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Abstract 

Given a probability space ( X ,  p )  and a bounded domain R in R d  equipped with the Lebesgue 
measure 1 . I (normalized so that 10 I = I ), it is shown (under additional technical assumptions on X 
and Q) that for every vector-valued function u E L p ( X ,  p; R d )  there is a unique “polar factorization” 
u = V$.s, where $ is a convex function defined on R and s is a measure-preserving mapping from ( X ,  
p)  into ( Q ,  I . I), provided that u is nondegenerate, in the sense that p ( u - ’ ( E ) )  = 0 for each Lebesgue 
negligible subset E of Rd. 

Through this result, the concepts of polar factorization of real matrices, Helmholtz decomposition 
of vector fields, and nondecreasing rearrangements of real-valued functions are unified. 

The Monge-Amgre equation is involved in the polar factorization and the proof relies on the study 
of an appropriate “Monge-Kantorovich” problem. 

1. Introduction 

1.1. Review of Some Well-Known Results 

In this paper, several apparently unrelated classical results are unified through the 
concept of polar factorization of vector-valued functions. Let us review them. 

Polar Coordinates in the Complex Plane 

Any complex number can be written as z = re”, r 2 0, 0 E R/27rZ. 

Polar Factorization of Real Matrices 

Any real matrix A can be written as the product RU of a symmetric non-negative 
matrix R by a real unitary matrix U.  IfA is regular (det A # 0), then the factorization 
is unique. 

Helmholtz Decomposition of Vector Fields 

Let fl be a smooth bounded connected open set in Rd. Then, any smooth vector 
field z on fl can be written, in a unique way, as z = w + V p ,  where p is a smooth 
real function, defined on D up to an additive constant, and w is a smooth divergence 
free vector field, parallel to the boundary of 9. This decomposition theorem is the 
simplest application of the Hodge theorem on differential forms; see [ 11. 
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Nondecreasing Rearrangements of Real Functions 

Before stating the last classical result considered in this introduction, let us first 
review some well-known definitions on probability spaces. A “measure-preserving 
mapping” from a probability space (X, p)  into another probability space (Y,  v )  is 
a mapping s : X + Y such that: 

( 1 )  

Or, equivalently, 

for every v-measurable subset A of Y, 

s - ’ ( A )  is p-measurable and p ( s - ’ ( A ) )  = v ( A ) .  

for every v-integrable function f, 

fos is p-integrable and 
(2 )  

f o s  dp = s, L f d v .  

Such a mapping is not necessarily one-to-one. Consider, for instance, the case: 
(X, p)  = ( Y ,  v )  = ([0, I ] ,  I . I), where I I denotes the Lebesgue measure, and 
s(x) = min(2x, 2 - 2x). If there is a one-to-one measure-preserving mapping 
from (X, p) into (Y, v), then (X, p )  and ( Y ,  v )  are said to be isomorphic. In this 
paper, only probability spaces that are isomorphic to ([0, 11, I * I ) will be considered. 
This restriction is not severe, since, for instance, any separable complete metric 
space X ,  equipped with a Bore1 measure p such that p ( X )  = 1 and p( { x } )  = 0, 
forallxEX,isisomorphicto([O, I ] ,  I . ( ) ; s ee  [21]. 

. , we call rearrangement of u E L p ( X ,  p; R d )  
on (Y, v), any v E L p ( Y ,  v; R d )  such that: 

I fp  E [ 1, +co [ and d = I ,  2 ,3  

for each f E C ( R d )  such that I f ( < )  I 5 cst( I + I I < I I p ) .  

The last classical result deals with nondecreasing rearrangements, on the 
unit interval, of real-valued functions u E L p ( X ,  p; R) (which means d = 1 and 

Let(X,p)beaprobabilityspaceisomorphic to([O, 11, I - I ) , a n d p E [ I ,  +m[. 
Then, for each u E L p ( X ,  p ) ,  there is a unique nondecreasing rearrangement 
u‘ E Lp(O, 1 ). Moreover, the mapping u + u’ is continuous from L p ( X ,  p) into 
LP( 0, 1 ). 

This result is well known; see [ 141, [ 51, and [ 181. A recent, detailed review of 
these topics can be found in [2]. Let us briefly indicate some complementary 
properties: 

(4) 

( Y ,  v )  = ([O, 11, I * 1 ) ) .  

114 - u:IILP(o.I) 5 llUl - u2IILp(X.d. 
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For each u E L p ( X ,  p), 

( 6 )  there is a measure-preserving mapping s : (X, p) --* ([ 0, 1 1, I . 1 ), 

such that u = u#.s. 

This last statement, proved by Ryff in [ 22 1, is not very well known. 

1.2. The Main Results 

Our results can be essentially seen as the extension of the classical result on non- 
decreasing rearrangements of real functions to the case of vector-valued functions 
u E L p ( X ,  p; R d ) ,  for d > 1. 

The unit interval 10, 1 [ is now replaced by a bounded connected open set 3 in 
Wd. The Lebesgue measure is replaced by a probability measure P on such that 
P(d3)  = 0. It is assumed that d p ( z )  = p ( z )  dz ,  for some Lebesgue integrable non- 
negative function p, bounded away from 0 on any compact subset of 3. It follows 
that P has the same negligible sets as the Lebesgue measure, which means that P is 
absolutely continuous with respect to the Lebesgue measure and conversely. Notice 
that (a, P )  is isomorphic to (10, 11, 1 I ) ;  see [21]. 

The weighted Sobolev space 

will play an important role and is assumed to be compactly embedded in Lp( 3, P )  
(which is automatically enforced when 3 is smooth and is bounded away from 
0 and +co on G). Under these assumptions, our main results are: 

Rearrangements of Vector-Valued Functions 

THEOREM 1.1. For each u E L p ( X ,  p; Rd) ,  there is a unique rearrangement 
u# in the class 

( 8 )  

and the mapping u + u# is continuous. 

K = {V#; # E W , p (  3, P ) ;  # convex} c L p (  3, p; R d )  

Polar Factorization of Vector-Valued Functions 

THEOREM 1.2. Let N be the set of all u E Lp(X,  p; Rd)for which the following 
“n ondegeneracy ” condition fails: 

(9)  p ( u - ‘ ( E ) )  = 0 for each Lebesgue negligible subset E of Rd.  
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Then, for each u E L p ( X ,  p; Rd)\N, there is a unique pair (d, s ) ,  such that u# 
belongs to K ,  s is a measure-preserving mappingfrom ( X ,  p) into (a, p ) ,  and u = 
u# s . Moreover, 

(a )  u# is the unique rearrangement of u in K ( a s  in Theorem 1.1 ); 
(b )  s is the unique measure-preserving mapping that maximizes sx u ( x ) .  

(c )  the mapping u + (u’, s )  is continuousfrom L p ( X ,  p; Rd)\N into Lp( fl,/3; 
s ( x )  dCL(x); 

R ~ )  x L ~ ( x ,  1.1; Rd), for  all q E [ I ,  +a [. 

Remark. We believe that the result is still true when fl is unbounded, provided 
t h a t p >  l a n d S , I l z l l q f l ( z ) d z < + ~ , w h e r e l / q +  1 / p =  1. 

Comments on the “Rearrangement Theorem” 

Obviously, K is, with respect to Lp( 9, 0; R d ) ,  the generalization of the class of all 
nondecreasing functions in Lp( 0, 1 ). Thus Theorem 1.1 is a generalization of the 
classical result on nondecreasing rearrangements of real functions, which corre- 
spondstotheparticularcased= l , ( f i , f l )  = ( [ 0 ,  I ] ,  1 . 1 ) .  

As in the case of real arrangements, the mapping u --* u# is continuous. However, 
properties (4)  and ( 5 )  are not true in general when d > 1. For instance, in the 
particular case ( X ,  p) = (a, f l )  = (a, I . 1 ), where I . I denotes the Lebesgue measure 
(normalized so that 19 I = l ) ,  it will be shown in Section 2.4 that: 

(10) uy(x)-u:(x) dx h 

is not true in general. 

1.3. Recovery of the Classical Results 

Our “rearrangement theorem” generalizes the classical results on nondecreasing 
rearrangements of real functions. Let us now check that the polar factorization of 
real matrices and the Helmholtz decomposition of vector fields are particular cases 
of the situation considered in our “factorization theorem”. 

Helmholtz Decomposition 

The Helmholtz decomposition turns out to be the linearization of the polar 
factorization of vector-valued functions about the identity map, when (X, p) = 

(% 6 )  = (% 1 .  I). 
Let us consider u as a smooth perturbation of the identity map: 

u ( x )  = x + € Z ( X ) ,  € G 1, x E  3i. 

For E small enough, u satisfies the nondegeneracy condition (9) (because thejacobian 
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determinant is bounded away from 0) and u can be written: u = V+#.s .  It is natural 
to seek V$” and s as perturbations of the identity map: 

+ # ( x )  = $ IIxI12 + t p ( x )  + 0 ( € 2 ) ,  s(x) = x + E W ( X )  + O(t2).  

Then, z = V p  + w immediately follows. To keep +# convex, p needs no special 
property (provided that p is smooth enough and t is small enough). However, to 
keep s measure preserving, it is necessary to enforce 

for each smooth function fdefined on a. This leads to 

which precisely means (in the weak sense) that w is divergence free on R and 
parallel to dR. 

So, the Helmholtz decomposition is the linearization of the polar factorization 
of vector-valued functions. At this point, a very intriguing question can be raised: 
Is it a general fact that a Hodge decomposition of differential forms (see [ 11) can 
be seen as the linearization of some “generalized” polar factorization? 

