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Abstract: We propose a model to describe the optimal distributions of
residents and services in a prescribed urban area. The cost functional takes
into account the transportation costs (according to a Monge-Kantorovich
type criterion) and two additional terms which penalize concentration of
residents and dispersion of services. The tools we use are the Monge-
Kantorovich mass transportation theory and the theory of nonconvex func-
tionals defined on measures.

1. Introduction

The efficient planning of a city is a tremendously complicated problem,
both for the high number of parameters which are involved as well as for
the several relations which intervene among them (price of the land, kind of
industries working in the area, quality of the life, prices of transportations,
geographical obstacles, . . . ). Perhaps, a careful description of the real sit-
uations could be only obtained through evolution models which take into
account the dynamical behaviour of the different parameters involved.

An interesting mathematical model for the description of the equilibrium
structure of a city is presented by Carlier and Ekeland in [3], where Monge-
Kantorovich optimal transport theory plays an important role.

In the present paper we consider a geographical area as given, a subset
Ω of Rn (n = 2 in the applications to concrete urban planning problems)
and we want to study the optimal location in Ω of a mass of inhabitants,
that we denote by µ, as well as of a mass of services (working places, stores,
offices, . . . ), that we denote by ν. We assume that µ and ν are probability
measures on Ω. This corresponds to say that the total amounts of population
and production are fixed as problem data, and this is a difference from the
model in [3]. The measures µ and ν represent the unknowns of our problem,
that have to be found in such a way that a suitable total cost functional
F(µ, ν) is minimized. The definition of this total cost functional takes into
account some criteria we want the two densities µ and ν to satisfy:

i) there is a transportation cost for moving from the residential areas
to the services areas;

ii) people desire not to live in areas where the density of population is
too high;

iii) services need to be concentrated as much as possible, in order to
increase efficiency and decrease management costs.
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Fact i) will be described through a Monge-Kantorovich mass transporta-
tion model; the transportation cost will be indeed given by using a p-
Wasserstein distance (p ≥ 1). We set

(1.1) Tp(µ, ν) = W p
p (µ, ν) = inf

γ

(∫
Ω×Ω

|x− y|pγ(dx, dy)
)
,

where the infimum is taken over all possible transport plans γ between µ and
ν (i.e. probabilities on the product space having µ, ν as marginal measures).
We refer to [7] for the whole theory on mass transportation. When p = 1
we are in the classical Monge case and for this particular case we refer to [1]
and [5].

Fact ii) will be described by a penalization functional, a kind of total
unhappiness of citizens due to high density of population, obtained by inte-
grating with respect to the citizens’ density their personal unhappiness.

Fact iii) is modelled by a third term representing costs for managing
services once they are located according to the distribution ν, taking into
account that efficiency depends strongly on how much ν is concentrated.

The cost functional we will consider is then

(1.2) Fp(µ, ν) = Tp(µ, ν) + F (µ) +G(ν)

and so the optimal location of µ and ν will be determined by the minimiza-
tion problem

(1.3) min
{
Fp(µ, ν) : µ, ν probabilities on Ω

}
.

In such a way, our model takes into consideration only the optimization of
a total welfare parameter of the city, disregarding the effects on each single
citizen. In particular no equilibrium condition is considered. This may
appear as a fault in the model, since the personal welfare of the citizens
(depending on the population density of their zone and on the cost for
moving from home to services) could be nonconstant. As a consequence,
non-stable optimal solutions may occur, where some citizens would prefer
to move elsewhere in the city in order to get better conditions. However,
this is not the case, since our model also disregards prices of land and houses
in the city, since they do not affect the total wealth of the area. It turns out
that, by a proper, market-determined, choice of prices, welfare differences
could be compensated and equilibrium recovered. This fact turns out to be
a great difference from the model in [3], both for the importance there given
to the variable represented by the price of land and for the fact that Carlier
and Ekeland exactly look for an equilibrium solution instead of an optimal
one.

