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Abstract

Given a probability space (X, x) and a bounded domain Q in R¢ equipped with the Lebesgue
measure | - | (normalized so that |Q] = 1), it is shown (under additional technical assumptions on X
and Q) that for every vector-valued function u € LP(X, u; R9) there is a unique “polar factorization”
u = V.5, where ¢ is a convex function defined on  and s is a measure-preserving mapping from (X,
u) into (R, |- |), provided that u is nondegenerate, in the sense that u(«~'(E)) = 0 for each Lebesgue
negligible subset E of R¥.

Through this result, the concepts of polar factorization of real matrices, Helmholtz decomposition
of vector fields, and nondecreasing rearrangements of real-valued functions are unified.

The Monge-Ampére equation is involved in the polar factorization and the proof relies on the study
of an appropriate ‘“Monge-Kantorovich” problem.

1. Introduction

1.1. Review of Some Well-Known Results

In this paper, several apparently unrelated classical results are unified through the
concept of polar factorization of vector-valued functions. Let us review them.

Polar Coordinates in the Complex Plane
Any complex number can be written as z = re”, r 2 0, § € R/27Z.
Polar Factorization of Real Matrices

Any real matrix 4 can be written as the product RU of a symmetric non-negative
matrix R by a real unitary matrix U. If 4 is regular (det 4 # 0), then the factorization
is unique.

Helmholtz Decomposition of Vector Fields

Let © be a smooth bounded connected open set in R¥. Then, any smooth vector
field z on Q can be written, in a unique way, as z = w + Vp, where p is a smooth
real function, defined on € up to an additive constant, and w is a smooth divergence
free vector field, parallel to the boundary of Q. This decomposition theorem is the
simplest application of the Hodge theorem on differential forms; see [1].
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Nondecreasing Rearrangements of Real Functions

Before stating the last classical result considered in this introduction, let us first
review some well-known definitions on probability spaces. A “measure-preserving
mapping” from a probability space (X, ) into another probability space (Y, v) is
a mapping s : X — Y such that;

for every v-measurable subset 4 of Y,
(1)
s7'(A4) is p-measurable and u(s~'(A4)) = w(A).

Or, equivalently,

for every v-integrable function f,

(2)
/-5 is u-integrable and f Sesdu = f fdv.
X Y

Such a mapping is not necessarily one-to-one. Consider, for instance, the case:
(X, n) = (Y, v)= (0, 1}, |- |), where || denotes the Lebesgue measure, and
s(x) = min(2x, 2 — 2x). If there is a one-to-one measure-preserving mapping
from (X, u) into (Y, v), then (X, p) and (Y, ») are said to be isomorphic. In this
paper, only probability spaces that are isomorphic to ([0, 1], | - |) will be considered.
This restriction is not severe, since, for instance, any separable complete metric
space X, equipped with a Borel measure g such that u(X) = 1 and u({x}) = 0,
for all x € X, is isomorphic to ([0, 11, |-1]); see [21].

IfpE[l, +oo[andd=1,2,3 - - -, we call rearrangement of u € L?( X, u; R¥)
on (Y, »), any v € LP(Y, v; RY) such that:

fx J(u(x)) du(x) = fy S(v(y)) dw(y).
3) '

for each f€ C(R?) such that |f({)] = est(1 + [ £]7).

The last classical result deals with nondecreasing rearrangements, on the
unit interval, of real-valued functions ¥ € LP(X, u; R) (which means d = 1 and
(Y,v)y=(0, 11, |- ).

Let (X, ) be a probability space isomorphic to ([0, 1], |-|), and p € [1, +oo].
Then, for each u € L?(X, u), there is a unique nondecreasing rearrangement
u* € L?(0, 1). Moreover, the mapping © — u* is continuous from L?(X, p) into
L7(0, 1).

This result is well known; see [14], [5], and [18]. A recent, detailed review of
these topics can be found in [2]. Let us briefly indicate some complementary
properties:

(4) ””? - ug”L"(O,I) < uy - uZ”LP(X,u)‘
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(5) fol whul dx = L ity du, Yu,, u, € L*(X, n).
For each u € L?(X, pn),
(6) there is a measure-preserving mapping s : (X, u) = ([0, 1], |- ),
such that u = 1*.s.
This last statement, proved by Ryff in [22], is not very well known.

1.2. The Main Results

Our results can be essentially seen as the extension of the classical result on non-
decreasing rearrangements of real functions to the case of vector-valued functions
u€ L*(X, u; R, ford > 1.

The unit interval ]0, 1[ is now replaced by a bounded connected open set € in
R The Lebesgue measure is replaced by a probability measure 8 on Q such that
B(8Q) = 0. It is assumed that dB3(z) = 8(z) dz, for some Lebesgue integrable non-
negative function 3, bounded away from 0 on any compact subset of Q. It follows
that 8 has the same negligible sets as the Lebesgue measure, which means that 3 is
absolutely continuous with respect to the Lebesgue measure and conversely. Notice
that (§, 8) is isomorphic to ([0, 1], | - |); see [21].

The weighted Sobolev space

(7) whe(Q, By = {f€ L7(RQ, §), V/E L?(Q, B;R)}

will play an important role and is assumed to be compactly embedded in L?(Q, 8)
(which is automatically enforced when § is smooth and 8 is bounded away from
0 and +o0 on Q). Under these assumptions, our main results are:

Rearrangements of Vector-Valued Functions

THEOREM 1.1. For each u € L?(X, u; R?), there is a unique rearrangement
u* in the class

(8) K= {Vy; ¥ € W'2(Q, B); ¢ convex } C L?(L, B; RY)
and the mapping u — " is continuous.

Polar Factorization of Vector-Valued Functions

THEOREM 1.2. Let N be the set of all u € LP(X, u; R?) for which the following
“nondegeneracy” condition fails:

(9) wuY(E))=0 for each Lebesgue negligible subset E of RA.
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Then, for each u € L?(X, u; RY)\N, there is a unique pair (u*, s), such that u*
belongs to K, s is a measure-preserving mapping from (X, w) into (Q, 8), and u =
u*.s. Moreover,

(a) u* is the unique rearrangement of u in K (as in Theorem 1.1);

(b) s is the unigue measure-preserving mapping that maximizes f x W(x)-
s(x) du(x);

(c) the mapping u = (u*, 5) is continuous from LP(X, u; RY)\N into L?(9Q, B;
R?) X LYX, u; RY), forall g € [1, +oo].

Remark. We believe that the result is still true when Q is unbounded, provided
that p > 1 and [, [1z]|%8(z) dz < +oo, where 1 /g + 1/p = 1.

Comments on the “Rearrangement Theorem”

Obviously, K is, with respect to L?(, 8; R¢), the generalization of the class of all
nondecreasing functions in L?(0, 1). Thus Theorem 1.1 is a generalization of the
classical result on nondecreasing rearrangements of real functions, which corre-
sponds to the particular case d = 1, (2, 8) = ([0, 1], |- ]).

As in the case of real arrangements, the mapping u — #* is continuous. However,
properties (4) and (5) are not true in general when d > 1. For instance, in the
particular case (X, x) = (Q, 8) =(Q, | - |), where | - | denotes the Lebesgue measure
(normalized so that || = 1), it will be shown in Section 2.4 that:

(10) f uf(x)-ud(x)dx = f (%) uy(x) dx
Q Q

is not true in general.

1.3. Recovery of the Classical Results
Our “rearrangement theorem” generalizes the classical results on nondecreasing
rearrangements of real functions. Let us now check that the polar factorization of
real matrices and the Helmholtz decomposition of vector fields are particular cases
of the situation considered in our “factorization theorem™.

Helmholtz Decomposition

The Helmholtz decomposition turns out to be the linearization of the polar
factorization of vector-valued functions about the identity map, when (X, u) =
(Q,8)=(Q, |- D).

Let us consider u as a smooth perturbation of the identity map:
u(x) =x+ ez(x), e € 1, x€Q.

For e small enough, u satisfies the nondegeneracy condition (9) (because the jacobian
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determinant is bounded away from 0) and u can be written: u = V{*.s. It is natural
to seek Vi* and s as perturbations of the identity map:

YH(x) = 3 1x]1?2 + ep(x) + O(€?), s(x) = x + ew(x) + O(€?).

Then, z = Vp + w immediately follows. To keep ¥* convex, p needs no special
property (provided that p is smooth enough and e is small enough). However, to
keep s measure preserving, it is necessary to enforce

[ riscmas= [ s ax
for each smooth function fdefined on Q. This leads to
f Vi(x) w(x)dx =0,
Q

which precisely means (in the weak sense) that w is divergence free on £ and
parallel to 9€2.

So, the Helmholtz decomposition is the linearization of the polar factorization
of vector-valued functions. At this point, a very intriguing question can be raised:
Is it a general fact that a Hodge decomposition of differential forms (see [1]) can
be seen as the linearization of some “‘generalized” polar factorization?

Polar Factorization of Matrices

Let us now show that the polar factorization of matrices is a particular case of the
polar factorization of vector-valued functions. Here, (X, u) = (Q, 8) = (Q, |- ])
and Q is a ball centered at the origin, u is a linear mapping: u(x) = 4- x, for some
real d X d matrix 4. The nondegeneracy condition (9) exactly means that A4 is
nonsingular (det A # 0). The polar factorization 4 = RU corresponds to the polar
factorization u = Vy*.s, where: ¢*(x) = § Rx- x is convex and s(x) = U-xisa
measure-preserving mapping from (£, | - |) into itself. Notice that, due to the special
geometry of the ball, for a linear mapping u(x) = A4- x, each factor of the polar
factorization s(x) = U: x, u*(x) = R x is a linear mapping. This cannot be true
for a general geometry.

The case of complex numbers z = re” can be treated in the same way. So our
polar factorization theorem unifies all these classical results. Let us now show how
our rearrangement theorem is strongly linked to the Monge-Ampére equation;
see [9].