Polar Factorization of Matrices 

Let us now show that the polar factorization of matrices is a particular case of the 
polar factorization of vector-valued functions. Here, ( X ,  p) = (n, P )  = (a, I I )  
and R is a ball centered at the origin, u is a linear mapping: u ( x )  = A x ,  for some 
real d X d matrix A .  The nondegeneracy condition (9)  exactly means that A is 
nonsingular (det A # 0). The polar factorization A = RU corresponds to the polar 
factorization u = V + # . s ,  where: + # ( x )  = f R x . x  is convex and s ( x )  = U .  x is a 
measure-preserving mapping from (Q, 1 . I ) into itself. Notice that, due to the special 
geometry of the ball, for a linear mapping u ( x )  = A .  x, each factor of the polar 
factorization s ( x )  = U .  x, u # ( x )  = R -  x is a linear mapping. This cannot be true 
for a general geometry. 

The case of complex numbers z = rei8 can be treated in the same way. So our 
polar factorization theorem unifies all these classical results. Let us now show how 
our rearrangement theorem is strongly linked to the Monge-AmpZre equation; 
see [9]. 

1.4. The Rearrangement Theorem and the Monge-AmpGre Equation 

Theorem 1.1 can be seen as an existence and uniqueness theorem of a “generalized” 
solution for the following Monge-Am$re problem. 



3 80 Y. BRENIER 

Monge-Amp6re Problem 

Given a E L ’ ( R d ) ,  a I 0, such that ( 1 + [I y 11 ”)a( y )  dy < + 03 , find a (Lipschitz 
continuous) convex function Q : R’+ R that satisfies (in a generalized sense to 
be precised ) : 

(12) V 4  maps thesupport of a into a. 
Usually, the Monge-Amp3-e equation is set on a bounded (often convex) domain 

with Dirichlet or Neumann boundary conditions; see [ 9 3 .  Here, the “range con- 
dition” ( 12) replaces the usual boundary conditions. 

To see the link with this Monge-Amp6re problem, we need a different version 
of our rearrangement theorem that relies on the following observation: What really 
matters in Theorem 1.1 is the probability measure a associated with u E LP(X,  p; 
R d )  and defined by 

for each compactly supported f €  C( Rd).  Notice that ( 1 + 
positive measure, which means 

and ( 13) still holds for each f € C ( R d )  such that I f (  y )  I 
addition, if a sequence (u,) converges to u in L p ( X ,  p; Rd),  then the corresponding 
probability measures a,? satisfy 

11 y 11 ”) da( y )  is a tight 

4 cst(1 + IIyIIp). In 

and, therefore, converge to (Y in the following sense: J- f da, --* 
fEC(Rd)suchthat  I f (y)I  $cst( l  + I IyIIp). 

So, it is not hard to see that Theorem 1.1 is a corollary of: 

f da for every 

THEOREM 1.3. For each probability measure a on Rd satisfiing j ( 1 + 11 y II 2, 

da( y )  < +a, there is a unique u# = V## in K such that 

for eachfE C( R d )  such that If( y )  I S cst( 1 + 11 y I I P ) .  Moreover, i fs f dan + J 
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f da,  for a sequence of such probability measures a, and any f E C( R d )  such that 
If(v)I 5 cst(l + IIYIIP), then 

A link can be established with the Monge-AmpZre problem in the case when a 
is absolutely continuous with respect to the Lebesgue measure 

dcu(y) = a ( y )  dy ,  a E L ' ( R d ) ,  a 10, 

which exactly means that u is nondegenerate in the sense of (9) (by Lebesgue- 
Nikodym theorem). In Theorem 1.3, Gff is convex and V$' maps !? into the support 
of a, as follows from ( 14). Let us consider the Legendre-Fenchel transform 4' of 
+# (cf. [13]), defined by 

It will be shown (see Section 3 )  that 4' is Lipschitz continuous on Rd, V4' is well 
defined almost everywhere on Rd, and 

V4'(V+"(z)) = z ,  for a.e. z E Q7 

v+#(v##(~))  = y ,  for (Y - a.e. y E 

Thus, V$# and V4' are reciprocal and, formally, one gets for every compactly 
supported fE C( R d ,  : 

by using the change of variable y = V+'( z), z = V $ # ( y ) .  By definition of qff one 
has 

and, thus, 4' satisfies (in a generalized sense) the Monge-AmpZre equation ( 1 1 ) 
together with the range condition defined by ( 12). 

1.5. Origin of the Results 

The polar factorization theorem was motivated by the study of the following "pro- 
jection problem" (introduced in [ 61). Here (X, p )  = (!?, p) = (a, I * I ) and p = 2. 
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Let us denote by H the Hilbert space L2( Q; R d )  and by S the set of all measure- 
preserving mapping from (Q, I * I ) into itself, which means 

This set S is a closed (nonconvex, noncompact) bounded subset of H (cf. Section 
2). Notice that S is contained in a sphere centered at the origin. Indeed, from ( 17), 
one gets: llsll = Jn Ils(x) 11 dx = Jn llxll dx = cst. Let us now consider: 

The Projection Problem 

Find s E S that minimizes 11 u - sII = JQ 11 u( x) - s( x) 11 dx, or, equivalently, that 
maximizes ( ( u ,  s)) = Jn u (x) . s (x)  dx. 

As mentioned in Theorem 1.2, when the nondegeneracy condition (9)  is satisfied, 
the factor s in the polar factorization of u = u#.s, for u E L2(  Q ;  Rd) ,  is exactly the 
unique maximizer in S of u(x) -s(x)  dx and, therefore, is the unique Hilbert 
projection of u on S.  The projection problem is a key to understanding the concept 
of polar factorization. For instance, the set K ,  here defined by 

K = {v+; + E w ’ , ~ ( Q ) ;  + convex} c L ~ ( Q ;  R ~ ) ,  

is closely linked to the “projection problem”. Indeed, it can be shown (cf. Section 
2 )  that K is exactly the set of all u E H for which the identity map e is a Hilbert 
projection of u on S: 

or, equivalently, 

K =  ( u E H ; ( ( u , e - s ) ) > = O , V s E S }  

Notice that, in terms of convex analysis, K is the “polar cone” of S (or, equivalently, 
of its convex hull). This “geometrical” description of the polar factorization can 
be made even more precise, by noticing that S is a semigroup with respect to the 
composition rule 

s, .=s2 E S ,  whenever sI, s2 E S ,  

and the identity map e is the neutral element. If S were a group (which is definitely 
not true since, for instance, in the case (n, I . I )  = ([0, 11, I I ) ,  s(x)  = min(2x, 
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2 - 2x) is not invertible in S )  , then the “polar factorization” theorem would follow 
from the study of the “projection problem”. 

Indeed, if u E H has a Hilbert projection s on S ,  where s is invertible in S ,  then 
u admits a polar factorization u = k .  s, where k is defined by k = u.s-’ and clearly 
belongs to K , since, for any cr E S ,  because of property ( 17), one has 

There is a general answer for the projection problem, given by Edelstein’s theorem 
(see [4]), which asserts that “almost every” u E H ,  in the sense of Baire, has a 
unique projection s = r( u )  on S.  This is due to the fact that S is a closed, bounded 
subset of a Hilbert space. Unfortunately, in our case, since S is not a group, there 
is no reason for s to be in general invertible and, therefore, there is no direct way 
to recover the factor k of the polar decomposition of u. We have not been able to 
overcome this difficulty to obtain our main results directly and a more involved 
proof has been used, through the study of the “Monge-Kantorovich” problem (cf, 
Section 1.6). Note that it is not a good idea to substitute for S the group G of all 
invertible measure-preserving mappings in S ,  since G is not closed in H ,  which 
makes impossible the use of Edelstein’s theorem. Even if this ‘‘geometrical’’ approach 
does not yield a proof of our main results, it seems to us that the discussion of the 
polar factorization in terms of group and Hilbert projection is of interest (especially 
in view of possible generalizations). This is why the second section of this paper is 
mainly devoted to this approach, in a rather abstract framework: we are given a 
Hilbert space H ,  a closed bounded subset S ,  and a composition rule * on S X H 
such that ( S ,  *) is a group and IIs*uII = IIuIJ, for all u E H ,  s E S .  Then it is 
proved, under additional assumptions, that for almost every u E H there is a unique 
polar factorization u = s*k ,  s E S ,  k E K.  Moreover, it is shown that u -+ s is the 
gradient of the Lipschitz continuous convex function J(  u )  = supsEs(( u, s)) (which 
is the Legendre-Fenchel transform of the indicator function of S ) .  

Section 2 can be read independently of the remainder of the paper and can be 
ignored by those who are interested only in the proofs of our main results. 

1.6. A Proof Using the Monge-Kantorovich Problem 

Our proof is based on the observation that the “projection problem” is a variant 
of the “mass transference problem” introduced by Monge, in the eighteenth century 
(see [ 17 1, cf. [ 3 ] ) , and generalized by Kantorovich in the 1940s; see [ 1 5 1. In modern 
terms, the Monge problem (MP) and the Monge-Kantorovich problem (MKP) 
can be described as follows. 

MP 

Given two compact metric probability spaces (X, p), ( Y ,  v )  and a continuous 
“cost” function c : X X Y --+ OX+, find a one-to-one measure-preserving map- 
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ping from ( X ,  p) into ( Y ,  V )  that minimizes the “transportation cost” sx c(x, 
s(x)) 4 4 x ) .  

MKP 

Given two compact metric probability spaces ( X ,  p), ( Y ,  V )  and a continuous 
“cost” function c : X X Y + R+, find a probability measure y on X X Y with 
marginals p and V, which means, for each f €  C ( X )  and each g E C( Y ) :  

that minimizes the “generalized transport cost” s c ( x ,  y )  d y ( x ,  y ) .  
The MKP is a “relaxed” version of the MP, in the sense that any admissible 

, solution s to the MP yields an admissible solution y to the MKP, defined by 

The MKP has many applications and a very complete review can be found in a 
recent paper by Rachev; see [ 191. The MKP is an infinite dimensional linear pro- 
gram and a key point of the analysis developed by Kantorovich is the study of the 
dual linear program: 

such that f (  x) + g(y )  4 c(x, y ) ]  . 