The present paper, after this introduction, contains three sections. Next
one is devoted to presenting precise choices for the functionals F and G
and justifying them as reasonable choices. In the same section we will also
give a simple existence result for an optimal solution (µ, ν), as a starting
point for the rest of the paper. In section 3 we consider the functional on
µ obtained by keeping the measure ν as fixed: in this case the functional G
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does not play any role, and we obtain a convex minimization problem which
is interesting for itself. We also obtain some necessary optimality conditions,
in the very general case where no assumption is taken on the fixed measure
ν. In section 4 we apply these results to the case where G is of the particular
form presented in section 2, which forces ν to be atomic (i.e. services are
concentrated in countably many points of the city area Ω). In the case where
Ω is bounded we give a quite precise description of the solution (µ, ν), and
then we give an existence result also for the case Ω = Rn.

Both in the case Ω = Rn and Ω bounded, optimal choices for µ and ν are
given by the formation of a certain number of sub-cities, which are circular
areas with a pole of services in the centre (an atom for the measure ν)
around which the population is distributed with a decreasing radial density.

Since we have only considered a very simplified model, our goal is neither
to suggest a realistic way to design the ideal city, nor to describe in a vari-
ational way the formation of existing cities. Anyway, from the analysis of
our optimality results (and in particular from the sub-cities phenomena we
referred to), we can infer some conclusions.

• Our model is not a proper choice to describe the shape of a single
existing city, since the delocalization of services we find in an opti-
mal solution does not reflect what reality suggests (in fact we find
finitely many disjoint, independent, sub-cities with services only in
the center).

• Our model is likely to be more realistic on a larger scale, when Ω
represents a large urban area composed by several cities: in this
case every atom of the optimal ν stands for the centre of one of
them and includes a complex system of services, located downtown,
whose complexity cannot be seen in this scale.

• In our model the concentrated measure ν gives a good representation
of the areas where services are offered to citizens and not of areas
where commodities are produced (factories), due to the assumption
that no land is actually occupied by the service poles (since ν is
atomic).

• We do not believe that our model may actually be used to plan
a future city or to improve the efficiency of an existing one, as a
consequence of its oversimplified nature, but we do not exclude the
possibility of using it in the planning of less complex agglomerations,
such as tourist villages, university campuses . . .

• We conclude by stressing that the same model may be applied as a
first simplified approach to other kinds of problems, where we have
to choose in some efficient way the distributions of two different pa-
rameters, being the first spread and the second concentrated, keeping
them as close as possible to each other in some mass transportation
sense.
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2. The Model

We now define the three terms appearing in our functional Fp: we must
go through the definition of F and G, since the first term will be a Monge-
Kantorovich transport cost, as explained in the previous section. For the
functional F we take

(2.1) F (µ) =

{∫
Ω f(u(x)) dx if µ = u · Ln, u ∈ L1(Ω)

+∞ otherwise,

where the integrand f : [0,+∞] → [0,+∞] is assumed to be lower semicon-
tinuous and convex, with f(0) = 0 and superlinear at infinity, that is

(2.2) lim
t→+∞

f(t)
t

= +∞.

In this form we have a local semicontinuous functional on measures. Without
loss of generality, by subtracting constants to the functional F , we can
suppose f ′(0) = 0. Due to the assumption f(0) = 0, the ratio f(t)/t is
an incremental ratio of the convex function f and so it is increasing in t.
Then, if we write the functional F as∫

Ω

f(u(x))
u(x)

u(x) dx,

we can see the quantity f(u)/u, which is increasing in u, as the unhappiness
of a single citizen when he lives in a place where the population density is
u. Integrating it with respect to µ = u · Ln gives a quantity to be seen as
the total unhappiness of the population.

As far as the concentration term G(ν) is concerned, we set

(2.3) G(ν) =

{∑∞
i=0 g(ai) if ν =

∑∞
i=0 aiδxi

+∞ if ν is not atomic.