1.4. The Rearrangement Theorem and the Monge-Ampére Equation

Theorem 1.1 can be seen as an existence and uniqueness theorem of a “generalized”
solution for the following Monge-Ampére problem.
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Monge-Ampére Problem

Given « € L'(R9), « 2 0, such thataf (1 + |lyl")a(y) dy < + 0, find a (Lipschitz
continuous) convex function ¢ : R = R that satisfies (in a generalized sense to
be precised):

(1) B(Ve(y))det D?¢(y) = a(y), Yy € support (a),
(12) V¢ maps the support of « into Q.

Usually, the Monge-Ampére equation is set on a bounded (often convex ) domain
with Dirichlet or Neumann boundary conditions; see [9]. Here, the “range con-
dition” ( 12) replaces the usual boundary conditions.

To see the link with this Monge-Ampeére problem, we need a different version
of our rearrangement theorem that relies on the following observation: What really
matters in Theorem 1.1 is the probability measure « associated with u € L?( X, y;
R%) and defined by

(13) Ldf(y) de(y) = fx J(u(x)) du(x)

for each compactly supported /€ C(R9). Notice that (1 + | ¥]|?) da(y) is a tight
positive measure, which means

lim (1 + [[y]l?) da(y) = 0,

row Jiiyllzr

and (13) still holds for each f€ C(R?) such that [f(y)| = cst(1 + [|y}?). In
addition, if a sequence (u,) converges to #in L?(X, u; R9), then the corresponding
probability measures «, satisfy

lim sup (1 + |yll”) day(y) = 0,

r~ow n iz r
and, therefore, converge to « in the following sense: [ fda, = [ fda for every
fE C(R9) such that |f(y)| < cst(1+ ||y]?).

So, it is not hard to see that Theorem 1.1 is a corollary of:

THEOREM 1.3.  For each probability measure o on R satisfying [ (1 + | y]?)
da(y) < + 0, there is a unique w* = VW* in K such that

(14) ff(Y) da(y)=Lf(V¢#(Z))dﬂ(Z),

for each f€ C(R¥) such that |f(p)| = cst(1 + || y||#). Moreover, if [ f da, = [
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f da, for a sequence of such probability measures o, and any € C(R9) such that
S| S est(1 + [ y]P), then

yr >yt in Wh(Q, B)/R.

A link can be established with the Monge-Ampére problem in the case when «
is absolutely continuous with respect to the Lebesgue measure

da(y) = a(y)dy, a€EL'(RY), az0,
which exactly means that u is nondegenerate in the sense of (9) (by Lebesgue-
Nikodym theorem). In Theorem 1.3, ¢* is convex and Vi* maps @ into the support
of «, as follows from (14). Let us consider the Legendre-Fenchel transform ¢* of
¥* (cf. [13]), defined by

(15) ¢*(y)=§g%{y-z—¢*(2)}, yER

It will be shown (see Section 3) that ¢* is Lipschitz continuous on R?, V¢ is well
defined almost everywhere on R¢, and

Vo*(Vy*(z)) =2z, forae z€Q,
VWHVer(y)) =y, for a—ae yERY

Thus, V¢* and V¢* are reciprocal and, formally, one gets for every compactly
supported f€ C(RY):

(16) fﬂf(W/#(Z))ﬂ(Z) d2=£upp f(0)B(Ve*(y))det D*¢*(y) dy,

by using the change of variable y = V¢*(z), z = V¢*(y). By definition of ¢*, one
has

fﬂ J(VWH(2)B(2) dz = f S(V)ely) dy,

and, thus, ¢* satisfies (in a generalized sense) the Monge-Ampére equation (11)
together with the range condition defined by (12).

1.5. Origin of the Results

The polar factorization theorem was motivated by the study of the following “pro-
jection problem” (introduced in [6]). Here (X, x) = (2, 8) = (@, |- |)and p = 2.
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Let us denote by H the Hilbert space L2(Q; R?) and by S the set of all measure-
preserving mapping from (€, |- |) into itself, which means

forevery f€ LY(Q),

(17)
f-s€LY(Q) and ffos(x)dx=ff(x)dx.
Q Q

This set S is a closed (nonconvex, noncompact) bounded subset of H (cf. Section
2). Notice that S is contained in a sphere centered at the origin. Indeed, from (17),
one gets: ||sl|2 = [, Is(x)|? dx = [, | x||*> dx = cst. Let us now consider:

The Projection Problem

Find s € S that minimizes ||u — s]|? = [,, llu(x) — s(x) | ? dx, or, equivalently, that
maximizes ((u, 5)) = [, u(x)-s(x) dx.

As mentioned in Theorem 1.2, when the nondegeneracy condition (9) is satisfied,
the factor s in the polar factorization of u = u*.s, for u € L?(Q; R?), is exactly the
unique maximizer in S of fQ u(x) - s(x) dx and, therefore, is the unique Hilbert
projection of 1 on S. The projection problem is a key to understanding the concept
of polar factorization. For instance, the set K, here defined by

K = {Vy; ¢ € W'2(Q); ¢ convex } C L2($; RY),
is closely linked to the “projection problem”. Indeed, it can be shown (cf. Section
2) that K is exactly the set of all u € H for which the identity map e is a Hilbert
projection of u on S
K={u€H;|lu—-eé|l=|u-sl|,Vs€S},
or, equivalently,
K={u€H;((u,e—5))20,Vs€S}.
Notice that, in terms of convex analysis, K is the “polar cone” of S (or, equivalently,
of its convex hull). This “geometrical” description of the polar factorization can
be made even more precise, by noticing that S is a semigroup with respect to the
composition rule

$1-5 €S, whenever 5,5 ES,

and the identity map e is the neutral element. If S were a group (which is definitely
not true since, for instance, in the case (2, |- |) = ([0, 1], |- ]), s(x) = min(2x,
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2 — 2x)is not invertible in .S), then the “polar factorization” theorem would follow
from the study of the “projection problem”.

Indeed, if # & H has a Hilbert projection s on S, where s is invertible in .S, then
u admits a polar factorization u = k.s, where k is defined by k = u.s! and clearly
belongs to K , since, for any ¢ € S, because of property (17), one has

Ik = oll = llu = aesll 2 Jlu—s| = |k —el.

There is a general answer for the projection problem, given by Edelstein’s theorem
(see [4]), which asserts that “almost every” u € H, in the sense of Baire, has a
unique projection s = x{#) on S. This is due to the fact that S'is a closed, bounded
subset of a Hilbert space. Unfortunately, in our case, since S is not a group, there
is no reason for s to be in general invertible and, therefore, there is no direct way
to recover the factor k of the polar decomposition of u. We have not been able to
overcome this difficulty to obtain our main results directly and a more involved
proof has been used, through the study of the “Monge-Kantorovich” problem (cf.
Section 1.6). Note that it is not a good idea to substitute for S the group G of all
invertible measure-preserving mappings in .S, since G is not closed in H, which
makes impossible the use of Edelstein’s theorem. Even if this “geometrical” approach
does not yield a proof of our main results, it seems to us that the discussion of the
polar factorization in terms of group and Hilbert projection is of interest (especially
in view of possible generalizations). This is why the second section of this paper is
mainly devoted to this approach, in a rather abstract framework: we are given a
Hilbert space H, a closed bounded subset .S, and a composition rule * on S X H
such that (S, #) is a group and ||s*u| = ||u|, forall u € H, s € S. Then it is
proved, under additional assumptions, that for almost every u € H there is a unique
polar factorization u = sxk, s € §, k € K. Moreover, it is shown that ¥ —> s is the
gradient of the Lipschitz continuous convex function J(u#) = sup,e s({(u, s)) (which
is the Legendre-Fenchel transform of the indicator function of S).

Section 2 can be read independently of the remainder of the paper and can be
ignored by those who are interested only in the proofs of our main results.

1.6. A Proof Using the Monge-Kantorovich Problem

Our proof is based on the observation that the “projection problem™ is a variant
of the “mass transference problem” introduced by Monge, in the eighteenth century
(see [17], cf. [3]), and generalized by Kantorovich in the 1940s; see [15]. In modemn
terms, the Monge problem (MP) and the Monge-Kantorovich problem (MKP)
can be described as follows.

MP

Given two compact metric probability spaces (X, u), (Y, v) and a continuous
“cost” function ¢ : X X Y — R,, find a one-to-one measure-preserving map-
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ping from (X, p) into (Y, ») that minimizes the “transportation cost” f x c(x,
s(x)) du(x).

MKP

Given two compact metric probability spaces (X, u), (Y, ») and a continuous
“cost” function ¢ : X X Y = Ry, find a probability measure v on X X Y with
marginals u and », which means, for each f€ C(X) and each g € C(Y):

f J(x) du(x) =f J(x)dy(x, y),
X XXY

fg(y) dv(y)=f g(y) dv(x, ),
Y XXY

that minimizes the “generalized transport cost” f c(x, yydy(x,y).
The MKP is a “relaxed” version of the MP, in the sense that any admissible
.solution s to the MP yields an admissible solution « to the MKP, defined by

dy(x,y) = 8(y — s(x)) du(x).

The MKP has many applications and a very complete review can be found in a
recent paper by Rachev; see [19]. The MKP is an infinite dimensional linear pro-
gram and a key point of the analysis developed by Kantorovich is the study of the
dual linear program:

I= inf[f fdu +fgdv, feCX), ge CY),
such that  f(x)+ g(¥) = c(x, y)}.

It can be proved (see [19]) that the MKP has a solution +y that satisfies the
“strong duality” relation [ = f c(x, vy dy(x, y). A more refined result, due to
Sudakov (see [19]}), asserts that under more specific conditions (that are satisfied
when the cost function is a power of some distance function), the solution v is
actually of the form dvy(x, y) = 6(y — s(x)) du(x), where s is a one-to-one measure-
preserving mapping, which means that the Monge problem has a solution.