It can be proved (see [19]) that the MKP has a solution y that satisfies the 
“strong duality” relation I = c(x,  y )  dy(x ,  y ) .  A more refined result, due to 
Sudakov (see [ 19]), asserts that under more specific conditions (that are satisfied 
when the cost function is a power of some distance function), the solution y is 
actually of the form dy(x ,  y )  = 6 (  y - s( x)) dp( x ) ,  where s is a one-to-one measure- 
preserving mapping, which means that the Monge problem has a solution. 

Our projection problem corresponds to the case when ( X ,  g )  = ( Y ,  v )  = (a, 
I I )  and c (x ,  y )  = Ilu(x) - y(J  ’. We look for a measure-preserving mapping, not 
necessarily one-to-one, s that minimizes the cost c(x, s ( x ) )  dx. In the corre- 
sponding MKP problem, we look for a “doubly stochastic” probability measure 
on a X 0, which means that the marginals of y are 1 1, that minimizes the cost 
I = s Ilu(x) - y ( (  dy(x,  y ) .  Notice that the cost function is not necessarily con- 
tinuous, since u is given in L2( 0; Rd).  However, the MKP still makes sense because 
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c is automatically integrable for any doubly stochastic probability measure (this 
can be easily seen). 

In the earlier version of this paper (see [6]) ,  we proved, with the help of the 
strong duality relation and some well-known properties of convex functions, that, 
when u is nondegenerate in the sense of (9) ,  this MKP has a unique solution of 
the form 

for some measure-preserving mapping s, that turns out to be the unique solution 
of our projection problem. Moreover, the solution of the dual program is linked 
to a pair of convex conjugate functions ($#, 4‘) and V$# is precisely the rearrange- 
ment of u in K .  

In this paper, a slightly different and more efficient approach is used, by con- 
sidering a different MKP that generalizes the projection problem in a different way. 
We look for a probability measure p on a X a, with the following marginals: 

for each f E C( a) ,  that minimizes I = 11 x - y 11 ’ dp(x ,  y ) .  Clearly, any admissible 
solution s of the projection problem yields an admissible solution p of this new 
MKP, defined by 

for each f € C( a X a). The main advantage of the new MKP is that the cost 
function c(x, y )  = 11 x - y 1) is now simpler and smoother. 

1.7. References to Related Works 

Our polar factorization theorem was introduced, in a weaker form (for instance, u 
was supposed to be bounded and Riemann integrable), in [ 61 and the proof (using 
the Monge-Kantorovich problem (MISF’)) was sketched. Our motivation was the 
numerical study of the motion of perfect incompressible fluids. In [ 71, a “Lagran- 
gian” scheme was introduced, where the “projection problem” plays an essential 
role. Our proof relies on the study of the MKP and Rachev’s paper, [ 191, was very 
useful. We would like to thank G. Strang for communicating it to us. 

Since our first paper, we have heard (thanks to P.-L. Lions, J. Mossino, J. 
Norbury, and S .  Rachev) of two papers that anticipated our “rearrangement theo- 
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rem”. Both are due to British scientists, one in statistics and the other in atmospheric 
sciences. In the second one, by Cullen and Purser (see [lo], followed by [ I  I ] ) ,  a 
numerical scheme is designed, using a quasi-geostrophic model, for weather fore- 
casting. The solution is described by a vector field that evolves in time. At each 
time step, this field is rearranged as the gradient of some convex potential, for some 
stability reasons linked to the physical model. A numerical procedure to compute 
this rearrangement is also described. This procedure is reminiscent of the method 
that Pogorelov introduced to prove the existence of generalized solutions for the 
Monge-Ampire equation; see [ 91. 

The first paper, recently pointed out to us by S .  Rachev, is due to Knott and 
Smith (see [ 161) and deals with the following problem in statistics. 

Given two random variables X and Y ,  with prescribed laws, find a correspon- 
dence Y = Z( X) that maximizes the expectation of X . Y .  It is shown that the 
optimality condition for Z is to be the subdifferential of some convex function. 
Behind this problem, it is not hard to recognize the situation considered in our 
rearrangement theorem. The solution of this problem, in the one-dimensional case 
( d  = I ), goes back to Frkchet and Hoeffding (see [ 201 ). 

So, in these earlier works, the concept of rearrangement for vector-valued func- 
tions is more or less explicitly present, although the notion of polar factorization 
is missing. 

1.8. Organization of the Paper 

Section 2 is devoted to the abstract concept of “polar factorization”. A definition 
and some examples are considered in Section 2.1. In particular, the polar factori- 
zation of vector-valued functions (in the case p = 2, ( X ,  p) = (h, 1 . 1 )) is discussed. 
In Section 2.2, an abstract polar factorization theorem is proved and relies on a 
group property that is not satisfied in the case of vector-valued functions. Sections 
2.3 and 2.4 give complementary results in the case of vector-valued functions. 
Section 2 is completely independent and can be ignored by readers who are only 
interested in the proof of our main results. These proofs are given in Section 3 and 
essentially rely on the study of the Monge-Kantorovich problem (MKP). For sim- 
plicity the proof is given in the case p = 1, which is less restrictive (indeed ( X ,  p) 
is a probability space and, therefore, all spaces L p ( X ,  p; Rd)  are contained in L ’ ( X ,  
p; Rd)) .  In Section 3. I ,  the MKP is presented and two essential Q priori results are 
stated (Propositions 3.1 and 3.2). Their proofs are given in Section 3.2.  Then, our 
rearrangement and polar factorization theorems are deduced in Section 3.3. Finally, 
the existence proof for the MKP is given in Section 3.4. 

2. The Abstract Concept of Polar Factorization 

2.1. Definition and Examples 

In this section, the notion of “polar factorization” is defined in a general framework 
that involves: 

( a )  a real Hilbert space H ,  with Hilbert product (( -, .)) and norm 11 * 11; 
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(b )  a closed bounded subset S of H ;  
( c )  a composition rule * : S X H --f H such that ( S ,  *) is a semigroup, with 

neutral element e, which means: 

sI*s2 E S whenever sI, s2 E S ,  s*e = e*s = s, for all s E S .  

It is assumed that 

Then, the “polar cone” 

(19) K = { u E H ;  ( ( u ,  e - s)) 2 0, Vs E S }  

is introduced and the following definition is stated. 

Abstract Polar Factorization 

It is said that there is a polar factorization of the Hilbert space H by the semigroup 
S and the polar cone K if there is a negligible subset N of H (in the sense of Baire: 
H\N contains a dense countable intersection of open sets), such that 

(1)  for every u E H\N, there is a unique factorization u = s*k ,  (s, k )  E S X 
K ,  

(ii) u --f (s, k )  is continuous on H\N. 
Let us review the examples of polar factorization already considered in the 

introduction. 

Example 1. Polar factorization of complex numbers. Here H = 43 = R2 (43 is 
considered as a real Hilbert space), llzll = I z / ,  S = {e”, 0 E R/2aZ}, and the 
composition rule is the usual multiplication of complex numbers. Then, one gets 
K =  R,, N =  ( 0 ) .  

Example 2. Polar factorization of real d X d matrices. Here 

S = { U E H  suchthat U T U = U U T = I ) ,  

and the composition rule is the usual multiplication of real matrices. Then, the 
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“exceptional” set N is the set of all degenerate matrices and K is the convex cone 
of all symmetric non-negative matrices. 

Example 3. Polar factorization of vector-valued functions. Let us compare 
our factorization theorem, as stated in the introduction, and our abstract definition 
of polar factorization. For simplicity, we assume ( X ,  EL) = (fi, P )  = (0, I . I ) and 
p = 2. Our Hilbert space H now is the space L2( 9; R d )  and I(. 11 is the L2-norm. 
The set S is the set of all measure-preserving mappings s from (0, I . I ) into itself, 
which means 

The composition law * is the usual composition law for mappings * = ., and is well 
defined on S X H .  Indeed, since each s E S preserves the Lebesgue negligible sets 
and each u E His  a Borel mapping up to a possible change on a Lebesgue negligible 
set, uos is a well defined Borel mapping. It is a fairly elementary exercise to check 
that property ( 18) is satisfied (because of property ( 2 0 ) ) ,  (S, .) is a semigroup, 
and S is a closed bounded subset of H .  So, our “factorization theorem” 1.2 would 
exactly fit into the framework of the abstract definition, if one could prove that 

(a)  the set N of all u E L2( Q; R d )  for which the nondegeneracy condition (9) 
fails is negligible in the sense of Baire (i.e., contained in a countable union of closed 
subsets with empty interior); 

(b)  the set {O$; $ E W ’ , 2 (  Q ) ,  $ convex} is the polar cone defined by ( 19), 
namely: 

(21) K = { u E L z ( Q ;  R d ) ;  u ( x ) * ( x  - s ( x ) )  d~ 2 0, VS E S}. s, 
We did not succeed in proving the first statement (although it is easy to check 

that H\N is dense). However we were able to prove: 

PROPOSITION 2.1 (Characterization of the cone K ) .  The cone K defined by 
(21)exactlyi.s {V$;$E w’.*(n), $convex}. 

The proof is at the end of Section 2.3. Let us now get back to the abstract 
framework of the polar factorization concept. 

2.2. An Abstract Polar Factorization Theorem 

We do not know exactly which conditions H ,  S ,  and * must satisfy to enforce the 
polar factorization of H by S and K .  However, we can prove: 

THEOREM 2.1 (Abstract polar factorization). 

( a )  there is a unique Hilberl projection ?r( u )  on S; 

U ( S ,  * )  is a group, then the 
polar factorization of H by S and K holds. Moreover, for each u E H\N:  
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(b )  the factor s E S in the polarfactorization u = s*  k ,  (s, k )  E S X Kprecisely 

(c )  { ~ ( u ) }  = d J ( u ) ,  where J is the Lipschitz continuous convex function 
is T( u ) ;  

J ( u )  = SUP,,S((U, s)). 