To the function g we require to be subadditive, lower semicontinuous and
such that g(0) = 0 and

(2.4) lim
t→0

g(t)
t

= +∞.

Every single term g(ai) in the sum in (2.3) represents the cost for building
and managing a service pole of size ai, located at the point xi ∈ Ω.

In our model, as already pointed out, we fix as a datum the total produc-
tion of services; moreover, in each service pole the production is required as
a quantity proportionally depending on its size (or on the number of inhab-
itants making use of such a pole). We may define the productivity P of a
pole of mass (size) a as the ratio between the production and the cost to get
such a production. Then we have P (a) = a/g(a) and

∞∑
i=0

g(ai) =
∞∑
i=0

ai

P (ai)
.
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As a consequence of assumption (2.4) we have that the productivity in very
small service poles is near 0.

Notice that in the functional G we do not take into account distances
between service poles. It would be interesting to consider non local func-
tionals involving such distances, taking into account possible cooperation
and the consequent gain in efficiency. Those functionals could be matter of
investigation in a subsequent paper, where the results shown in next section
(since they do not depend on the choice of G) could be useful as well as in
the present setting.

For the problem introduced in (1.3) existence results are straightforward,
especially when we use as an environment a compact set Ω. In fact function-
als of the form of both F and G have been studied in a general setting by
Bouchitté and Buttazzo in [2], and lower semicontinuity results were proved.

Theorem 2.1. Suppose Ω is compact, p ≥ 1 and f and g satisfy the con-
ditions listed above. Then the minimization problem (1.3) has at least one
solution.

Proof. By the direct method of Calculus of Variations, this result is an
easy consequence of the weak-* compactness of the space P(Ω), the space
of probability measures on Ω, when Ω itself is compact, and of the weak-
* semicontinuity of the functional Fp. The second and third term in the
expression (1.2) are in fact local semicontinuous functionals (due to results
in [2]), while the first term is nothing but a Wasserstein distance raised to
a certain power. Since it is known that in compact spaces this distance
metrizes the weak-* topology, Tp is actually continuous. �

In [6], where we first presented the model, other existence results were
shown, for instance in the case of a non compact bounded convex set Ω ⊂ Rn.
Here we will not go through this proof, and will discuss just one existence
result in a non-compact setting, obtained as a consequence of a proper use
of the optimality conditions presented in next section.

3. A Necessary Condition of Optimality

In this section we find optimality conditions for probability measures on
Ω minimizing the functional

Fp
ν(µ) = Tp(µ, ν) + F (µ).

It is clear that, if (µ, ν) is an optimal pair for the whole functional Fp, it
happens that µ is a minimizer for F

p
ν . The goal of this section is to derive

optimality conditions for F
p
ν , for any ν, without any link to the minimization

of Fp. The main part of the section will be devoted to present an approach
obtained starting by the easier case p > 1 and ν “regular” in some sense,
and then recovering the general case by an approximation argument. The
reason to do that relies on some conditions ensuring uniqueness properties of
the Kantorovich potential. Similar approximation arguments were used also
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in [6]: purely atomic probability measures (i.e. finite sums of Dirac masses)
were first considered, and then, by approximation, the result was extended
to any measure ν. At the end of the section we also provide a sketch of
a different proof, suggested to us by an anonimous referee, which is based
on some convex analysis tools and strongly uses the convex structure of the
problem.

Let us call for simplicity domains those sets which are the closure of a
non-empty connected open subset of Rn with negligible boundary. From
now on Ω will be a bounded domain and its diameter will be denoted by
D. The function f in (2.1) will be assumed to be strictly convex and C1,
and we will denote by k the continuous, strictly increasing function (f ′)−1.
Strict convexity of f will ensure uniqueness for the minimizer of F

p
ν .

Lemma 3.1. If µ is optimal for F
p
ν then, for any other probability measure

µ1 with density u1, such that F
p
ν(µ1) < +∞, the following inequality holds:

Tp(µ1, ν)− Tp(µ, ν) +
∫

Ω
f ′(u(x))[u1(x)− u(x)]dx ≥ 0.