Our projection problem corresponds to the case when (X, p) = (Y, ») = (Q,
|-1)and c(x, y) = [lu(x) — y|>. We look for a measure-preserving mapping, not
necessarily one-to-one, s that minimizes the cost fﬂ ¢(x, $(x)) dx. In the corre-
sponding MKP problem, we look for a “doubly stochastic” probability measure
on £ X Q, which means that the marginals of v are | - |, that minimizes the cost
I = [ u(x) = y|> d¥(x, y). Notice that the cost function is not necessarily con-
tinuous, since u is given in L2(; R9). However, the MKP still makes sense because
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¢ is automatically integrable for any doubly stochastic probability measure (this

can be easily seen).
In the earlier version of this paper (see [6]), we proved, with the help of the

strong duality relation and some well-known properties of convex functions, that,
when u is nondegenerate in the sense of (9), this MKP has a unique solution of
the form

dy(x,y) = (y — s(x)) dx

for some measure-preserving mapping s, that turns out to be the unique solution
of our projection problem. Moreover, the solution of the dual program is linked
to a pair of convex conjugate functions (¥, ¢*) and Vi* is precisely the rearrange-
ment of ¥ in K.

In this paper, a slightly different and more efficient approach is used, by con-
sidering a different MKP that generalizes the projection problem in a different way.
We look for a probability measure p on € X @, with the following marginals:

[ 1oy @ = [ 169 dpix, »,

ff(x) dx = ff(X) dp(x, y),

for each f € C(R), that minimizes I = [ ||x — y|? dp(x, y). Clearly, any admissible
solution s of the projection problem yields an admissible solution p of this new
MKP, defined by

ff(x, y)dp(x,y) = ff(S(X), u(x)) dx

for each f€ C(Q X Q). The main advantage of the new MKP is that the cost
function c(x, y) = || x — y||? is now simpler and smoother.

1.7. References to Related Works

Our polar factorization theorem was introduced, in a weaker form (for instance, u
was supposed to be bounded and Riemann integrable ), in [6] and the proof (using
the Monge-Kantorovich problem (MKP)) was sketched. Our motivation was the
numerical study of the motion of perfect incompressible fluids. In [7], a “Lagran-
gian” scheme was introduced, where the “projection problem” plays an essential
role. Our proof relies on the study of the MKP and Rachev’s paper, [19], was very
useful. We would like to thank G. Strang for communicating it to us.

Since our first paper, we have heard (thanks to P.-L. Lions, J. Mossino, J.
Norbury, and S. Rachev) of two papers that anticipated our “rearrangement theo-
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rem”. Both are due to British scientists, one in statistics and the other in atmospheric
sciences. In the second one, by Cullen and Purser (see [10], followed by [11]), a
numerical scheme is designed, using a quasi-geostrophic model, for weather fore-
casting. The solution is described by a vector field that evolves in time. At each
time step, this field is rearranged as the gradient of some convex potential, for some
stability reasons linked to the physical model. A numerical procedure to compute
this rearrangement is also described. This procedure is reminiscent of the method
that Pogorelov introduced to prove the existence of generalized solutions for the
Monge-Ampére equation; see [9].

The first paper, recently pointed out to us by S. Rachev, is due to Knott and
Smith (see [16]) and deals with the following problem in statistics.

Given two random variables X and Y, with prescribed laws, find a correspon-
dence Y = Z(X) that maximizes the expectation of X - Y. It is shown that the
optimality condition for Z is to be the subdifferential of some convex function.
Behind this problem, it is not hard to recognize the situation considered in our
rearrangement theorem. The solution of this problem, in the one-dimensional case
(d = 1), goes back to Fréchet and Hoeffding (see [20]).

So, in these earlier works, the concept of rearrangement for vector-valued func-
tions is more or less explicitly present, although the notion of polar factorization
1$ missing.

1.8. Organization of the Paper

Section 2 is devoted to the abstract concept of “polar factorization”. A definition
and some examples are considered in Section 2.1. In particular, the polar factori-
zation of vector-valued functions (in the case p = 2, (X, p) = (£, | - |)) is discussed.
In Section 2.2, an abstract polar factorization theorem is proved and relies on a
group property that is not satisfied in the case of vector-valued functions. Sections
2.3 and 2.4 give complementary results in the case of vector-valued functions.
Section 2 is completely independent and can be ignored by readers who are only
interested in the proof of our main results. These proofs are given in Section 3 and
essentially rely on the study of the Monge-Kantorovich problem (MKP). For sim-
plicity the proof is given in the case p = 1, which is less restrictive (indeed (X, u)
is a probability space and, therefore, all spaces L?( X, u; R?) are contained in L' (X,
#; RY). In Section 3.1, the MKP is presented and two essential a priori results are
stated ( Propositions 3.1 and 3.2). Their proofs are given in Section 3.2. Then, our
rearrangement and polar factorization theorems are deduced in Section 3.3. Finally,
the existence proof for the MKP is given in Section 3.4.

2. The Abstract Concept of Polar Factorization

2.1. Definition and Examples

In this section, the notion of *“‘polar factorization” is defined in a general framework
that involves:
(a) a real Hilbert space H, with Hilbert product (( -, -)) and norm || - ||;
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(b) a closed bounded subset .S of H;
(c¢) a composition rule % : S X H = H such that (.S, *) is a semigroup, with
neutral element e, which means:

51*5; €S whenever 5,5 ES, sxe=exs=g5, forall s&S.
It is assumed that
sx(au + Bv) = asxu + Bsxv, Vs€ S8, Vu,vEH, Vo, ER

(18)
YuE H,sES — sxu iscontinuous and : [|sxu| = |lu].

Then, the “polar cone”
(19) K={u€H;,(u,e—35))z0,Vs& S}

is introduced and the following definition is stated.
Abstract Polar Factorization

It is said that there is a polar factorization of the Hilbert space H by the semigroup
S and the polar cone K if there is a negligible subset N of H (in the sense of Baire:
HA\N contains a dense countable intersection of open sets), such that

(1) for every u € H\N, there is a unique factorization u = s*k, (5, k) € S X
K,

(1) u— (s, k) is continuous on H\N.

Let us review the examples of polar factorization already considered in the
introduction.

Example 1. Polar factorization of complex numbers. Here H = C =R?(Cis
considered as a real Hilbert space), ||z|| = |z{, S = {e”, § € R/27Z}, and the
composition rule is the usual multiplication of complex numbers. Then, one gets
K=R,,N={0}.

Example 2. Polar factorization of real d X d matrices. Here

H={4= (ai/)i,j:l.d} = R9*4,

d
l4l? =2 aj,

Lj=1
S={UEH suchthat UTU=UUT =1},

and the composition rule is the usual multiplication of real matrices. Then, the



388 Y. BRENIER

“exceptional” set N is the set of all degenerate matrices and K is the convex cone
of all symmetric non-negative matrices.

Example 3. Polar factorization of vector-valued functions. Let us compare
our factorization theorem, as stated in the introduction, and our abstract definition
of polar factorization. For simplicity, we assume (X, u) = (€, 8) = (£, |- |) and
p = 2. Our Hilbert space H now is the space L?(Q; R¢) and |- || is the L%-norm.
The set S is the set of all measure-preserving mappings s from (&, | - |) into itself,
which means

(20) v/ieELY(Q), fs€L'(Q), and J;fas= Qf.

The composition law * is the usual composition law for mappings * = - and is well
defined on S X H. Indeed, since each s &€ S preserves the Lebesgue negligible sets
and each u € H is a Borel mapping up to a possible change on a Lebesgue negligible
set, u-s is a well defined Borel mapping. It is a fairly elementary exercise to check
that property (18) is satisfied (because of property (20)), (S, -) is a semigroup,
and S'is a closed bounded subset of H. So, our “factorization theorem”™ 1.2 would
exactly fit into the framework of the abstract definition, if one could prove that

(a) the set N of all u € L2(Q; R¥) for which the nondegeneracy condition (9)
fails is negligible in the sense of Baire (i.e., contained in a countable union of closed
subsets with empty interior);

(b) the set {Vy; ¢y € W'(Q), ¢ convex} is the polar cone defined by (19),
namely:

2n K= {uELZ(Q;R");f u(x)(x—s(x))dxz0, Vs€S}.

We did not succeed in proving the first statement (although it is easy to check
that H\N is dense). However we were able to prove:

PROPOSITION 2.1 (Characterization of the cone K). The cone K defined by
(21) exactly is {V{; ¢ € W'2(Q), ¥ convex }.

The proof is at the end of Section 2.3. Let us now get back to the abstract
framework of the polar factorization concept.

2.2. An Abstract Polar Factorization Theorem
We do not know exactly which conditions H, S, and x must satisfy to enforce the

polar factorization of H by S and K. However, we can prove:

THEOREM 2.1 (Abstract polar factorization). If (S, %) is a group, then the
polar factorization of H by S and K holds. Moreover, for each u € H\N:
(a) there is a unigue Hilbert projection m(u) on S;
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(b) the factor s € S in the polar factorization u = sxk, (s, k) € S X K precisely
is w(u);

(c) {m(u)} = aJ(u), where J is the Lipschitz continuous convex function
J(u) = sup;es((u, 5)).

Notice that J is the Legendre-Fenchel transform of the indicator function of S,
Is(u)=0if u €S, = +a0 otherwise,

The proof is essentially based on the group property (the semigroup property
is not sufficient) and Edelstein’s theorem [4] that asserts the following:

THEOREM 2.2 (Edelstein’s theorem). Let S be a closed-bounded subset of a
real Hilbert space H. Then, the set of all u € H for which there is a unique Hilbert
projection w(u) on S contains a dense countable intersection of open sets H\N,
defined by

H\N = {u € H; Ve >0, 36 > 0 such that
(22) Isi — saoll £ ¢, sy, 5, € S, whenever
lls; — ul|| = dist(u, S)+8,i=1,2}.

Moreover w is continuous from H\N into H.

The proof given in [4] follows from the Ekeland-Lebourg theorem on local “e-
differentiability”. Let us sketch a more direct proof.