Notice that J is the Legendre-Fenchel transform of the indicator function of S, 

The proof is essentially based on the group property (the semigroup property 
IS( u )  = 0 if u E S ,  = fco otherwise. 

is not sufficient) and Edelstein’s theorem [4] that asserts the following: 

THEOREM 2.2 (Edelstein’s theorem). Let S be a closed-bounded subset ofa 
real Hilbert space H .  Then, the set of all u E H for which there is a unique Hilbert 
projection T( u) on S contains a dense countable intersection of open sets H\N, 
defined by 

H\N = { u E H ;  Yt > 0,36 > 0 such that 

( 2 2 )  /Isl - s2)( 5 t, Vsl, s2 E S ,  whenever 

llsi - u)I S dist(u, S) + 6, i = 1, 2 ) .  

Moreover K is continuous from H\N into H .  

The proof given in [4]  follows from the Ekeland-Lebourg theorem on local ‘‘c- 
differentiability”. Let us sketch a more direct proof. 

Proof of Edelstein’s theorem: Let us show that, for a fixed t > 0, the set T, 
defined by 

T, = { u E H ;  36 > 0 such that 

(Is, - u / (  5 dist(u, S) + 6, i = 1 ,  2 )  

is a dense open subset of the Hilbert space H. The rest of the theorem then easily 
follows. The fact that T, is open is almost obvious. Indeed, assume that u belongs 
to T, and take any u E H such that IIu - u I I  5 6 / 3 .  Now, consider the set A = 
( s  E S ;  11s - 1111 5 dist(u, S) + 6 / 3 } .  If s,, i = 1,2, belong to A ,  then 

which implies llsl - sz(l S t, since u belongs to T,. It follows that u also belongs to 
T,, which shows that T, is open. To prove that T, is dense in H ,  let us consider 
u E H and set d = dist( u,  S). If d = 0 (i.e., u belongs to S), then u obviously 
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belongs to T,. Indeed, the diameter of { s E S ;  11s - u 11 5 dist ( u ,  S )  + t/2 ] is less 
than t. If d > 0, it is not restrictive to assume u = 0, d = 1. Then, there is so E S 
such that llsoll = R for some R L 1 arbitrarily close to 1. Let us introduce u, = 
rso /R,  where r €10, 1 [ is arbitrarily small, and show that u, belongs to T,, if R is 
appropriately chosen. Let us consider the set A = {s E S;  (Is - u,(( I dist(u,, 
S )  + 6} and find 6 > 0 so that the diameter of A is smaller than t. We have dist (u,, 
S )  d IIu, - soil = IIrso/R - soil = R - r. Thus, A is contained in the ball B(u,, 
R - r + 6 ) .  Since d = dist(0, S )  = 1, S is contained in { v  € H ;  llvll h 1 )  and, 
therefore, A is also contained in { u E H ;  l\ull 2 1). For any v E A ,  let us estimate 
1111 - = llvl12 - 2 ( ( v ,  so)) + R2. Because 1111 - u,II I R - r + 6 and u, = 
rso /R,  we get llul12 - 2 r / R ( ( v ,  so)) + r2  5 ( R  - r + S 
Ilv112( 1 - R / r )  + R2 + R / r [ ( R  - r + 6 ) 2  - r 2 ] .  Since R > r and  llvll 2 1, we 
deduce 112) - s0ll2 5 1 - R / r  + R 2  + R / r [ ( R  - r + - r 2 ]  = ( R / r  - 1)(  1 - 
R2 + 26R) + a 2 R / r .  By choosing first R ,  close enough to 1, and, then, 6 > 0 
sufficiently small, the right-hand side becomes smaller than c2/4,  which proves that 
the diameter of A is smaller than t and shows that u, belong to T,. Since (Iu - 
u, 11 = r is arbitrarily small, this proves that T, is dense in H and achieves the main 
part of the proof of Edelstein’s theorem. 

Let us now get back to the polar factorization framework. In the case considered 
in Theorem 2.1, S is a bounded closed subset of H and, therefore, Edelstein’s 
theorem can be applied. Moreover, S is contained in a sphere centered at the origin. 
Indeed, 

and 1 1 1 1  - 

immediately follows from ( 18). This allows us to use the following characterization 
of the projection operator K. 

PROPOSITION 2.2 (Characterization of K), Let S be a closed subset of a sphere 
centered at the origin in a real Hilbert space H .  Then, the projection operator K 
H + S can be characterized as the gradient of the Lipschitz continuous funclion 

More precisely, one has aJ( u )  = { K( u )  } , for all u E H\N, where H\N is defined 
bY ( 2 2 ) .  

Before proving this proposition, let us first deduce Theorem 2.1. 

Step 1 (existence of a polar factorization). By Edelstein’s theorem and Prop  
osition 2.2, we know that, for every u E H\N (where H\N is defined by ( 2 2 ) ) ,  
there is a unique projection s = K( u )  E S. Since S is a group, k = s-’ * u is well 
defined in H and u = s* k .  Thus, to prove the existence of a polar factorization of 
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u ,  it is enough to show that k belongs to the polar cone K .  This can be easily 
deduced from the following calculations: for every a E S ,  

( ( k ,  e - a)) = ( ( s * k ,  s - s*a) )  (by property (18)) 

= (( u ,  s - s* a)) (by definition of k )  

= f { JJu - s*cIJ - IJu - sIJ '> (because S is contained in a sphere) 

2 0 (since s = x ( u ) ) .  

Step 2 (uniqueness of the polar factorization). Let u E H\N. Assume that 
there is s E S and k E K such that u = s* k .  Since k = s-' * u (because of the group 
property), it is sufficient to prove that s is unique and, more precisely, that s is the 
unique projection x( I() of u on S ,  that is (( u, s)) 2 (( u,  a)), for all a E S, or, 
equivalently, ( ( s * k ,  s)) 2 ( ( s * k ,  a)). By property (18); this exactly means ( ( k ,  
e ) )  L (( k ,  s-' * a)) and is always true, since k is assumed to belong to K .  

Step 3 (continuity of the polar factorization). Let u, = s,*k, E H\N that 
converges to u = s*k E H\N. By Edelstein's theorem, s, = x(u , )  converges to 
s = x( u) .  Let us prove that k, converges to k .  By ( 18) we have: 

Since s a n d  u are fixed, s,*s- '*u converges to s * s - ' * u  = u (by (18)). Since u, 
converges to u (by assumption), it follows that k, converges to k .  This achieves 
the proof of Theorem 2.1, provided that we prove Proposition 2.2. 

Proof of Proposition 2.2: Since S is contained in a sphere centered at the 
origin, for each u E H ,  s E S is the Hilbert projection of u on S if and only if s 
maximizes (( u,  s)) (indeed, JJu - sJI = )I u 1) * + cst - 2(  ( u ,  s))). It follows from 
the definition of J (24) that 

To prove that x is the gradient of J ,  we shall use two elementary lemmas of convex 
analysis. 

LEMMA 2.1. For any u E H ,  dJ( u )  is contained in the closure of the convex 
hull of S in H .  

LEMMA 2.2. For any u E H and any p E dJ( u ) ,  ( ( p ,  u ) )  = J (  u )  

Before proving these lemmas, let us deduce Proposition 2.2 from them by show- 
ing dJ( u )  = { ?r( u ) }  for every u € H\N. 
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Step 1. It is easy to check that T( u )  belongs to dJ( u ) ,  which means J ( v )  2 
J( u )  + (( T( u )  , v - u ) ) ,  for all 2, E H .  By (25), this is equivalent to J(  v )  2 (( T( u ) ,  
v ) ) ,  which immediately follows from the definition of J (24). 

Step 2. Let us prove that p = T( u )  for any p E d J ( u ) .  By Lemmas 2.1 and 
2.2, we know that ( (a ,  u ) )  = J (  u )  and p belongs to the closure of the convex hull 
of S. Since u belongs to H\N, by definition (22) of H\N in Edelstein’s theorem, 
for each fixed t > 0, there is 6 > 0 such that every s E S 

Let us choose y > 0 so that y 11 1.4 11 5 $6’. Because p belongs to the closure of 
the convex hull of S ,  there is a convex combination 

such that 

which implies 

Let us introduce 

a; = 2 J ( u )  - 2((s;, u ) )  = 2((7r(u), u ) )  - 2((Si, u ) )  = IIu - s;11* - IIu - 7r(u)112. 

We have ai 2 0 and C I E I  erar 5 6*. Thus, by Chebyshev’s inequality, there is a 
subset I‘ of Z such that a, 5 6 for each i E I ’  and CiElt  Oi I 1 - 6. By (26) we 
deduce that [ I T (  u )  - s, 11 I t / 2  for each i E Z’. It follows that 

(since x i ,  I \ ~ ‘  0; 5 6 and IIsiII = llell). Because y and 6 can be chosen so that y + 
6llell I c/2 where c is arbitrarily small, we conclude that p = T( u ) ,  which achieves 
the proof of Proposition 2.2 

Let us now prove Lemmas 2.1 and 2.2. Lemma 2.1 is a direct consequence of 
the definition (24) of J (use the Hahn-Banach theorem, for instance). 
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Proof of Lemma 2.2 

Ifp E dJ( u ) ,  we have J(  v )  1 J (  u )  + ( ( p ,  v - u ) ) ,  for all v E Hand,  in particular 
for v = 0, 0 = J ( 0 )  2 J ( u )  - ( ( p ,  u ) ) .  Thus J ( u )  S ( ( p ,  u ) ) .  By Lemma 2.1, p 
belongs to the closure of the convex hull of S .  Thus ( ( p ,  u ) )  5 sup{ (( s, 2 1 ) ) ;  s E 
S }  . Since this supremum precisely is J(  u ) ,  it follows that ( ( p ,  u ) )  = J( u ) ,  which 
achieves the proof. 

Finally, the proof of Theorem 2.1 is completed. 

2.3. Proof of Proposition 2.1 

Let us split the proof into three steps. 