Proof. For any ε > 0, due to the convexity of the transport term, it holds

Tp(µ, ν) + F (µ) ≤ Tp(µ+ ε(µ1 − µ)) + F (µ+ ε(µ1 − µ), ν)

≤ Tp(µ, ν) + ε(Tp(µ1, ν)− Tp(µ, ν)) + F (µ+ ε(µ1 − µ)).

So the quantity Tp(µ1, ν)− Tp(µ, ν) + ε−1 [F (µ+ ε(µ1 − µ))− F (µ)] is non-
negative. If we let ε→ 0 we obtain the thesis if we prove

lim
ε→0

∫
f(u+ ε(u1 − u))− f(u)

ε
dLn =

∫
f ′(u)(u1 − u) dLn.

By using the monotonicity of the incremental ratios of convex functions we
can see that, for ε < 1,

|f(u+ ε(u1 − u))− f(u)|
ε

≤ |f(u)− f(u1)|.

This is sufficient in order to apply Lebesgue dominated convergence theorem,
since F (µ) and F (µ1) are finite. �

Lemma 3.2. Let us suppose ν = νs +v ·Ln, with v ∈ L∞(Ω), νs⊥Ln, v > 0
a.e. in Ω. If µ is optimal for F

p
ν , then u > 0 a.e. in Ω.

Proof. The Lemma will be proved by contradiction. We will find, if the set
A = {u = 0} is not negligible, a measure µ1 for which Lemma 3.1 is not
verified. Let N be a Lebesgue-negligible set where νs is concentrated and
t an optimal transport map between µ and ν. Such an optimal transport
exists, since µ � Ln: a proof of this fact can be found in [7], as far as we
deal with the case p > 1, while for p = 1 we refer to [1].

Let B = t−1(A). Up to modifying t on the µ−negligible set A, we may
suppose B ∩A = ∅. Set µ1 = 1Bc · µ+ 1A\N · ν: it is a probability measure
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with density u1 given by 1Bcu + 1Av = 1Bc\Au + 1Av (this equality comes
from u = 0 on A). We have

F (µ1) =
∫

Bc\A
f(u) dLn +

∫
A
f(v) dLn ≤ F (µ) + ||f(v)||∞|Ω| < +∞.

Setting

t∗(x) =

{
t(x) if x ∈ (A ∪B)c

x if x ∈ (A ∪B)
,

we can see that t∗ is a transport map between µ1 and ν. In fact, for any
Borel set E ⊂ Ω, we may express (t∗)−1(E) as the disjoint union of E ∩ A,
E ∩B and t−1(E) ∩Bc ∩Ac, and so

µ1((t∗)−1(E)) = ν(E ∩A) + ν(E ∩B ∩A) + µ(t−1(E) ∩Bc ∩Ac)
= ν(E ∩A) + µ(t−1(E ∩Ac)) = ν(E),

were we used the fact that A ∩ B = ∅ and that Ac is a set of full measure
for µ. Consequently,

(3.1) Tp(µ1, ν) ≤
∫

(A∪B)c

|x−t(x)|pu(x)dx <
∫

Ω
|x−t(x)|pu(x)dx = Tp(µ, ν).

From this it follows that for µ1 Lemma 3.1 is not satisfied, as the integral
term

∫
Ω f

′(u)(u1 − u)dLn is non-positive, because u1 > u only on A, where
f ′(u) vanishes. The strict inequality in (3.1) follows from the fact that, if∫
A∪B |x−t(x)|

pu(x)dx = 0 then for a.e. x ∈ B it holds u(x) = 0 or x = t(x),
which, by definition of B, implies x ∈ A: in both cases we are led to u(x) = 0.
This would give ν(A) = µ(B) = 0, contradicting the assumptions |A| > 0
and v > 0 a.e. in Ω. �

We need some results from duality theory in mass transportation that
can be found in [7]. In particular, we point out the notation of c−transform
(a kind of generalization af the well-known Legendre transform): given a
function χ on Ω we define its c−transform (or c−conjugate function) by

χc(y) = inf
x∈Ω

c(x, y)− χ(x).