Proof of Edelstein’s theorem: Let us show that, for a fixed ¢ > 0, the set T,
defined by

T,= {u € H; 35 > 0 such that
(23) Is, — 50l ¢, Vs,, 52 € S, whenever

fls; — ul < dist(u, S) +6,i=1,2}
is a dense open subset of the Hilbert space H. The rest of the theorem then easily
follows. The fact that T, is open is almost obvious. Indeed, assume that # belongs
to 7, and take any v € H such that |u — v|| = 4/3. Now, consider the set 4 =
{sE€S; |ls —v| =dist(v,S)+6/3}. Us;, i = 1, 2, belong to 4, then

lsi—ull S {ls; — vl + llv — uf = dist(v, Sy +8/3 + v — ul| =dist(u, S)+

which implies [|s; — s2[| = ¢, since u belongs to T.. It follows that v also belongs to

T., which shows that T, is open. To prove that T, is dense in H, let us consider
u € H and set d = dist(u, S). If d = 0 (i.e,, u belongs to S), then u obviously



390 Y. BRENIER

belongs to 7. Indeed, the diameter of {s € S; [|s — u| = dist(u, S) + ¢/2} is less
than e. If d > 0, it is not restrictive to assume u = 0, d = 1. Then, there is 5o € S
such that ||s,] = R for some R = 1 arbitrarily close to 1. Let us introduce u, =
rso/ R, where r €]0, 1[ is arbitrarily small, and show that u, belongs to T, if R is
appropriately chosen. Let us consider the set A = {s € S; ||s — 1, || = dist(y,,
S) + 6} and find & > 0 so that the diameter of A is smaller than e. We have dist(u,,
S) = |lu, — soll = lrso/R — soll = R — r. Thus, A is contained in the ball B(,,
R — r + §). Since d = dist(0, S) = 1, Sis contained in {v € H; |v| = 1} and,
therefore, 4 is also contained in {v € H; |jv]l 2 1}. For any v € 4, let us estimate
lv — soll®> = vl = 2((v, So)) + R% Because |v — u,)| =R —r+dand u, =
rso/R, we get |[v]|2 — 2r/R((v, $o)) + r> = (R — r + 8)? and |[v — sf? <
loll2(1 = R/r) + R> + R/r[(R — r + 6)* — r?]. Since R > rand [v]| = 1, we
deduce |[v — 5|21 = R/r+ R>+ R/r[(R—r+ 8)*—=r*]=(R/r— 1)(1 —
R? + 28R) + 8%R/r. By choosing first R, close enough to 1, and, then, § > 0
sufficiently small, the right-hand side becomes smaller than €2/4, which proves that
the diameter of 4 is smaller than ¢ and shows that u, belong to T.. Since [u —
u,|| = ris arbitrarily small, this proves that 7, is dense in H and achieves the main
part of the proof of Edelstein’s theorem.

Let us now get back to the polar factorization framework. In the case considered
in Theorem 2.1, S is a bounded closed subset of H and, therefore, Edelstein’s
theorem can be applied. Moreover, S is contained in a sphere centered at the origin.
Indeed,

Isl = lexsll = llef =cst,  Vs€S

immediately follows from (18 ). This allows us to use the following characterization
of the projection operator .

PROPOSITION 2.2 (Characterization of 7).  Let S be a closed subset of a sphere
centered at the origin in a real Hilbert space H. Then, the projection operator w :
H — S can be characterized as the gradient of the Lipschitz continuous function

(24) J(u) = sgg((u, $)).

More precisely, one has 3J(u) = {m(u)}, for all u € H\N, where H\N is defined
by (22).

Before proving this proposition, let us first deduce Theorem 2.1.

Step 1 (existence of a polar factorization). By Edelstein’s theorem and Prop-
osition 2.2, we know that, for every u € H\N (where H\N is defined by (22)),
there is a unique projection s = =x(u) € S. Since S is a group, k = s su is well
defined in H and u = s*+k. Thus, to prove the existence of a polar factorization of
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u, it is enough to show that k belongs to the polar cone K. This can be easily
deduced from the following calculations: for every ¢ € S,

((k, e = 6)) = ((sxk, s — s%0)) (by property (18))
= ((u, s — s*a)) (by definition of k)
=3{|lu—s*c|? — |u— s} (because S is contained in a sphere)
2 0 (since s = w(u)).

Step 2 (uniqueness of the polar factorization). Let u € H\N. Assume that
there is s € S and k € K such that u = sxk. Since k = s~ !« u (because of the group
property), it is sufficient to prove that s is unique and, more precisely, that s 1s the
unique projection «(u) of u on S, that is ((u, s)) 2 ((u, ¢)), for all ¢ € §, or,
equivalently, ((sxk, s)) = ((s*k, ¢)). By property (18); this exactly means ((k,
e)) = ((k, s '+¢)) and is always true, since k is assumed to belong to K.

Step 3 (continuity of the polar factorization). Let u, = s,*k, € H\N that
converges to u = sxk € H\N. By Edelstein’s theorem, s, = wx(u,) converges to
s = w(u). Let us prove that k, converges to k. By (18) we have:

i

ky — kIl = sy *u, — s s ull = llu, — syxs™'#ull.

Since s and u are fixed, s,*s~'*u converges to s*s 'su = u (by (18)). Since u,
converges to # (by assumption), it follows that k, converges to k. This achieves
the proof of Theorem 2.1, provided that we prove Proposition 2.2.

Proof of Proposition 2.2: Since S is contained in a sphere centered at the
origin, for each u € H, s € S is the Hilbert projection of # on S if and only if s

maximizes ((#, s)) (indeed, |lu — s|2 = |u]? + cst — 2((u, 5))). It follows from
the definition of J (24) that

(25) J(u) = ((u, m(uw))), Yu &€ H\N.

To prove that = is the gradient of J, we shall use two elementary lemmas of convex
analysis.

LEMMA 2.1. For any u € H, 8J(u) is contained in the closure of the convex
hull of S in H.

LEMMA 2.2. Forany u € H and any p € dJ(u), ((p, u)) = J(u).

Before proving these lemmas, let us deduce Proposition 2.2 from them by show-
ing 8J(u) = {m(u)} for every u € H\N.
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Step 1. 1t is easy to check that =(u) belongs to J(u), which means J(v) 2
J(u)+ ((w(u), v —u)), forallvE H. By (25), this is equivalent to J(v) 2 ((w(u),
1)), which immediately follows from the definition of J (24).

Step 2. Let us prove that p = w(u) for any p € J(u). By Lemmas 2.1 and
2.2, we know that ((p, u)) = J(u) and p belongs to the closure of the convex hull
of S. Since u belongs to H\N, by definition (22) of H\N in Edelstein’s theorem,
for each fixed e > 0, there is 8 > 0 such that every s € §

(26) Is —ull? = m(u) —ull?* + 8= ln(u) — sl = e/2.

Let us choose ¥ > 0 so that y|lu]| = 18% Because p belongs to the closure of
the convex hull of S, there is a convex combination

z 0,’5,’, 0,‘%0, Z 0,'= l, S,‘ES

iel iel
such that

”P - 2 Ol =,

iel
which implies

2 0:(sis u)) 2 ((p, w)) — vllul 2 J(u) — ;0%

iel
Let us introduce
a; =2J(u) = 2((s;, w)) = 2((w(u), u)) = 2((si ) = N — 51 = e = w(u) || %
We have a; Z 0 and 2 ,c; 8;,a; £ 62 Thus, by Chebyshev’s inequality, there is a
subset I’ of I such that ¢; < é foreach i € I'and X,c;6; = 1 — 6. By (26) we

deduce that || m(u) — s;|| = €/2 for each i € I'. It follows that

Im(u) = pll = |w(u) = 2 Oisill + 1 2 8isill

iel’ iei\r’
+lp— 2 Oisill =e/2+ dlel +v
iel
(since 2, ey 0 = 6 and ||s;]| = |le|l). Because v and & can be chosen so that y +

5|lell = ¢/2 where € is arbitrarily small, we conclude that p = w(«), which achieves
the proof of Proposition 2.2

Let us now prove Lemmas 2.1 and 2.2. Lemma 2.1 is a direct consequence of
the definition (24) of J (use the Hahn-Banach theorem, for instance).
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Proof of Lemma 2.2

If p € dJ(u), we have J(v) = J(u) + ((p, v — u)), for all v € H and, in particular
forv=20,0=J0)= J(u) - ((p, u)). Thus J(u) = ((p, u)). By Lemma 2.1, p
belongs to the closure of the convex hull of S. Thus ((p, u)) < sup{((s, u)); s €
S} . Since this supremum precisely is J(u), it follows that ((p, u)) = J(u), which
achieves the proof.

Finally, the proof of Theorem 2.1 is completed.
2.3. Proof of Proposition 2.1

Let us split the proof into three steps.

Step 1 (each u € K is the gradient of a function in W'?(Q)). An easy way
to build a family of Lebesgue measure-preserving mappings from @ into itself is to
integrate a smooth, compactly supported in Q, divergence free vector field w; see
[1]. The corresponding flowmap 1 € R —> g(¢) = exp(tw) gives, for each fixed ¢, a
smooth Lebesgue measure-preserving mapping g(t) € S (indeed, g(r) is a diffeo-
morphism from Q into itself and the jacobian determinant det(D,g(z, x)) is iden-
tically equal to 1). Moreover, g(t) = e + tw + O(1?), t = 0, where e denotes the
identity map. By definition (21) of K, for each ¥ € K and each s € S, fg u(x)-
(x — s(x))dx = 0. Thus

f u(x) - (—tw(x) + 0(t*))dxz 0

follows, by setting s = g(¢) and, therefore, fﬂ u(x)-w(x) dx must vanish for any
smooth compactly supported divergence free vector field w defined on Q. This
implies (see [12], Chapter 9A) that there is a distribution ¥ such that u = Vy
in the sense of distributions and, since u € L2(Q; R9), ¢ belongs to the Sobolev
space W12(Q).

Step 2 (u is monotone and y is convex). To prove that the potential ¢ is
convex, it is enough to show that

(27) (u(x)) —u(xz))(x; —x) 20, forae. x;,x€EQ

Because u is Lebesgue integrable, almost every point x €  is a Lebesgue point,
which means

(28) u(x) =lim |B|™! f u(x+ ey) dy,
B

e+ 0

where B denotes the unit ball in R
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Let us consider a pair (x;, X, ) of such points. When ¢ is small enough, then the
following mapping s, is Lebesgue measure-preserving from € into itself

x—x1+x, if x€ B(x,e¢)
(29) s(x)=x—x;+x; if x€B(xs,¢€)
x, otherwise.