Step 1 (each u E K is the gradient of a function in W'.2(R)).  An easy way 
to build a family of Lebesgue measure-preserving mappings from !? into itself is to 
integrate a smooth, compactly supported in Q ,  divergence free vector field w ;  see 
[ 11. The corresponding flowmap t E R -f g( t )  = exp( t w )  gives, for each fixed t ,  a 
smooth Lebesgue measure-preserving mapping g( t )  E S (indeed, g( t) is a diffeo- 
morphism from !? into itself and the jacobian determinant det (D,g( t , x)) is iden- 
tically equal to 1). Moreover, g( t )  = e + tw + O ( t 2 ) ,  t + 0, where e denotes the 
identity map. By definition ( 2  I ) of K ,  for each u E K and each s E S ,  sn u ( x )  * 
( X  - s(x)) dx 2 0. Thus 

follows, by setting s = g( t )  and, therefore, u( x )  . w( x )  dx must vanish for any 
smooth compactly supported divergence free vector field w defined on R. This 
implies (see [12], Chapter 9A) that there is a distribution # such that u = V# 
in the sense of distributions and, since u E L2(  R; R d ) ,  $ belongs to the Sobolev 
space w',*(R). 

Step 2 ( u  is monotone and II. is convex). To prove that the potential I) is 
convex, it is enough to show that 

(27) ( u ( x I )  - u ( x Z ) ) . ( x I  - x 2 )  L 0, for a.e. x I ,  x2 E 0. 

Because u is Lebesgue integrable, almost every point x E R is a Lebesgue point, 
which means 

where B denotes the unit ball in Rd. 
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Let us consider a pair ( x I  , x2) of such points. When t is small enough, then the 
following mapping s, is Lebesgue measure-preserving from 9 into itself 

x - x I  + x2 if x E B ( x l ,  t )  

( 2 9 )  s,(x) = x - x2 + x I  if x E B ( x 2 ,  t )  

x, otherwise. 

Since u belongs to K ,  we have u ( x )  .(x - s , ( x ) )  dx 2 0, that is 

which immediately leads to (27) and shows that u = V$ is monotone and, therefore, 
J /  is convex. 

Notice that this result could have been obtained in just one step by using the 
following characterization of the subdifferential u of a convex function $, due to 
Rockefaeller [ 8 ] , 

c u(x ; )  . ( X i  - xi- 1 )  1 0 
I =  I. ,  

for (almost) all finite sequences xl , . . . , x,  = xo of points in 9. This inequality 
would have been directly obtained by using the following volume-preserving map- 
ping 

s,(x) = x - xi+  I + xi if x E B ( x i ,  t )  

x ,  otherwise, 
(30) 

for t small enough and for any sequences of Lebesgue points x I  , * * , x, = xo. 

Step 3. To achieve the proof, let us show that V$ belongs to K for each convex 
function $ in W ' . 2 ( Q ) .  This immediately follows from the convexity property, 
since 

$(s(x)) 2 $(x) + V $ ( x ) . ( s ( x )  - x ) ,  a.e. in D 

holds for every Lebesgue measure-preserving mapping s and, after integrating 
over 9, 

which means that V$ belongs to K .  



VECTOR-VALUED FUNCTIONS 395 

2.4. Proof of a Comment on the Rearrangement Theorem 

In the introduction, we asserted that property 

s, U:(x)  * U:(x)  dx 2 UI (x) U 2 ( X )  dx s, 
is not true for all uI  , u2 in L2( 9; Rd) ,  where U :  = Vgi, i = 1,2, are the rearrangements 
of u I  , u2, when the dimension d is larger than 1 (for d = 1 and Q = 10, 1 [, this 
property always holds). Let us now justify this statement. If property ( 3  1 ) were 
true, it would follow that 

holds for every pair ($, , $2) of convex functions in 9 )  and any measure- 
preserving mapping s. By using exactly the same argument as in the previous sub- 
section (where we proved that any u € K is monotone), we would deduce 

It is easy to fine a counter example. Take, for instance, 

where A A2 are two symmetric non-negative real d X d matrices. Then, property 
(33 )  would exactly mean that A l A 2  + A2AI  is symmetric non-negative, which 
cannot be true in general. Indeed, if 

A 1 = ( '  0 6  O )  A2=(: ;), 
then A I A2 + A2A is not non-negative for 6 > 0 sufficiently small. 

3. Proof of the Main Results 

3.1. The Monge-Kantorovich Problem 

Our proof is based on the study of a particular Monge-Kantorovich problem ( M U )  
(see [ 191 for a general review). We are given a probability measure a on Rd such 
that ( 1 + 11 y 11 ) da( y )  < + co and the three following problems are considered. 
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The Primal MKP 

Find 
and satisfy the following conditions. 

E C(Rd) n Ll (Rd ,  a)  and I) E C ( Q )  fl L ' ( 8 ,  P )  that minimize (b da 

$ ( y )  + $ ( z )  2 y - z ,  V ( y ,  2 )  E R d X  9. 

The Dual MKP 

Find a probability measure p on Rd X fi that maximizes s y * z  dp(y ,  z )  under the 
following conditions: s 11 y 11 d p ( y ,  z )  < +a, a and P are the marginals ofp on Rd 
and 0. which means 

for each f E C ( R d )  such that I f (  y )  I 5 cst( 1 + 11 y 11 ), and 

The Mixed MKP 

Find I$ E C(Rd) fl L1(Wd, a ) ,  J .  E C ( Q )  fl L 1 ( Q ,  p )  and a probability measurep 
on R d  X 0 such that 

$ 11 y 11 d p ( y ,  z )  < +a,, a and /3 are the marginals of p on Rd and fi, $ I) dB = 0, 
and $ 4  doc 5 s y - z  d p ( y ,  z ) .  

Notice that, in the dual and the mixed MKP, p necessarily is a tight probability 
measure on R d  X 0 (since IIyII d p ( y ,  z )  < +a) andp(Rd X dQ) = P(dQ) (since 
/3 is the marginal of p) = 0 (by assumption, cf. Introduction). 

Our study of these three problems involves in an essential way the subset KO of 
the Sobolev space W 'J ( Q, p) ,  defined by: 

34 : Rd --* 08 U {+a } ,  convex, l.s.c., such that tc/ = $ on Q } .  
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An existence proof will be given in Section 3.4 for the mixed MKP. From this 
existence proof, our main results (as listed in the Introduction) will be obtained in 
Section 3.3, with the help of the following “a priori” results. 

PROPOSITION 3.1. 

( i )  I) belongs to KO 
(ii) 4 = I)*, a-almost everywhere on Rd, where I)* is the Legendre transform 

Assume that the mixed MKP has a solution (I), 4, p ) .  

by (34)) and IlVI)ll~1(n.~) = S I I Y  /I d 4 ~ ) ;  
Then : 

of I) defined by 

(iii) dp(y ,  z) = S ( j 1 -  VI)(z))P(z) dz; 
(iv) J 4 d a = S y * z d p ( y , z ) a n d J I ) d P - O ;  
(v) (I), 4 ) is the unique solution to the primal MKP andp is the unique solution 

Moreover, if a is absolutely continuous with respect to the Lebesgue measure, 

( i )  z = VI)*( y ) ,  y = VI)( z ) ,  p-almost everywhere on Rd X a; 
(ii) VI)*(VI)( z ) )  = z, @-almost everywhere on 

(iii) dP(Y, Z )  = S ( Y  - VI)*(Y))  d 4 Y ) .  

of the dual MKP. 

then 

and VI)(VI)*( y ) )  = y ,  a-almost 
everywhere on R d ;  

PROPOSITION 3.2. Let (a,) be a sequence of probability measures on R d  such 
that J f d a ,  + J fdcY,for a n y f E  C ( R d )  such that I f (y)I  5 cst(1 + IIylI). r f  
(#,, &, a,,) is a solution to the mixed MKP corresponding to a,, then the mixed 
MKP corresponding to a has a unique solution (I), 4, p )  and 4, + I) uniformly on 
any compact subset ofRd, I), + I) in W ’ , ‘ ( Q ,  P ) ,  s f dpn + s f dp, for each f E  
C(Rd x St) such that If( y ,  z )  I 5 cst( 1 + II y 1 1 ) .  

From the existence result (proved in Section 3.4) and Propositions 3.1 and 3.2, 
we finally get: 

THEOREM 3.1 (Solution of the MKP). The mixed MKP has a unique solution 
(I), 4, p ) ,  (I), 4) is the unique solution of the primal MKP, and p is the unique 
solution of the dual MKP. All the properties listed in Propositions 3.  I and 3.2 are 
satisfied. 

3.2. Proof of Propositions 3.1 and 3.2 

Notice that, since C2 is bounded, fi is contained in the ball B( 0, r )  for some r > 0. 
To prove Propositions 3 .  I and 3.2, we shall use a preliminary result on the set KO 
defined by ( 34 ) . 
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PROPOSITION 3.3 (Main properties of the set KO).  
( a )  For each + in KO, the following properties hold: 
( i )  - 2 r M 5  +(z ) ,  f o r a l l z E  Q, whereM= J IIV+ll dP, 
(ii-a) +( z )  5 2r 11 V+( z )  11, almost everywhere on Q, 
(ii-b) +( z )  5 C( F)rM, for all z E Q, where F = dist( z ,  an), 
(iii) J [ + I  dp 5 4rM. 
(iv) The Legendre-Fenchel transform +* of +, defined by 

is Lipschitz continuous on Rd and satisjes - r y 11 5 +*( y )  i r II y II + 2rM, for all 
y E Rd, Lip(+*) i r and +( z )  = +* *( z )  = sup,, R d {  y ' z  - +*( y ) } ,  for all z E 0. 

(b)  Let (+,,) be a sequence in KO such that 5 IIV+,, 11 d p  5 M .  Then, there is a 
subsequence, still labelled by n ,  and a pair (+, 4) such that 

+,, + + in L '  (0, 0) and uniformly on any compact subset of 52, 

+? + 4 uniformly on any compact subset of R d  

Proof of Proposition 3.3. Let us first recall that Q is supposed to be contained 
in the ball B( 0, r )  for some r > 0 and that W I . ' (  Q, p )  is supposed to be compactly 
embedded into L ' (  R, p ) .  

