ∞

= λG′(u∞) − F ′(u∞) = (λG′(α∞) − F ′(α∞))χBρ∞
,

i.e.
n

ρ∞
= λG′(α∞) − F ′(α∞). (30)

If G′(α∞) 6= 0, then λ is uniquely determined by solving the previous equation. Now, if
G′(α∞) = 0, using the fact that H ′(α∞) = 0, a direct computation gives

0 = nγ1/n
n G(α∞)1/n + F ′(α∞) =

n

ρ∞

+ F ′(α∞),

and then u∞ solves (29) for any λ ∈ R in this case.

Remark 4. In the case where F is increasing then it follows from (30) that λ > 0.
This is not surprising since in this case, by monotonicity one can replace in (22) the
constraint by

∫

G(|u|) ≥ 1.
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Remark 5. The previous proof actually shows that nonnegative minimizers of (22)
solve the PDE (29). Obviously, for every critical point α∞ of H, the corresponding
function u∞ also solves (29). Whether there exist other solutions of this PDE (non
radial for instance) is an interesting question that we do not address here.

Theorem 4.7 applies in particular to the functions F (t) = tq/q and G(t) = ts/s in
the two cases 1∗ < s < q and 1 < q < s < 1∗ (1∗ = n/(n − 1)). As a consequence, we
have:

Corollary 4.8. If either 1 < q < s < 1∗ := n/(n − 1) or 1∗ < s < q , then the PDE

−∆1u = us−1 − uq−1, (31)

has nontrivial nonnegative solutions in D1,q(Rn).
Furthermore

−∆1u = u1/(n−1)

has nontrivial nonnegative solutions in D1,1∗(Rn).

Proof. By theorem 4.7 and remark 4, there exists λ > 0 such that the PDE
{

−∆1u = λus−1 − uq−1

u ≥ 0,
∫

Rn us = 1
(32)

has a solution u. We then use the scaling properties of the equation to show that

uλ(x) := λ
1

s−q u
(

λ
q−1
s−q x

)

is a solution of (31), which obviously is nonzero and nonnegative

since u is. If s = 1∗, we choose instead F = 0 and G(t) = t1
∗

to conclude the proof.

Another possible application is F (t) = −tq/q and G(t) = ts with s < q < 1 + s/n
(therefore s < 1∗). In this case we obtain:

Corollary 4.9. If s < q < 1 + s/n and therefore s < 1∗ := n/(n − 1), then the PDE

−∆1u = us−1 + uq−1 (33)

has nontrivial nonnegative solutions in BV(Rn) = D1,1(Rn). In particular if 1 < q <
(n + 1)/n (that is s = 1), then −∆1u = 1 + uq−1 has nontrivial nonnegative solutions
in BV(Rn).

Proof. Since s < q < 1 + s/n, we have that 1 − s/1∗ > q − s > 0 so that

inf
α>0

{H(α) := nγ1/n
n α1−s/1∗ − αq−s/q}

is attained at

α∞ =

[

q − s

qnγ1/n(1 − s/1∗)

]
1

1+s/n−q

.

We use theorem 4.7 and again a scaling argument to conclude the proof.
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