Since u belongs to K, we have [, u(x)-(x — s(x)) dx Z 0, that is

(x — Xz)-UB u(x; +ey)ydy — Lu(xz +ey) dy] 20,

which immediately leads to (27) and shows that u = Vi is monotone and, therefore,
Y is convex.

Notice that this result could have been obtained in just one step by using the
following characterization of the subdifferential u of a convex function ¢, due to
Rockefaeller [8],

2 u(x)(xi—x-)z0

i=1,n

for (almost) all finite sequences x,, - - - , X, = X of points in Q. This inequality
would have been directly obtained by using the following volume-preserving map-
ping

s{xX)=x-x;.,+x; if x€B(x,
(30) (x) +1 ( €)

x, otherwise,
for € small enough and for any sequences of Lebesgue points x;, -+« , X, = Xo.
Step 3. To achieve the proof, let us show that V{ belongs to K for each convex

function ¢ in W'?(Q). This immediately follows from the convexity property,
since

Y(s(x)) Z Y(x) + V(x) (s(x) —x), ae.in @

holds for every Lebesgue measure-preserving mapping s and, after integrating
over ,

[ w0 = s ax [ w0 = wstnax = o,

which means that Vy belongs to K.
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2.4. Proof of a Comment on the Rearrangement Theorem

In the introduction, we asserted that property
(31) f uf(x)-uf(x)dx = f u (x) uy(x) dx
Q Q

is not true for all u,, u, in L*(Q;R), where uf = Vi, i = 1, 2, are the rearrangements
of u,, u,, when the dimension d is larger than 1 (ford = 1 and @ = ]0, 1], this
property always holds). Let us now justify this statement. If property (31) were
true, it would follow that

(32) f TP (x) T (x) dx 2 f VY1 (%) Ta(s(x)) dx

holds for every pair (¢, ¥,) of convex functions in W 2(Q) and any measure-
preserving mapping s. By using exactly the same argument as in the previous sub-
section (where we proved that any u € K is monotone ), we would deduce

(33) [V (x1) — VWi ()] - [V (x) — Va(x2)]1 2 0, ae. x,x; €
It is easy to fine a counter example. Take, for instance,
Yi(x) = 341x,  Pao(x) = 343x,
where 4,, A, are two symmetric non-negative real d X d matrices. Then, property

(33) would exactly mean that 4,4, + 4,4, is symmetric non-negative, which
cannot be true in general. Indeed, if

A1: A2: H
0 ¢ 1 1

then 4,4, + A,A4, is not non-negative for § > 0 sufficiently small.

3. Proof of the Main Results

3.1. The Monge-Kantorovich Problem

Our proof'is based on the study of a particular Monge-Kantorovich problem (MKP)
(see [19] for a general review). We are given a probability measure o on R such
that [ (1 + ||y]l) da(y) < +co and the three following problems are considered.
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The Primal MKP

Find ¢ € C(RY) N LY(R% a) and ¥ € C(Q) N L'(, B) that minimize [ ¢ da
and satisfy the following conditions.

f¢dﬁ:o

o(») +¥z)2y-z, Yy, z) ERI X Q.

The Dual MKP

Find a probability measure p on R? X { that maximizes [ y-z dp(y, z) under the
following conditions: [ || y|| dp(y, z) < +o0, a and B are the marginals of p on R
and Q, which means

ff(y) dp(y, z) = ff(y) del(y)

for each f&€ C(R?) such that |f(»)| < cst(1+ | y|), and

fg(Z) dp(y, z) = fg(Z)ﬁ(Z) dz, Vg€&C(Q).

The Mixed MKP

Find ¢ € C(R) N L' (R?, a), ¥ € C(2) N L'(R, B) and a probability measure p
on R X Q such that

(V) +Wz)Zyz, V(P 2)ERIXY

[ Iyl dp(y, z) < +o0, o and B are the marginals of pon R?and &, [ ¢ dB = 0,
and [ ¢ da < [ y-zdp(y, z).

Notice that, in the dual and the mixed MKP, p necessarily is a tight probability
measure on R X  (since [ | y|l dp(y, z) < +o0) and p(R“ X 92) = B(9) (since
B is the marginal of p) = 0 (by assumption, cf. Introduction).

Our study of these three problems involves in an essential way the subset K, of
the Sobolev space W -'(Q, 8), defined by:

K ={y e w'i(q )N CQ); f ydp =0,
(34)

3 :R‘>RU {+w}, convex, Ls.c., suchthat ¢ =y on Q}.
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An existence proof will be given in Section 3.4 for the mixed MKP. From this
existence proof, our main results (as listed in the Introduction ) will be obtained in
Section 3.3, with the help of the following “a priori’ results.

PROPOSITION 3.1.  Assume that the mixed MKP has a solution (¢, ¢, p).
Then:

(i) ¢ belongs to K, (defined by (34)) and [V vag = [ 1yl de(y);

(ii) ¢ = ¢*, a-almost everywhere on R, where y* is the Legendre transform
of Y defined by

V() = sup{y-z —(2)},  VyERS

(iii) dp(y, z) = o(y — Vi(2))B(z) dz;

(iv) [¢pda=[y-zdp(y,z)and [ ¢ dB = 0;

(v) (¥, @) is the unique solution to the primal MKP and p is the unique solution
of the dual MKP.

Moreover, if o is absolutely continuous with respect to the Lebesgue measure,
then

(i) z = VWW*(»), y = VY(z), p-almost everywhere on R? X Q;

(ii) VYV z)) = z, B-almost everywhere on @ and VYUVY*(y)) = v, a-almost
everywhere on R,

(1) dp(y, z) = 6(y — VY*(y)) da(y).

PROPOSITION 3.2.  Let (a,) be a sequence of probabiliiy measures on R? such
that [ [ da, = [ f da, for any f € C(R?) such that |f(y)| < cst(1 + |y]). If
($ns Gns Dn) is a solution to the mixed MKP corresponding to «,, then the mixed
MKP corresponding to o has a unique solution (, ¢, p) and ¢, = ¢ uniformly on
any compact subset of R, ,, = in W' (Q, B), [ [ dp,— [ f dp, for each fE
C(R? X Q) such that |f(y, z)| < cst(1 + | y]).

From the existence result (proved in Section 3.4) and Propositions 3.1 and 3.2,
we finally get:

THEOREM 3.1 (Solution of the MKP). The mixed MKP has a unique solution
W, o, p), (Y, ¢) is the unique solution of the primal MKP, and p is the unique
solution of the dual MKP. All the properties listed in Propositions 3.1 and 3.2 are
satisfied.

3.2. Proof of Propositions 3.1 and 3.2

Notice that, since  is bounded,  is contained in the ball B(0, ) for some r > 0.
To prove Propositions 3.1 and 3.2, we shall use a preliminary result on the set K,
defined by (34).
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PROPOSITION 3.3 (Main properties of the set Kj).

(a) For each vy in Ky, the following properties hold:

(1) —2rM = (z2), for all z € Q, where M = [ || VY| dB,
(ii-a) Y(z) = 2r||V¥(2) ], almost everywhere on Q,

(ii-b) Y(z) = C(6)rM, for all z € Q, where § = dist(z, IQ),
(iii) [ |¢] dB <4rM.

(iv) The Legendre-Fenchel transform y* of {, defined by

(35) V) =sup{yz— 92}, VYER

is Lipschitz continuous on RY and satisfies — rlly| S ¢*y) Z rlly| + 2rM, for all
y ERY Lip(y*) < rand Y(z) = ¢**(z) = sup,ecpe{y -z — ()}, forall z € Q.

(b) Let (Y,) be a sequence in Ko such that [ |V, | dB = M. Then, there is a
subsequence, still labelled by n, and a pair (Y, ¢) such that

YEC(Q)N LYY, B), ¢ € C(RY),

d(P)+Yz)Zy-z, VYERY VzEQ,

V. = ¥ in LY(Q, B) and uniformly on any compact subset of 9,
U* = ¢ uniformly on any compact subset of R?

and |Y5(»)] =r2M + |Iy]).

Proof of Proposition 3.3. Let us first recall that Q is supposed to be contained
in the ball B(0, r) for some r > 0 and that W"'(Q, 8) is supposed to be compactly
embedded into L'(Q, 8).

Step 1. Let ¢ € K. Since ¢ is continuous on § and [ ¢ d8 = 0, there is
2o € € such that Y{(z,) = 0. Since ¥ belongs to W1 (Q, 8), V¥ is defined almost
everywhere on Q (with respect to both 8 and the Lebesgue measure, since these
measures have the same negligible sets, by assumption). By convexity, one gets
W(zo) 2 Y(z) + V(z) (20 — z), for almost every z € Q, and, thus, Y(z) =
—V(z) (20 — 2) = 2r||V(2)] (since z, zyp € @ C B(0, r)). We also have for
almost every z, Z € Q, ¥(z) = Y(Z) + VY(2) - (z — Z), and, hence, after integrating
this inequality over Q with respect to zZ,

w2 [asz [worpnaz+ [vu - e az

Since (8 is a probability measure and f ¥ dB = 0 (because ¢ belongs to Kj), it
follows that
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W(z) 2 f V2)(z - D)B(Z)dZ =z — 2rf Ivel a8

holds for almost every z € Q. So far, we have proven —2rM = y(z) = 2r||V{(z) ||,
almost everywhere on 2.
By integrating this inequality over {2, we get

f|¢| dﬁéer vyl d5+erfdﬁ=4rM.

Let us now fix z € Q and set 6 = dist(z, 0Q) > 0. If B denotes the unit ball in R?,
then @ contains both z+ /2 Band @ = { Z€ Q; dist(2,92) = 6/2 } . By assumption
(cf. Introduction), § is essentially bounded away from 0 on w by some constant
p(6) > 0. Thus, ¥ is Lebesgue integrable on w and

f_|¢<f)| dfép(ar'f W] dB < 4rMp(8)"".