We will generally use c(x, y) = |x− y|p.
Theorem 3.3. Under the same hypotheses of Lemma 3.2, assuming also
that p > 1, if µ is optimal for F

p
ν and we denote by ψ the unique, up to

additive constants, Kantorovich potential for the transport between µ and ν,
there exists a constant l such that the following relation holds:

(3.2) u = k(l − ψ) a.e. in Ω.

Proof. Let us choose an arbitrary measure µ1 with bounded density u1 (so
that F (µ1) < +∞) and define µε = µ + ε(µ1 − µ). Let us denote by ψε a
Kantorovich potential between µε and ν, chosen so that all the functions ψε

vanish at a same point. We can use the optimality of µ to write

Tp(µε, ν) + F (µε)− Tp(µ, ν)− F (µ) ≥ 0.
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By means of the duality formula, as Tp(µε, ν) =
∫
ψεdµε +

∫
ψc

εdν and
Tp(µ, ν) ≥

∫
ψεdµ+

∫
ψc

εdν, we can write∫
ψεd(µε − µ) + F (µε)− F (µ) ≥ 0.

Recalling that µε − µ = ε(µ1 − µ) and that

F (µε)− F (µ) =
∫

(f(u+ ε(u1 − u))− f(u)) dLn,

we can divide by ε and pass to the limit. We know from Lemma 3.4 that
ψε converge towards the unique Kantorovich potential ψ for the transport
between µ and ν. For the limit of the F part we use Lebesgue dominated
convergence, as in Lemma 3.1. We then obtain at the limit∫

Ω
(ψ(x) + f ′(u(x)))(u1(x)− u(x))dx ≥ 0.

This means that for every probability µ1 with bounded density u1 we have∫
(ψ(x) + f ′(u(x)))u1(x) dx ≥

∫
(ψ(x) + f ′(u(x)))u(x) dx.

Define first l = ess infx∈Ω ψ(x) + f ′(u(x)). The left hand side, by choosing
properly u1, can be made as close as we want to l. Then we get that the
function ψ + f ′(u), which is Ln−a.e., and so also µ-a.e., greater than l,
integrated with respect to the probability µ gives a result less or equal than
l. It follows

ψ(x) + f ′(u(x)) = l µ− a.e. x ∈ Ω.
Together with the fact that, by Lemma 3.2, u > 0 a.e., we get an equality
valid Ln−a.e., and so it holds

f ′(u) = l − ψ.

We can then compose with k and get the thesis. �

To establish Lemma 3.4, that we used in the proof of Theorem 3.3, we
have first to point out the following fact. In the transport between two
probabilities, if we look at the cost c(x, y) = |x − y|p with p > 1, there
exists just one Kantorovich potential, up to additive constants, provided
the absolutely continuous part of one of the measures has strictly positive
density a.e. in the domain Ω.

Lemma 3.4. Let ψε be Kantorovich potentials for the transport between
µε = µ + ε(µ1 − µ) and ν, all vanishing at a same point x0 ∈ Ω. Suppose
that µ = u · Ln and u > 0 a.e. in Ω and let ψ be the unique Kantorovich
potential between µ and ν vanishing at the same point: then ψε converge
uniformly to ψ.

Proof. First, notice that the family (ψε)ε is equicontinuous since any
c−concave function with respect to the cost c(x, y) = |x − y|p is
pDp−1−Lipschitz continuous (and Kantorovich potentials are optimal
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c−concave functions in the duality formula). Moreover, thanks to ψε(x0) =
0, we get also equiboundedness, and so, by Ascoli-Arzelá Theorem, the ex-
istence of uniform limits up to subsequences. Let ψ be one of these limits,
arising from a certain subsequence. From the optimality of ψε in the duality
formula for µε and ν we have, for any c−concave function ϕ,∫

ψε dµε +
∫
ψc

ε dν ≥
∫
ϕdµε +

∫
ϕc dν.