Step 1. Let + E KO. Since + is continuous on Q and J + d o  = 0, there is 
zo f Q such that +(zo) = 0. Since + belongs to W'. ' (Q,  p ) ,  V+ is defined almost 
everywhere on Q (with respect to both ,f3 and the Lebesgue measure, since these 
measures have the same negligible sets, by assumption). By convexity, one gets 
+(zo) 2 + ( z )  + V+(z)*(zo - z), for almost every z E 0, and, thus, +(z )  S 
-V+( z) .( zo - z) 5 2r IIV+( z) 11 (since z, zo E R C B( 0, r ) ) .  We also have for 
almost every z ,  2 E Q, +( z )  2 +( 2) + V+( 2) (z - .?), and, hence, after integrating 
this inequality over Q with respect to 5, 

+ ( z ) s d p > s + ( i ) / 3 ( i ) d 2 +  s V+(F)-(z-i)p(Z)d2. 
Since p is a probability measure and J + dp = 0 (because + belongs to KO) ,  it 
follows that 
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+ ( z )  2 J O$(Z) . ( z  - z)P(z") di L - 2r J 11vrc.11 dp 

holds for almost every z E R. So far, we have proven -2rM 5 $( z )  I 2r IIV$( z )  11, 
almost everywhere on R. 

By integrating this inequality over R, we get 

Let us now fix z E R and set 6 = dist(z, dR)  > 0. If B denotes the unit ball in Rd, 
then Q contains both z + 6 /2  B and 0 = { ZE R; dist( 2, do)  2 6 /2  } . By assumption 
(cf. Introduction), p is essentially bounded away from 0 on 0 by some constant 
p( 6)  > 0. Thus, $ is Lebesgue integrable on W and 

By convexity, 

$(z) 5 I z  + ;.I-' J $(i) di 
z i d l 2 B  

Thus (since W contains z + 6 / 2 B ) ,  

which means that there is a constant C(6) such that $(z) 5 C(G)rM, for all z E 
9, where 6 = dist(z, d o ) .  

Step 2.  By definition (35), $* is well defined and satisfies $*(y )  2 zo .y  - 
$(zo) = zo .y  (by definition of zo), L -rllyll, and 

Moreover $* is Lipschitz continuous on Rd(  indeed in definition (35) the supremum 
is taken over R C B(0, r ) )  and Lip($*) I r .  

Since $ = 4 on R, where $ is a convex 1.s.c function Rd + R U { +oo } , we also 
have $* * = $ on R (this is a classical result in convex analysis; see [ 131). 

Step 3. Let ($,,) be a sequence in KO such that 11 V& 11 dp 5 M .  From the 
former estimates, it follows that 
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( i )  ( $ n )  is a bounded sequence in W'.'(O, p )  and, therefore, by assumption 
(cf. Introduction); ( qn) has a convergent subsequence, still labelled by n ,  in L ' (  Q, 
p) .  Moreover, since -2rM 5 (Cln(z) I C(G)rM, where 6 is dist(z, an), for any 
z E a, the $H are uniformly bounded and, thus, uniformly Lipschitz continuous 
(cf. [ 131) on any compact subset of R; 

(ii) ($$ ) is uniformly Lipschitz continuous on Rd and 

l$:(Y)l r ( 2 M +  Ilvll), V Y E R d .  

Thus, there is a subsequence, still labelled by n ,  and a pair 4 E C(Rd), $ E 
c(n) n L'(s2, p) ,  such that 

$$ -+ 4, uniformly on any compact subset of Ed, 

tc,, + tc, in L ' (  52, P )  and uniformly on any compact subset of Q .  

Moreover 4 satisfies I 4( y )  I 5 r( 2M + 11 y 11 ). Notice that 

4 ( y )  + $ ( z )  L y . 2 ,  vz  E n, y E Rd 

immediately follows from the definition of $: and the convergence properties. This 
achieves the proof of Proposition 3.3. 

Proof of Proposition 3.1: The proof of Proposition 3.1 which, in our opinion, 
is the most important of our intermediary results, relies on the following well- 
known property of convex conjugate functions $, $*, namely $( z )  + $*( y) = y * z ,  
if and only if z E a$*( y) and y E a$( 2). The uniqueness and the precise charac- 
terization of the solution to the mixed MKP (whenever it exists) follow from this 
elementary property. 

that $ E KO and (4, $, p) are linked together by the following relations 
Step 1. Let (4, $, p )  be any solution to the mixed MKP. Let us first show 

4 = $*, a - a.e., 4 da = y.zdp(y ,  z )  and s s  
Let us first introduce 

Since (4, $, p) is a solution to the mixed MKP, we have 

4( y) + $( z)  2 y . z ,  vz E n, y E Rd. 
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Thus b( y )  5 4( y )  , for all y E Rd. For some fixed zo E 52, one has b( y )  2 y * zo - 
lj( zo), for all y E Rd. So is finite everywhere and, because R is contained in B(0, 
r ) ,  it follows from definition (36)  that 4 is convex and Lipschitz continuous on Rd 
with Lip($) 5 r. 

Let us now introduce 

Here & is a well defined convex 1.s.c. function from Rd into R U { +a } and 3, 4 
are convex conjugates (see [ 131): & = i*, 4 = $*. Moreover, one gets from defi- 
nitions [ 361 and [ 37 ] 

& ( z )  5 l j (Z ) ,  $ ( z )  2 - 4 ( O )  > -a, vz E R. 

Since we know that J- ( I  + Ilyll) da(y )  < fa ,  ( 1  + Ilj(z)l)P(z) dz < +a, it 
follows from the bounds on & and 4 that they respectively belong to L ' ( Q ,  P )  and 
L ' ( R d ,  a ) .  In addition, 

and, by definition of &, & y )  + & ( z )  2 y * z ,  for all y ,  z E Rd. Thus, since a and P 
are the marginals of p ,  one deduces 

The right-hand side of the last inequality is not larger than 0, since (4, lj, p )  is a 
solution to the mixed MKP. It follows that these inequalities actually are equalities 
and (since 4 S 6, 4 S lj) 

i = 4, a - a.e., 

$ ( y )  + $ ( z >  = y - z ,  

3. = lj, P - a.e., 

p - a.e. on I W ~  x 0, 138) 

J i da = J 6 da = J y . 2 dp( y , z )  , J 4 dp = J lj dp = 0. 
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By definition of the mixed MKP, $ belongs to C( Q ) .  Since the convex function 
4 is equal to the continuous function $, ,&almost everywhere on Q and /3 has the 
same negligible sets as the Lebesgue measure, it follows that 5/ is locally Lipschitz 
continuous on f2 (cf. [ 131) and, therefore, equal to $ everywhere on Q. Moreover 
V$ is well defined (up to a Lebesgue negligible set) as a Borelian mapping from Q 
into Rd and a$( z) = { V$( z )  } holds almost everywhere on Q (here a denotes the 
subdifferential of a convex function; see [ 1 3 ] ). 

According to a well-known result in convex analysis (see [ 13]), it follows from 
properties (38 )  that 

z E & ( y ) ,  y E a$(z )p  - a.e. ( y ,  z) E x s2. 

Since (Y and /3 are the marginals of p on fi and Rd, and because /3 has the same 
negligible sets as the Lebesgue measure, we deduce 

P({ ( y ,  z )  € Rd x a; M z )  + {V$(ZH 1) = 0 

(after noticing that p ( R d  X dQ) = P ( d Q )  = 0, by assumption (cf. Introduction). 
By combining these properties, we get 

(39) 

Let us now consider an arbitrarily chosen function f E C( Rd X n)  such that 

y = v$(z), p - a.e. ( y ,  z )  E R~ x SZ. 

I f (  Y ,  z) 5 cst( 1 + II y II 1, v (v, 2) E R x 32. 

Since (4, $, p )  is a solution to the mixed MKP, 
finite, and, therefore f is p-integrable. Because of property (39) ,  we have 

( 1 + 11 y 11 ) d p ( y ,  z )  must be 

and the right-hand side of this equality is Jf(V$(z), z)p(z) dz ,  because p is the 
marginal o f p  on 0. This shows that dp(y ,  z) = 6 ( y  - V$(z))p(z) dz. Moreover, 
in the particular case whenf( y ,  z) = 11 yll, one gets 

which shows that $ belongs to the Sobolev space W1.l ( 8 , p )  (we already know that 
$ belongs to C( Q )  U L 1 (  Q, p ) ) .  Finally, since $ = li/ on Q, we see that $ belongs 

So, the proof of the first four statements of Proposition 3.1 is completed. 
to the set KO, IlV$IIL~(n:@, = J llyll d 4 Y ) .  

Step 2. Let us now prove the fifth statement of Proposition 3.1 by showing 
that, for any solution (4, $, p) to the mixed MKP, (4, $) is the unique solution to 
the primal MKP and p is the unique solution to the dual MKP. 
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Let us consider a solution (4, $, p )  to the mixed MKP, any solution ) 
to the primal MKP, and any solution pI to the dual MKP. It is straightforward to 
check that (4, $, pI ) and ( d I ,  p )  solve the mixed MKP. Indeed, 

s y . z  dp(y, z )  5 s y.2 &I(Y, z )  

(because pl solves the dual MKP) 

(because 41(y )  + $ , ( z )  2 y . z  for every ( y ,  z) E R d  X fl and p r ( R d  X dfl) = 

D(df l )  = 0 )  

(since a and ,8 are the marginals of p~ ) 

(because ( 41,  ) solves the primal MKP) 

(as just shown). Thus, all these inequalities become equalities. It follows that 
$I ,  p )  and (4, $, pI ) also solve the mixed MKP. According to the first step of the 
proof, it follows that 

$1 E KO, 4I = $ 7 ,  a - a.e., 

y = V $ , ( z ) ,  p - a.e. on R~ x 0, 

y = v+(z), p - a.e. on R* x a. 
Thus pI = p and V$l = V$, almost everywhere on fi (since p is the marginal of p 
on fi and p has the same negligible sets as the Lebesgue measure). Since $ 
belong to KO and $2 is supposed to be connected, we deduce = $ and dl  = 

$7 = $* = 4, a-almost everywhere. 
This shows that (4, $) is the unique solution to the primal MKP and p is the 

unique solution to the dual MKP (notice, however, that 4 is uniquely defined up 
to some a-negligible subset of Rd).  
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Step 3. Let us now consider the particular case when a is absolutely continuous 
with respect to the Lebesgue measure. 