By convexity,

Uz) <

-1
z+—5—B‘ f W(2)dz.
2 2+6/28

Thus (since @ contains z + 6/2 B),

-1

Wz) = z+§B

-d
p(8)~'4rM = IBI“@) p(8)~'4rM,

which means that there is a constant C(6) such that y(z) = C(8)rM, for all z €
Q, where 6 = dist(z, Q).

Step 2. By definition (35), ¢* is well defined and satishes y*(y) = zy-y —
W(zo) = zo* y (by definition of z5), = —r| ¥ ||, and

vy sriyvll - igfxb =r(lyl +2M).

Moreover y* is Lipschitz continuous on R (indeed in definition (35) the supremum
is taken over @ C B(0, r)) and Lip(y*) = r.

Since ¥ = ¥ on ©, where ¥ is a convex Ls.c function RY > R U {+o0}, we also
have y** = on Q (this is a classical result in convex analysis; see [13]).

Step 3. Let (,) be a sequence in K, such that [ [Vy, || d8 < M. From the
former estimates, it follows that
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(i) (y¥n) is a bounded sequence in W'1(Q, 3) and, therefore, by assumption
(cf. Introduction); (¥,) has a convergent subsequence, still labelled by n, in L'(%,
B). Moreover, since —2rM = y,(z) = C(8)rM, where 6 is dist(z, 9Q), for any
z € Q, the Y, are uniformly bounded and, thus, uniformly Lipschitz continuous
(cf. [13]) on any compact subset of Q;

(ii) (¢*) is uniformly Lipschitz continuous on R and

Wiml sr@M+|yl), VyeR-

Thus, there is a subsequence, still labelled by #, and a pair ¢ € C(RY), ¢ €
C(Q)N L'(Q, B), such that

Y* — ¢, uniformly on any compact subset of R,

¥, > ¢ in L'(Q, 8) and uniformly on any compact subset of Q.
Moreover ¢ satisfies |¢(¥)| = r(2M + || y]|). Notice that

oY) +¥z)zy-z, VzEQ, yER?

immediately follows from the definition of y* and the convergence properties. This
achieves the proof of Proposition 3.3.

Proof of Proposition 3.1:  The proof of Proposition 3.1 which, in our opinion,
is the most important of our intermediary results, relies on the following well-
known property of convex conjugate functions ¥, y*, namely y(z) +y*(y) =y z,
if and only if z € d&Y*(y) and y € dY(z). The uniqueness and the precise charac-
terization of the solution to the mixed MKP (whenever it exists) follow from this
elementary property.

Step 1. Let (¢, ¥, p) be any solution to the mixed MKP. Let us first show
that ¥ € K and (¢, ¥, p) are linked together by the following relations

¢ =vy* a—ae., f¢da=fy-zdp(y,z) and

dp(y, z) = 6(y — Vi{2))B(z) dz.
Let us first introduce
(36) $(y) = sup {y:z-W(2)}, VyER.
Since (¢, ¥, p) is a solution to the mixed MKP, we have

A+ D2y z, VzEQ, y ER“
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Thus &(y) < @(y), for all y € R% For some fixed z, € €, one has r}(y) Zyzg—
(o), for all y € R?. So  is finite everywhere and, because  is contained in B(0,
r), it follows from definition (36) that  is convex and Lipschitz continuous on R¢
with Lip(¢) = r.

Let us now introduce

(37) Y(z)= sggd{yz—(?)(y)}, Vz € RY

Here ¢ is a well defined convex Ls.c. fqnctipn f£om R?into R U {+o0 } and é, xZ
are convex conjugates (see [13]): ¢ = ¢*, ¢ = ¥*. Moreover, one gets from defi-
nitions [36] and [37]

WS W2), W) 2 —-30)> -0, VZEQ

Since we know that [ (1 + Iyl de(y) < +o0, J (1 + [¥¢(2)])B(z) dz < +o0, it
follows from the bounds on ¥ and ¢ that they respectively belong to L'(%, 8) and
L'(R% «). In addition,

f&)dagquda,f{bdﬁgfwdﬁ,

and, by definition of §, ¢(y) + J(z)= y-z, forall y, z € R Thus, since a and 8
are the marginals of p, one deduces

0§f[<2>(y)+fb(2)—y-21 dp(y, z)
=f($da+ffbdﬂ—fy'zdp(y,2)
§f¢da+f¢dﬁ—fy-zdp(y,z).

The right-hand side of the last inequality is not larger than 0, since (¢, ¥, p) is a
solution to the mixed MKP. It follows that these inequalities actually are equalities
and (since ¢ < ¢, ¥ < )

(}):qb,a—a.e., ¢=¢,B—ae

(38) d(» +¥(z)=yz, p-ae onRIXQ,

[bda=[oda= vz, [vas=[yas=o0.
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_ Bydefinition of the mixed MKP,  belongs to C({2). Since the convex function
¥ is equal to the continuous function ¢, 8-almost everywhere on  and 8 has the
same negligible sets as the Lebesgue measure, it follows that y is locally Lipschitz
continuous on € (cf. [13]) and, therefore, equal to ¥ everywhere on Q. Moreover
V¢ is well defined (up to a Lebesgue negligible set) as a Borelian mapping from Q
into R? and dy(z) = {Vy(z)} holds almost everywhere on Q (here 9 denotes the
subdifferential of a convex function; see [13]).

According to a well-known result in convex analysis (see [13]), it follows from
properties (38) that

ZE (), yEMW(2)p —ae. (1, 2) ERI X Q.

Since « and B are the marginals of p on Q and R¥ and because 8 has the same
negligible sets as the Lebesgue measure, we deduce

PU(, D) ERIX Q. d2)# {V2)}}) =0

(after noticing that p(R9 X d92) = B(dQ) = 0, by assumption (cf. Introduction).
By combining these propertics, we get

(39) y=Vz),p—ae (y,2) ERIX Q.
Let us now consider an arbitrarily chosen function f € C(R¢ X Q) such that

If(y,z) Sest(L+ llyll), V(r,z)ERXQ.

Since (¢, ¥, p) is a solution to the mixed MKP, f (1 + |yl dp(y, 2) must be
finite, and, therefore f is p-integrable. Because of property (39), we have

[ 1002103, ) - [ 1v62), 2 api, 2

and the right-hand side of this equality is f f(VY(z2), z)B(z) dz, because § is the
marginal of p on Q. This shows that dp(y, z) = 6(y — V{(z))B(z) dz. Moreover,
in the particular case when f( y, z) = || y|, one gets

[ 1ov) 8 dz = [ 11 dey) < +<o,

which shows that { belongs to the Sobolev space W "1( Q, B) (we already know that
¥ belongs to C(2) U L'(Q, 8)). Finally, since ¢ = ¢ on Q, we see that { belongs
to the set Ko, |[V¥llo1ap = [ I¥] da(y).

So, the proof of the first four statements of Proposition 3.1 is completed.

Step 2. Let us now prove the fifth statement of Proposition 3.1 by showing
that, for any solution (¢, ¥, p) to the mixed MKP, (¢, ) is the unique solution to
the primal MKP and p is the unique solution to the dual MKP.
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Let us consider a solution (¢, ¥, p) to the mixed MKP, any solution (¢,, ¢,)

to the primal MKP, and any solution p; to the dual MKP. It is straightforward to
check that (¢, ¥, p;) and (¢,, ¥, p) solve the mixed MKP. Indeed,

fy'z dp(y,z) = f y-zdp(y, z)
(because p, solves the dual MKP)
= [ {00+ v doitr, o)

(because ¢,(y) + ¥,(z) Z y-z for every (y, z) € R? X Q and p,(RY X 9Q) =

B(a2) = 0)
=f¢lda+f¢/,d6

(since « and 8 are the marginals of p)

=f¢1da§f¢da

(because (¢;, ¥,) solves the primal MKP)
= fy-z dp(y, z)

(as just shown). Thus, all these inequalities become equalities. It follows that (¢,
¥, p) and (¢, ¥, p;) also solve the mixed MKP. According to the first step of the
proof, it follows that

ViEKy, ¢ =y, a-—ae,
dpi(y, z) = 8(y — V(2))B(z) dz = dp(y, 2),
y=V(z), p—ae on RIXQ,
y=Vy(z), p—ae on RIXQ

Thus p, = p and Vi, = Vi, almost everywhere on € (since 8 is the marginal of p
on { and 8 has the same negligible sets as the Lebesgue measure). Since ¢, ¢
belong to K, and @ is supposed to be connected, we deduce ¢, = ¢ and ¢, =
YT = ¢* = ¢, a-almost everywhere.

This shows that (¢, ¢) is the unique solution to the primal MKP and p is the
unique solution to the dual MKP (notice, however, that ¢ is uniquely defined up
to some a-negligible subset of R9).
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Step 3. Let us now consider the particular case when « is absolutely continuous
with respect to the Lebesgue measure.

We know that y* is a Lipschitz continuous convex function defined on R¢, and,
therefore, Viy* is a well defined (up to some Lebesgue negligible set) Borel mapping
from R into itself. Since « is absolutely continuous with respect to the Lebesgue
measure, the set {y € R% dY*(y) # {V¥*(»))} is a-negligible. It follows that
W*(y) = {V¥*(p)} is true for p-almost everywhere (), z) € RY X Q, since a is the
marginal of p on R¥.

We already know that z € dy*(y) and y = VA z) for p-almost everywhere (y,
z). Thus, z = V¥*(y) and y = Vy(z) holds for p-almost everywhere (y, z), and,
since « and § are the marginals of p, we get z = VY*(V(yY(z)) for S-almost every
z & Qand y = VY(VY*(y)) for a-almost every y € R4

Thus V¢ and Vy* are reciprocal. Moreover dp(y, z) = 6(z — VY*(y)) da(y)
immediately follows, which achieves the proof of Proposition 3.1.

Proof of Proposition 3.2: Let («,) be a sequence of probability measures on
R such that

ffda,,—»ffda, Ve C(R?) suchthat |f(y)] = cst(l + ||yl).

Let (¢,, ¥u, Pn) be a solution to the mixed MKP corresponding to («,). From
Proposition 3.1, we know that

‘pn € KO b, = w:’ a, —a.c.,

(40) dp.(y, z) = 6(y — VW,(2))B(z) dz

[revads = [ 130 deyny > [ 11 der).