We want to pass to the limit as ε → 0: we have uniform convergence of ψε

but we need uniform convergence of ψc
ε as well. To get it, just notice

ψc
ε(x) = inf

y
|x− y|p − ψε(y), ψ

c(x) = inf
y
|x− y|p − ψ(y),

|ψc
ε(x)− ψ

c(x)| ≤ ||ψε − ψ||∞.

Passing to the limit as ε → 0 along the considered subsequence we get, for
any ϕ ∫

ψ dµ+
∫
ψ

c
dν ≥

∫
ϕdµ+

∫
ϕc dν.

This means that ψ is a Kantorovich potential for the transport between µ
and ν. Then, taking into account that ψ(x0) = 0, we get the equality ψ = ψ.
Then we derive that the whole sequence converges to ψ. �

We now highlight that the relation we have proved in Theorem 3.3 enables
us to choose a density u which is continuous. Moreover, it is also continuous
in a quantified way, since it coincides with k composed with a Lipschitz
function with a fixed Lipschitz constant. As a next step we will try to
extend such results to the case of general ν and then to the case p = 1. The
uniform continuity property we proved will be essential for an approximation
process.

In order to go through our approximation approach, we need the following
lemma, requiring the well-known theory of Γ−convergence. For all details
about this theory, we refer to [4].

Lemma 3.5. Given a sequence (νh)h of probability measures on Ω, suppos-
ing νh ⇀ ν and p > 1, it follows that the sequence of functionals (Fp

νh)h,
Γ−converges to the functional F

p
ν with respect to weak−∗ topology on P(Ω).

Moreover if ν is fixed and we let p vary, we have Γ−convergence, according
to the same topology, of the functionals F

p
ν to the functional (F1

ν) as p→ 1.

Proof. For the first part of the statement, just notice that the Wasser-
stein distance is a metrization of weak−∗ topology: consequently, being
Tp(µ, ν) = W p

p (µ, ν), as νh ⇀ ν we have uniform convergence of the contin-
uous functionals Tp(·, νh). This implies Γ−convergence and pointwise con-
vergence. In view of Proposition 6.25 in [4], concerning Γ−convergence of
sums, we achieve the proof. The second assertion follows the same scheme,
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once we notice that, for each p > 1 and every pair (µ, ν) of probability
measures, it holds

W1(µ, ν) ≤Wp(µ, ν) ≤ D1−1/pW
1/p
1 (µ, ν).

This gives uniform convergence of the transport term, as

Tp(µ, ν)− T1(µ, ν) ≤ (Dp−1 − 1)T1(µ, ν)

≤ D(Dp−1 − 1) → 0.
Tp(µ, ν)− T1(µ, ν) ≥ T p

1 (µ, ν)− T1(µ, ν)
≥ (p− 1)c(T1(µ, ν)) ≥ c̄ (p− 1) → 0,

where c(t) = t log t, c̄ = inf c and we used the fact T1(µ, ν) ≤ D. �

We now state in the form of lemmas two extensions of Theorem 3.3

Lemma 3.6. Suppose p > 1 and fix an arbitrary ν ∈ P(Ω): if µ is optimal
for F

p
ν then there exists a Kantorovich potential ψ for the transport between

µ and ν such that formula (3.2) holds.