We know that $* is a Lipschitz continuous convex function defined on Rd, and, 
therefore, V$* is a well defined (up to some Lebesgue negligible set) Bore1 mapping 
from Rd into itself. Since a is absolutely continuous with respect to the Lebesgue 
measure, the set { y  E Rd; d$*(y) # { O $ * ( y ) } }  is a-negligible. It follows that 
a$*( y )  = { V$*( y )  } is true for p-almost everywhere ( y ,  z )  E Rd X a, since a is the 
marginal ofp on R ~ .  

We already know that z E a$*( y )  and y = O$( z )  for p-almost everywhere ( y ,  
z ) .  Thus, z = V$*( y )  and y = V$(z) holds for p-almost everywhere ( y ,  z ) ,  and, 
since a and /3 are the marginals of p ,  we get z = O$*(V( $( z ) )  for /3-almost every 
z E 

Thus V$ and O$* are reciprocal. Moreover dp(y ,  z )  = 6 ( z  - O#*(y) )  da(y )  
immediately follows, which achieves the proof of Proposition 3.1. 

and y = V$(V$*( y ) )  for a-almost every y E Rd. 

Proof of Proposition 3.2: Let (a,) be a sequence of probability measures on 
Rd such that 

Let (6n, $,, p,) be a solution to the mixed MKP corresponding to ( a n ) .  From 
Proposition 3.1, we know that 

From Proposition 3.3, we deduce that, for a subsequence labelled by m, there is a 
pair (4, $) such that 

@ ( y )  + $ ( z )  2 y . z ,  V ( y ,  z )  E Rd x Q.  

$m + $ in L I (  Q ,  0) and uniformly on any compact subset of 3, 

6m + 6 uniformly on any compact subset of Rd, 
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Because (&, #,, p,) is a solution to the mixed MKP, we have 

Thus s # dP = 0 and s 4 da d lim s 4, dam. (This follows from ( i )  the uniform 
convergence of (&) on every compact subset of Rd, (ii) the uniform bounds 

Let us now consider the sequence (p,). The marginals ofp, are a,,, and P. Moreover, 
by assumption, 

Thus, for a subsequence, still labelled by m ,  there is a positive measure p on Rd X 
Q ,  such that 

for any compactly supported continuous function f o n  Rd X G, and 

This implies that ( i )  p is a (tight) probability measure on R d  X fi with marginals 
a, P and that (ii) equation (4  1 ) holds for any continuous function on R d  X i7 such 
that 

In particular, 

So, J y z dp( y ,  z )  2 s 4 da, J # dp = 0 and, therefore, (4, #, p )  satisfies all the 
conditions required to solve the mixed MKP. By Proposition 3.1, (4  = $*, $) is 
the unique solution to the primal MKP, p is the unique solution to the dual MKP, 
and 
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Now, it is easy to deduce that (qm) strongly converges to $ in J+".'( Q, p )  (instead 
of L ' ( 9, p) ,  as already obtained! ) . Indeed, we get from equations (4  1 ), (40), and 
(43) 

for any continuous function satisfying (42), which is possible only if $rn strongly 
converges to $ in W','  (Q, 0) .  

Because of the uniqueness of the solution (4, $, p )  to the MKP, the whole 
sequence ($,) converges to ($) in W I - '  ( 9, p ) .  In the same way, 4, + 4 uniformly 
on any compact subset of Rd and p ,  converges t o p  (in the sense of ( 4  1 ) and (42)).  

This achieves the proof of Proposition 3.2.  

3.3. Proof of the Main Theorems 

Let us recall that the Rearrangement Theorem 1.1 is a corollary of Theorem 1.3 
that we are going to prove with the help of Theorem 3.1 and the following char- 
acterization result. 

PROPOSITION 3.4 (Characterization of O$) 

Let $ E KO such that 

(44) 

for eachfE C(Rd) such that IJ(y)I 5 cst( 1 + IIyII). Then (4  = $*, $, p )  is the 
unique solution to the MKP corresponding to a, where 

Before proving this result, let us first deduce Theorem 1.3 from Theorem 3.1 
and Proposition 3.4. The first part of Theorem 1.3 directly follows from these 
results. Let us briefly prove the second part. Let a, be a sequence of probability 
measures such that J f da, + J f da, for every f €  C ( R d )  such that I f (  y )  I S 
cst( 1 + Ilyll). From the results on the MKP (Proposition 3 . 2 ) ,  we know that the 
MKP corresponding to a, has a unique solution (4, = $ X ,  $,, p,) that converges 
to the unique solution (4 = $*, $, p )  of the MKP corresponding to a. In particular, 
$, converges to $ in W ' , I (  0, p),  which achieves the proof. 
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Proof of Proposition 3.4: By assumption, $ belongs to KO, thus V$ belongs 
to L ' (  9, P; R d )  and can be considered as a Bore1 mapping (up to a possible mod- 
ification on a Lebesgue negligible set) from fi into Rd (recall that P has the same 
negligible sets as the Lebesgue measure and @(an) = 0). So p is well defined as a 
(tight) probability measure on Rd X fi by equation (45) and 

holds for all f€  C( Rd X f i )  such that I f (  y ,  z )  I 5 cst( 1 + 11 y 11 ). Indeed, since $ 

sumption (44) and definition (45), the marginals of p precisely are (Y and p on Rd 
and fi. Since $ E KO, $ is convex, locally Lipschitz continuous on 9, and 

belongs to KO, J ( 1 + llvll) &(Y, 2) = J ( I + IIV$(z) II )P(z> dz < +a. BY as- 

(46) $ ( z )  + V$(Z).(Z - z )  5 $(z") 

holds for any z" E 9 and every z E 9\ E ,  where E is a Lebesgue negligible subset 
of 9. By definition of p ,  there is a p-negligible subset F of Rd X fi, such that y = 
V$(z) for any ( y ,  z )  E Rd X G\F. So we deduce from convexity property (46), 

(47) $ ( z )  + y * ( Z  - z )  5 #(Z), V Z E  9, V ( y ,  2 )  € A ,  

where A = (Rd  X (O\E))\F has p-measure 1, since 

I - p ( A )  S p ( R d  X (a9 U E ) )  + p ( F )  = P(aQ U E )  = 0. 

This shows that 

satisfies 4 ( y )  + $ ( z )  5 y . z ,  for all ( y ,  z )  E A ,  that is p-almost everywhere on 
Rd X fi. Since the marginals of p are (Y and P on Rd and fi, it follows that 

By definition, 4 satisfies 4 ( y )  + $( z )  L y + z ,  for all ( y ,  z )  E Rd X 9. So ( C#J = $*: 
$, p )  is a solution to the mixed MKP corresponding to a and, by Proposition 3.1, 
is the unique solution to the MKP. 

This completes the proof of Theorem 1.3 and Theorem 1.1 which is just a 
corollary. 
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Proof of the polar factorization theorem: 

Step 1 (existence of a polar factorization). Let u E L ' ( X ,  p; Rd) .  The fact 
that u satisfies the nondegeneracy condition (9)  exactly means that the probability 
measure a defined by 

is absolutely continuous with respect to the Lebesgue measure, da(y)  = a( y )  dy, 
where a is a non-negative Lebesgue integrable function on Rd. By using our results 
on the MKP, Proposition 3.1 in particular, we deduce that there is # E KO, a 
Lipschitz continuous convex function 4 defined by 

such that 

(48) z = V4(V#(z ) ) ,  p - a.e. z E h, y = 0#(04(y)) ,  a - a.e. y E Rd, 

and a probability measure p defined on Rd X h by 

Since u and Vq5 can be considered as Borel mappings ( u p  to a possible modification 
on a negligible set) respectively from ( X ,  p)  into Rd and from Rd into itself, 

defines a Borel mapping from ( X ,  p) into Rd. This mapping is a measure-preserving 
mapping from ( X ,  p) into (0 ,P) .  Indeed, for any f E  Cc(Rd), one has 

J f ( s ( x ) )  dp(x )  = f ( V $ ( u ( x ) ) )  d p ( x )  (by definition of s) s 
= 1 f(O4( y ) ) a (  y )  dy (by definition of a )  

= f( z )  dp( y ,  z )  (by definition (49) of p )  

= s f( z)P( z )  dz (since p is the marginal of p on a )  
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and this can be extended to any f E  L’(  R, p) .  Thus, s belongs to the class S of all 
measure-preserving mapping from ( X ,  p) into (n, p ) .  To prove the existence of 
the polar factorization of u ,  it is now enough to show that 

(50) u(x)  = V $ ( s ( x ) ) ,  p - a.e. x E X .  

Let us consider the set 

M = { x  E X ;  u ( x )  # V $ ( s ( x ) ) }  

and prove that it is p-negligible. We have 

M = { x  E X ;  u ( x )  # V$(V$(u (x ) ) ) }  (by definition of s) 

Thus. 

p( M )  = a( { y E Rd; y # V$(V4( y ) )  } ) (by definition of a )  

= a( { ( y ,  z )  E R d  X a; y # V$(V4(y))}) ( a  is the marginal o fp )  

= 0 (by property (48)), which exactly is 50. 

This completes the proof of the existence part of the Polar Factorisation Theorem 
1.2. 

Step 2 (uniqueness of the polar factorization). Let us assume that there is a 
different way to write u E L 1 ( X ,  p; Rd)\N as u = V$‘,s’ where s’ E S ,  $’ E KO 
and show that, actually, $’ = $, s’ = s = Vdo u ,  p-almost everywhere on X .  