From Proposition 3.3, we deduce that, for a subsequence labelled by m, there is a
pair (¢, ¢) such that

YECOINLY(QB), ¢ECRY,
oY) +U)Zy-z, V(2 ERIXQ
¥m = ¢ in L'(Q, B) and uniformly on any compact subset of Q,
é. = ¢ uniformly on any compact subset of R?,

and |$,,(»)| = cst(1 + [ylD).
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Because (¢, ¥, P,) is a solution to the mixed MKP, we have
fcbmdaméfy'zdpm(y, z), f¢md6=0.

Thus [ ¢ dB =0and [ ¢ da < lim | ¢,, da,. (This follows from (i) the uniform
convergence of (¢,,) on every compact subset of R, (ii) the uniform bounds

o] SestU+ Iyl [ 11+ 1) deo) 5 est)

Let us now consider the sequence (p,,). The marginals of p,, are «,,, and 8. Moreover,
by assumption,

Ju s do, = [ 10+ 111 dantn > [ 1+ 111 day.

Thus, for a subsequence, still labelled by m, there is a positive measure p on R X
Q, such that

(41 [ 10021 dput3, 21> [ 1. 22 o, 2)
for any compactly supported continuous function fon R X ©, and

J s iy, 2y [0+ 1y datn.

This implies that (i) p is a (tight) probability measure on RY X € with marginals
a, B and that (ii) equation (41) holds for any continuous function on R¢ X § such
that

(42) V(y, ) Sest(1+ yl), Yy, z2)ERYXQ,

In particular,
fy-zdpm(y, 2)—>fy~z dp(y, z).

So, [y-zdp(y,z)Z [ ¢ da, [ ¥ dB = 0 and, therefore, (¢, ¥, p) satisfies all the
conditions required to solve the mixed MKP. By Proposition 3.1, (¢ = y*, ¢¥) is
the unique solution to the primal MKP, p is the unique solution to the dual MKP,
and

(43) dp(y, z) = 8(y — Vi(2))B(z) dz.
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Now, it is easy to deduce that (¢,,) strongly converges to y in W "'(€Q, 8) (instead
of L' (L, B), as already obtained!). Indeed, we get from equations (41), (40), and
(43)

[ 10020, 2 80 d= =~ [ 199422, 8t2)

for any continuous function satisfying (42), which is possible only if ¢,, strongly
converges to ¥ in WI(Q, B).

Because of the uniqueness of the solution (¢, ¥, p) to the MKP, the whole
sequence (¥,) converges to () in W'(Q, 8). In the same way, ¢, = ¢ uniformly
on any compact subset of R and p, converges to p (in the sense of (41) and (42)).

This achieves the proof of Proposition 3.2.

3.3. Proof of the Main Theorems

Let us recall that the Rearrangement Theorem 1.1 is a corollary of Theorem 1.3
that we are going to prove with the help of Theorem 3.1 and the following char-
acterization result.

PROPOSITION 3.4 (Characterization of Vi/).

Let y € K, such that
(44) f SOUB) de = [ 709 dat,

Jor each f € C(R?) such that |f(y)| £ cst(1 + | y|). Then (¢ = *, ¥, p) is the
unique solution to the MKP corresponding to a, where

H(y) =¢Xy) = sup {y.z—Wz2)}, VyeR’

(45) dp(y, z) = 8(y — Vi(2))B(2) dz.

Before proving this result, let us first deduce Theorem 1.3 from Theorem 3.1
and Proposition 3.4. The first part of Theorem 1.3 directly follows from these
results. Let us briefly prove the second part. Let «, be a sequence of probability
measures such that [ fda, = [ fda, for every f€ C(R?) such that [f(y)| =
est(1 + || v[1). From the results on the MKP (Proposition 3.2), we know that the
MKP corresponding to «, has a unique solution (¢, = ¥¥, ¢,,, p,) that converges
to the unique solution (¢ = ¥*, ¥, p) of the MKP corresponding to «. In particular,
¥, converges to y in W 1(Q, 8), which achieves the proof.
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Proof of Proposition 3.4: By assumption, ¥ belongs to Ky, thus Vy belongs
to L'(Q, 8; R¥) and can be considered as a Borel mapping (up to a possible mod-
ification on a Lebesgue negligible set) from Q into R? (recall that 8 has the same
negligible sets as the Lebesgue measure and 8(3Q) = 0). So p is well defined as a
(tight) probability measure on R X Q by equation (45) and

[16. a0, 2) - [ 10z, 2 asc)

holds for all f€ C(RY X Q) such that |f(y, z)| = cst(1 + [ y]). Indeed, since ¢
belongs to Ky, [ (1 + ||¥]) dp(y, z) = [ (1 + [V¥(2)]|)B(2) dz < +oo. By as-
sumption (44) and definition (45), the marginals of p precisely are « and 8 on R
and Q. Since ¥ € K, y is convex, locally Lipschitz continuous on , and

(46) W(z) + V(z) (2 — 2) = Y2)

holds for any Z € Q and every z € Q\ E, where E is a Lebesgue negligible subset
of 1. By definition of p, there is a p-negligible subset F of R? X Q, such that y =
Vy(z) for any (y, z) € R? X Q\ F. So we deduce from convexity property (46),

(47) Wz)+y(Z-z)=¥(2), VIEQ V(y,2)EA4,

where 4 = (RY X (Q\ E))\ F has p-measure [, since
1 —p(A4) £ p(RYX (8QU E)) + p(F) = B(0Q U E) = 0.

This shows that

$(y) = ¥*(y) = sup {y-2 - YD)}, vy ER?

satisfies ¢(y) + ¥(z) = y-z, for all (¥, z) € 4, that is p-almost everywhere on
R4 X Q. Since the marginals of p are « and 8 on R and 9, it follows that

f¢da+f¢dﬁ§fy-zdp(y,z).

By definition, ¢ satisfies ¢(y) + ¥(z) = y -z, for all (¥, z) ER? X Q. So (¢ = ¢*,
¥, p) is a solution to the mixed MKP corresponding to « and, by Proposition 3.1,
is the unique solution to the MKP.

This completes the proof of Theorem 1.3 and Theorem 1.1 which is just a
corollary.
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Proof of the polar factorization theorem:

Step 1 (existence of a polar factorization). Let u € L'(X, u; RY). The fact
that u satisfies the nondegeneracy condition (9) exactly means that the probability
measure o defined by

ff(J/) do(y) = fx fu(x)) du(x),  VfE CARY),

is absolutely continuous with respect to the Lebesgue measure, de(y) = a(y) dy,
where a is a non-negative Lebesgue integrable function on R? By using our results
on the MKP, Proposition 3.1 in particular, we deduce that there is ¢ € K, a
Lipschitz continuous convex function ¢ defined by

$) =¥Hy) = sup {y-z-¥2)},  VyE R,
such that
(48) z=V¢(V{(z)), B—ae.zEQ, y=VUYH(¥), a—ae yER?
and a probability measure p defined on RY X {2 by
(49) dp(y, z) = 8(y — V(2))B(2) dz = 5(z — Ve(y)) el y) dy.

Since 1 and V¢ can be considered as Borel mappings (up to a possible modification
on a negligible set) respectively from (X, u) into R and from R into itself,

s(x) = Vo(u(x)), XEX,

defines a Borel mapping from (X, ) into R¢ This mapping is a measure-preserving
mapping from (X, ) into (&, 8). Indeed, for any /€ C.(R?), one has

ff(s(x)) du(x) = ff(Vtﬁ(u(X))) du(x) (by definition of s)
= ff(V(b(y))a(y) dy (by definition of &)
= ff(z) dp(y, z) (by definition (49) of p)

= Jf(z)B(z) dz (since B is the marginal of p on Q)
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and this can be extended to any f€ L'(%Q, 8). Thus, s belongs to the class S of all
measure-preserving mapping from (X, u) into (Q, 8). To prove the existence of
the polar factorization of u, it is now enough to show that
(50) u(x) = VW(s(x)), p—ae xEX.

Let us consider the set
M= {x€X;u(x)# V(s(x))}

and prove that it is u-negligible. We have
M= {x € X; u(x) # VUV¢(u(x)))} (by definition of s)
=u' ({yERYG y # VUV }).

Thus,

wM)=a({y ER?% y# VY(V(»))}) (by definition of «)
=p({(y,2) ERYX Q; y # VWVH(¥))}) (ais the marginal of p)

=0 (by property (48)), which exactly is 50.

This completes the proof of the existence part of the Polar Factorisation Theorem
1.2.

Step 2 (uniqueness of the polar factorization). Let us assume that there is a
different way to write u € L'(X, u; RY)\N as u = V.5’ where s' € S, ¥’ € K,
and show that, actually, ¢’ = ¢, s’ = 5 = V¢ .u, p-almost everywhere on X.

For any f€ C(R?) such that [f(y)| < cst.(1 + [[y]), we get

ff(y)a(y) dy = ff(u(x)) du(x) (by definition of a)
= ff(V\V(S’(X))) du(x) (by assumption)
= ff(W'(z))B(z) dz (since s’ is measure-preserving from (X, u) into (Q, 8)).

Thus, it follows from Proposition 3.4 that ' = .
Let us now show that s’ = V¢.u = s, u-almost everywhere on X. To do that,
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it is enough to show s = V¢.Vy .5’ (indeed, by assumption, Vy.s' = u). This is
clear, since

w{x € X; s'(x) # Vo(V(s'(x))) })

=B({zE€Q; z+ Vd(V{(z))}) (because s is measure-preserving)
=p({(y,2) ER*X Q; z # V¢(VY(z))}) (B is the marginal of p))
=0 (by property (48)).