For any f€ C( R d )  such that If( y )  I 5 cst.( 1 + 11 y 11 ), we get 

S/( y ) a ( y )  dy = f( u ( x ) )  dp(x) (by definition of o) S 
= J f ( V $ ’ ( s ’ ( x ) ) )  dp(x) (by assumption) 

= s f ( V $ ’ (  z ) ) @  z )  dz (since s’ is measure-preserving from ( X ,  p) into ( fi, 0)) 

Thus, it follows from Proposition 3.4 that $’ = $. 
Let us now show that s’ = V4.u = s, p-almost everywhere on X .  To do that, 
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it is enough to show s' = V4.V$.sr (indeed, by assumption, V$.s' = u). This is 
clear, since 

= p( { z E fi; z # V4(0$( z))}) (because s is measure-preserving) 

= p ( {  ( y ,  z) E R d  X fi; z # V+(V$(z))}) ( p  is the marginal ofp) )  

= 0 (by property (48 )) . 

Step 3 (continuity of the polar factorization). From the rearrangement theo- 
rem, we already know that u + $ is continuous from L ' ( X ,  p; R d )  into W ' . ' ( Q ,  
P ) .  Let us now show that u + s is continuous from L ' ( X ,  p; Rd)\N into L ' ( X ,  
p; R d )  by considering a sequence (u, = Vf/,os,) in L ' ( X ,  p; Rd)\N that converges 
to u E L ' ( X ,  p; Rd)\N in L ' ( X ,  p; Rd) .  By Proposition 3.4, ($:, $,, p,) is the 
unique solution to the MKP corresponding to the probability measure a, associated 
with u,. By Proposition 3.2, we deduce that 

for any compactly supported continuous function f on Rd X fi. Since s and each 
s, are measure-preserving from ( X ,  p) into (a, 0) and u, = V$,.s,, u = V$.s, this 
is equivalent to 

and implies (since u, converges to u in L ' ( X ,  p; R d ) )  

This property can be extended by density to any function f of the formf( y ,  z )  = 
g(y)h(z) ,  where g E L 1 ( R d ,  a) and h E C(fi). Indeed, ifg, is a smooth approxi- 
mation t o g  andf;(y, z) = g,(y)h(z),  then 

I J  

5 sup 

= sup 
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In particular, forf( y ,  z )  = V @ ( y )  ‘ z ,  we get 

41 1 

that is, since s = V 4 a  u ,  p-almost everywhere on X, 

Since s, and s are measure-preserving from ( X ,  p )  into (a, @), 

and, thus, 

which proves that s, converges to s in L 2 ( X ,  p; Rd) .  Because Q is contained in a 
ball B( 0, r ) ,  all measure-preserving mappings from ( X ,  p )  into (f?!, 8) are @-essentially 
bounded by the same constant r .  Moreover, since ( X ,  p )  is a probability space, the 
spaces L p ( X ,  p; R d )  are decreasingly embedded in L ‘ ( X ,  p; Rd) .  It follows that s, 
converges to s in all L ~ ( x ,  p; R ~ ) ,  for 1 5 p < SCO. 

Step 4 (characterization of the factors of the polar factorization). We already 
know, by the rearrangement theorem, the characterization of V$ as the unique 
rearrangement of u in the class {V$, $ E K O } .  

s ( x )  * u ( x )  dp(x). It 
is easy to see that s is a maximizer, by using a straightforward convexity argument. 
Indeed, since $ is convex and locally Lipschitz continuous on R, we get, for every 
measure-preserving mapping s’ from (x, p )  into (a, D ) ,  

Let us now show that s is the unique maximizer in S of 

$(s’(x)) 2 $(s(x)) + V $ ( s ( x ) ) . ( s ’ ( x )  - s(x)), p - a.e. x E X 

(here the fact that the Lebesgue negligible subsets of Q are mapped back by both 
s’ and s into p-negligible subsets of X is used). Thus, after integrating this inequality 
over X, we deduce 

Since both s’ and s are measure-preserving from (X, p )  into (a, p) ,  
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V+.s.(s’ - s) dp s o ,  s 
that is j u.(s ’  - s) dp 5 0 since u = V+.s. So s maximizes J s ( x ) . u ( x ) )  dp(x) .  

Let us now show there is no other maximizer s’ E S .  Let us introduce a prob- 
ability measure p’ on W d  X fi defined by 

for any .f€ C( W d  X fi) such that I f (  y ,  z )  I S cst( 1 + 11 y 11 ). We claim that p’ is 
the unique solution to the dual MKP associated with a and therefore is equal to p 
defined by d p ( y ,  z )  = S ( y  - V$(z))p(z) dz .  

First, from the definition ofp’, we deduce that a and ,6 are the marginals on R d  
and fi, since 

(by definition of a )  for each f €  C( W d )  such that I f (  y )  I 5 cst( 1 + 

(since s’ is measure-preserving from ( X ,  p) into ( fi, p ) )  for each .f€ C( fi). 
Then, we check that p’ maximizes J- y * z dp’( y ,  z ) .  Indeed 

J y . z  dp’(y,  z )  = u(x ) . s ’ ( x )  dp(x)  (by definition ofp’) s 
= J u ( x )  .s(x) dp(x)  (since s’ is a maximizer, by assumption) 

= V#( s( x)) . s( x) dp( x) (because of the polar factorization ) 

= J v+( z zp( z ) dz ( since s is measure-preserving ) 

= s y . z  d p ( y ,  z )  (by definition of p ,  the solution of the MKP). 

So p’ is a maximizer and, therefore, p’ = p ,  which shows that 
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for each f€ C( R d  X a )  such that If( y ,  z )  1 5 cst( 1 + 11 y 11 ). By using the same 
argument as in the third step of the proof, this equality also holds for f( y ,  z )  = 
V4(y) ‘2,  which shows 

that is s s(x) .s‘(x) dp(x)  = s s(x) *s(x)  dp(x ) ,  since we haves = V4-u.  Because 
s and s’ are measure-preserving, we also have 

and s Ils(x) - s’(x) 11 dp(x)  = 0 finally follows, which completes the proof. 

This achieves the proof of the polar factorization theorem. 

3.4. Existence of a Solution to the Mixed MKP 

To prove that the mixed MKP has at least a solution (4, $, p ) ,  we proceed in two 
steps: 

( i )  the case when (Y is compactly supported, in some ball B(0, R); 
(ii) the general case. 

The Compact Case 

From Rachev’s paper (see [ 191) or from classical results on convex analysis (see 
[ 13]), one gets: 

PROPOSITION 3.5 (Strong Duality Principle). There is a probability measure 
that satisfies s y .  z dp( y ,  z )  = I ,  where p on B( 0, R )  X a, with marginals a and 

Proof (sketch): Let us briefly sketch the proof by using Theorem 4.1 and 
Remark 4.2 in [ 131. First set 

v = C(B(0,  R)) x q a ) ,  Y = C(B(0,  R) x a), 
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then define 

G(B)  = 0 if B(y, z )  2 y - z ,  V ( y ,  z ) ;  +co otherwise. 

After checking that the conditions of Theorem 4.1 (in [ 131) are satisfied, one gets 

which is exactly Proposition 3.5, since 

Y *  = C(B(0 ,  R )  x a)', 

G*( - p )  = -J y - z  d p ( y ,  z ) ,  if p L 0, +co otherwise, 

F*( b * p )  = 0 if a and /3 are the marginals of p ,  +co otherwise. This achieves the 
proof of Proposition 3.5. 

In this duality result, it is not clear that the infimum is reached by some pair 
(4, ~ ) ,  but if there is such an optimal pair, then it is clear that the mixed MKP 
has a solution. 

Let us consider a minimizing sequence (&, +n), $n E C(B(0,  R ) ) ,  +n E 
C( f i ) ,  that satisfies 

It is not restricted to assume 

(53) 

(Indeed, conditions ( 5 1 ) and (52) are unchanged when a constant is added to 4,, 
and subtracted from qn.) 
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A natural regularization of such a minimizing sequence (often used for the 
general MKP; see [ 19 J ) is provided by 

The new sequence (a,, J,,) turns out to be ( i )  still a minimizing sequence, ( i i)  

Let us first prove that a,, $,, is uniformly Lipschitz continuous on Rd. From 
compact for the uniform convergence topology on B(0, R )  X a. 
property ( 5 3 )  and definition (54),  we get 

( 5 6 )  &,,(o) = 0,  Lip($,) 5 R 

(since in definition (54) ,  the supremum is taken over the ball B(0, R)) .  Now, from 
definition (55), we deduce 

(since Q is contained in the ball B( 0, r ) )  5 r 11 JI ]I  + Rr (because of property (56)). 
so 

o r & , ( y ) ~ r ( I l y l J  +R), V ~ E I W ~ .  

Moreover, I$,, is Lipschitz continuous on Rd and Lip( 4,) 5 r .  By Ascoli's theorem, 
there is a pair (4, 4 )  of Lipschitz continuous functions such that 4, --+ 6, $,, + $, 
uniformly on B( 0, R )  and fi. Since /3 and a are compactly supported, we have 

$ E c(n) n P ( Q ,  p ) ,  E c(rwd) n P ( l w d ,  

From definition ( 5 5 ) ,  we easily get 

$ ( y )  + $ ( z )  L y . z ,  V ( y ,  z )  E Rd x a. 
Moreover, from definitions (54) and (55),  it follows that 

lJn( z )  5 $,,( z ) ,  vz  E a. 
Thus (a,,, $,) still is a minimizing sequence and 
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By adding a suitable constant to 4 and subtracting the same constant from I), it is 
not restrictive to set $ d/3 = 0. Finally, (4, I), p )  solves the mixed MKP which 
completes the existence proof in the compact case. 

The Noncompact Case 

The existence of a solution to the mixed MKP directly follows from Proposition 
3.2.  Indeed, it is possible to approximate a by a sequence (a,) of compactly sup- 
ported probability measured on Rd, (for which we just proved the existence of a 
solution to the mixed MKP) defined, for n large enough, by 

where C, = a(B(0,  n ) ) - ’ .  It  is elementary to check that 

for all f €  C( R d )  such that I f (  y )  I 5 cst ( 1 + 11 y 11 ). This allows us to use Proposition 
3.2 that asserts the existence of a solution to the mixed MKP corresponding to a. 

This completes the proofs of our main results. 
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