Step 3 (continuity of the polar factorization). From the rearrangement theo-
rem, we already know that u — i is continuous from L'(X, u; R?) into W (4,
8). Let us now show that ¥ — s is continuous from L'(X, g; R)\N into L'(X,
w: R) by considering a sequence (#, = Vi,-5,) in L'(X, x; R?)\N that converges
tou € L' (X, u; RO\N in L'(X, u; R?). By Proposition 3.4, (Y¥, ¥,, p,) is the

unique solution to the MKP corresponding to the probability measure «,, associated
with u,. By Proposition 3.2, we deduce that

[ 1o02). 282) dz > [ 10z, 2802) a:

for any compactly supported continuous function fon R X Q. Since s and each
s, are measure-preserving from (X, u) into (2, 8) and u, = V-5, u = Vi s, this
1s equivalent to

[ 700, 5,000 o) [ £, s dut

and implies (since u, converges to u in L' (X, p; RY))
ff(u(X), $n(X)) du(x) = ff(u(x), s(x)) du(x).

This property can be extended by density to any function fof the form f(y, z) =
g(») h(z), where g € L'(R? o) and 1 € C(Q). Indeed, if g, is a smooth approxi-
mation to g and f.(y, z) = g.(y)h(z), then

[ [ #0000, 00 o) - [ 70, 5,069 dutx)
= sup|A| f g (u(x)) — g(u(x))| du(x)

= sup|h| f lg(y) — g(»)| da(y) — 0.
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In particular, for f(y, z) = Vé(y) - z, we get
f V(u(x)) - s,(x) du(x) > f Vo(u(x)) - s(x) du(x),
that is, since § = Vo u, u-almost everywhere on X,
f 5(x) " $2(x) du(x) > f s(x) - s(x) du(x).
Since s, and s are measure-preserving from (X, u) into (Q, 8),

[ 1,002 duo = [ 120780 d= = [ 5012 duco,
and, thus,

f l5,(x) = () [* du(x) = O,

which proves that s, converges to s in L2(X, u; RY). Because  is contained in a
ball B(0, r), all measure-preserving mappings from (X, ) into (Q, 8) are u-essentially
bounded by the same constant ». Moreover, since (X, u) is a probability space, the
spaces L?(X, p; R9) are decreasingly embedded in L'(X, u; R9). It follows that s,
converges to s in all L?(X, u; R9), for 1 £ p < +c0.

Step 4 (characterization of the factors of the polar factorization). We already
know, by the rearrangement theorem, the characterization of Vy as the unique
rearrangement of u in the class {Vy{, ¢ € K, }.

Let us now show that s is the unique maximizer in S of f S(xX) u(x) du(x). It
is easy to see that s is a maximizer, by using a straightforward convexity argument.
Indeed, since ¥ is convex and locally Lipschitz continuous on Q, we get, for every
measure-preserving mapping s’ from (X, ) into (2, 8),

Y(5'(x)) Z P(s(x)) + V(s(x)) - (5'(x) — s(x)), p—ae xEX

(here the fact that the Lebesgue negligible subsets of 2 are mapped back by both
s’ and s into p-negligible subsets of X is used). Thus, after integrating this inequality
over X, we deduce

f Vo5 du =z f Yeosdu + f VY.s-(s' — s) du.
Since both s’ and s are measure-preserving from (X, ) into (Q, 8),

[vesdu=[wsan=[warpe e



412 Y. BRENIER

which leads to

f Vos-(s' — 8)du £0,

that is f u-(s’"— 5)du = 0since u = V.5. So s maximizes f S(x) - u(x)) du(x).
Let us now show there is_ no other maximizer s’ € S. Let us introduce a prob-
ability measure p’ on R X Q defined by

ff(y, z)dp'(y, z) = ff(u(X), s'(x)) du(x)

for any /€ C(RY X Q) such that |f(y, z)] < cst(1 + | y]). We claim that p’ is
the unique solution to the dual MKP associated with « and therefore is equal to p
defined by dp(y, z) = 8(y — VY¥(2))B(2) dz.

First, from the definition of p’, we deduce that « and 8 are the marginals on R?
and £, since

ff( v)dp'(y,z)= ff( u(x)) du(x) = ff(y) da(y)

(by definition of a) for each f€ C(R¥) such that [f(y)| = cst(1 + || y]), and
[r@rar .= [ s aun = [ 1021 asia)

(since ' is measure-preserving from (X, ) into (&, 8)) for each f€ C(Q).
Then, we check that p’ maximizes f y-zdp'(y, z). Indeed

fy-z dp'(y, z) = f u(x)-s'(x) du(x) (by definition of p')

= f u(x)-s(x) du(x) (since s'is a maximizer, by assumption)
= f V(s(x))-s(x) du(x) (because of the polar factorization)
= f V¥(z)-zB(z)dz (since s is measure-preserving)

= f y-zdp(y, z) (by definition of p, the solution of the MKP).

So p' is a maximizer and, therefore, p’ = p, which shows that

f FCu(x, $'(x)) dulx) = f Fr. 2y dn(y, 2) = [ e, s(x) du)
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for each f& C(R? X Q) such that |f(y, z)| = cst(1 + ||y|). By using the same
argument as in the third step of the proof, this equality also holds for f(y, z) =
Vé(y) -z, which shows

f Vo(u(x))-s'(x) du(x) = quﬁ(u(X)) -s(x) du(x),

that is f S(x)-s'(x) du(x) = fs(x) -s(x) du(x), since we have s = V¢-u. Because
s and s’ are measure-preserving, we also have

[5G duo = [ 15002 duco

and [ [ls(x) — s'(x) || du(x) = O finally follows, which completes the proof.
This achieves the proof of the polar factorization theorem.
3.4. Existence of a Solution to the Mixed MKP

To prove that the mixed MKP has at least a solution (¢, ¥, p), we proceed in two
steps:

(1) the case when « is compactly supported, in some ball B(0, R);

(ii) the general case.

The Compact Case

From Rachev’s paper (see [19]) or from classical results on convex analysis (see
[13]), one gets:

PROPOSITION 3.5 (Strong Duality Principle). There is a probability measure
pon B(0, R) X Q, with marginals a and (3 that satisfies fy~ zdp(y, z) = I, where

I=inf[f¢da+f¢dﬁ; ¢ € C(B(0, R)), ¢ EC(Q)

o(y) +¥(z)2y-z, Y(y,z)E€B(O, R)X Q}»

Proof (sketch): Let us briefly sketch the proof by using Theorem 4.1 and
Remark 4.2 in [13]. First set

V=C(B(0,R)) X C(R), Y=C(B(O,R)XQ),
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then define

AV Y. A0, 2) = o) + W2), (v, 2) € B(O, R) X G
FivoR F<¢,¢>(y,z)=f¢da+f¢dﬁ;

G:Y—>RU{+w},
G)y=0 if 6(y,zyzy-z, V(y,z); +oo otherwise.
After checking that the conditions of Theorem 4.1 (in {13]) are satisfied, one gets

inf [F(¢,¥) + G(A(, ¥))] = max [-F*(A*p) — G¥(—p)],
(@¥)eV peY*

which is exactly Proposition 3.5, since

Y* = C(B(0, R) X QY
G*¥(—p) = —f yzdp(y,z), if pzZ0, +o otherwise,

F*(A*p) = 0if « and § are the marginals of p, +0o0 otherwise. This achieves the
proof of Proposition 3.5.

In this duality result, it is not clear that the infimum is reached by some pair
(¢, ¥), but if there 1s such an optimal pair, then it is clear that the mixed MKP
has a solution.

Let us consider a minimizing sequence (¢,, ¥.), ¢. € C(B(0, R)), ¥, €
C(Q), that satisfies

(51) Su¥) +¥u(2)Z y-z, VY(y,2)EB(0O,R)XQ,

(52) f(b,,da-i-f\,b,,dﬁ—*l.

It is not restricted to assume

(53) min ¢, = 0.
B(O.R)

(Indeed, conditions (51) and (52) are unchanged when a constant is added to ¢,
and subtracted from v,,.)
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A natural regularization of such a minimizing sequence (often used for the
general MKP; see [19]) is provided by

(54) Yu(z)= sup {pz— ¢}, VZER?
y€ B(O,R)
(55) o) = sup {y-z=¥n(2)},  VyERY

The new sequence (¢, ¥,) turns out to be (i) still a minimizing sequence, (ii)
compact for the uniform convergence topology on B(0, R) X €.

Let us first prove that ¢,, ¥, is uniformly Lipschitz continuous on R?. From
property (53) and definition (54), we get
(56) ¥.(0)=0,  Lip($,) =R

(since in definition (54 ), the supremum is taken over the ball B(0, R)). Now, from
definition (55), we deduce

0= —y,(0) = da(y) = rllyll — igm

(since € is contained in the ball B(0, r)) = r|ly|| + Rr (because of property (56)).
So

0=6,(») =r(llyl +R), VyeER
Moreover, ¢, is Lipschitz continuous on R? and Lip(¢,) = r. By Ascoli’s theorem,
there is a pair (¢, ¥) of Lipschitz continuous functions such that ¢, > ¢, ¥, > ¢,
uniformly on B(0, R) and €. Since 8 and « are compactly supported, we have
vEC)YNLY(Q,B), ¢ € C(R) N LYRY, a).
From definition (55), we easily get
d(y)+Yz)Zy-z, V(y,z) ERYX Q.
Moreover, from definitions (54) and (55), it follows that
$.(») = ¢a(¥), V¥ EB(O, R),

Un(2) S¥u(z), VzeEQ

Thus (¢, V) still is a minimizing sequence and

f¢da+f1[/dﬂél.
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By adding a suitable constant to ¢ and subtracting the same constant from y, it is
not restrictive to set f Y dB = 0. Finally, (¢, ¥, p) solves the mixed MKP which
completes the existence proof in the compact case.

The Noncompact Case

The existence of a solution to the mixed MKP directly follows from Proposition
3.2. Indeed, it is possible to approximate « by a sequence { «,) of compactly sup-
ported probability measured on R?, (for which we just proved the existence of a
solution to the mixed MKP) defined, for n large enough, by

[raen=c,| _rorda,  vrecmy,
|

H=En

where C, = a( B(0, n))~'. It is elementary to check that

J‘fdoz,,*ffda

for all f€ C(R“)such that |f(y)| < ecst(1 + || y|). This allows us to use Proposition
3.2 that asserts the existence of a solution to the mixed MKP corresponding to a.
This completes the proofs of our main results.
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