Proof. We choose a sequence (νh)h approximating ν in such a way that each
νh satisfies the assumptions of Theorem 3.3. By Lemma 3.5 and the proper-
ties of Γ− convergence, the space P(Ω) being compact and the functional F

p
ν

having an unique minimizer (see, for instance, Chapter 7 in [4]), we get that
µh ⇀ µ, where each µh is the unique minimizer of F

p
νh . Each measure µh is

absolutely continuous with density uh. We use (3.2) to express uh in terms of
Kantorovich potentials ψh and get uniform continuity estimates on uh. We
would like to extract converging subsequences by Ascoli-Arzelà Theorem,
but we need also equiboundedness. We may obtain this by using together
the integral bound

∫
uhdLn =

∫
k(−ψh)dLn = 1 and the equicontinuity. So,

up to subsequences, we have this situation:

µh = uh · Ln, uh = k(−ψh),
uh → u, ψh → ψ uniformly,
µh ⇀ µ, µ = u · Ln, νh ⇀ ν,

where we have absorbed the constants l into the Kantorovich potentials.
Clearly it is sufficient to prove that ψ is a Kantorovich potential between µ
and ν to get our goal.

To see this, we consider that, for any c−concave function ϕ, it holds∫
ψh dµh +

∫
ψc

h dνh ≥
∫
ϕdµh +

∫
ϕc dνh.

The thesis follows passing to the limit with respect to h, as in Lemma
3.4. �

Next step will be proving the same relation when ν is generic and p = 1.
We are in the same situation as before, and we simply need approximation
results on Kantorovich potentials, in the more difficult situation when the
cost functions cp(x, y) = |x− y|p vary with p.
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Lemma 3.7. Suppose p = 1 and fix an arbitrary ν ∈ P(Ω): if µ is optimal
for F1

ν then there exists a Kantorovich potential ψ for the transport between
µ and ν with cost c(x, y) = |x− y| such that formula (3.2) holds.

Proof. For any p > 1 we consider the functional F
p
ν and its unique mini-

mizer µp. Thanks to Lemma 3.6 we get the existence of densities up and
Kantorovich potential ψp between µp and ν with respect to the cost cp, such
that

µp = up · Ln, up = k(−ψp).
By Ascoli-Arzelá compacteness result, as usual, we may suppose, up to
subsequences,

up → u, ψp → ψ uniformly,
and, due the Γ−convergence result in Lemma 3.5, since F1

ν has an unique
minimizer denoted by µ, we get also

µp ⇀ µ, µ = u · Ln.

As in Lemma 3.6, we simply need to prove that ψ is a Kantorovich potential
between µ and ν for the cost c1. The limit function ψ is Lipschitz continuous
with Lipschitz constant less or equal than lim infp→1 pD

p−1 = 1, since it is
approximated by ψp. Consequently ψ is c−concave for c = c1. We need to
show that it is optimal in the duality formula.

Let us recall that, for any real function ϕ and any cost function c, it holds
ϕcc ≥ ϕ and ϕcc is a c−concave function whose c−transform is ϕccc = ϕc.
Consequently, by the optimality of ψp, we get

(3.3)
∫
ψpdµp +

∫
ψ

cp
p dν ≥

∫
ϕcpcpdµp +

∫
ϕcpdν ≥

∫
ϕdµp +

∫
ϕcpdν.

We want to pass to the limit in the inequality between the first and the last
term. We start by proving that, for an arbitrary sequence (ϕp)p, if ϕp → ϕ1,
we have the uniform convergence ϕcp

p → ϕc1
1 . Let us take into account that

we have uniform convergence on bounded sets of cp(x, y) = |x − y|p to
c1(x, y) = |x− y|. Then we have

ϕ
cp
p (x) = inf

y
|x− y|p − ϕp(y), ϕc1

1 (x) = inf
y
|x− y| − ϕ1(y),

|ϕc,p
p (x)− ϕc,1

1 (x)| ≤ ||cp − c1||∞ + ||ϕp − ϕ1||∞,
which gives us the convergence we needed. We then obtain, passing to the
limit as p→ 1 in (3.3),∫

ψ dµ+
∫
ψc1 dν ≥

∫
ϕdµ+

∫
ϕc1 dν.

By restricting this inequality to all ϕ which are c1−concave we get that ψ
is a Kantorovich potential for the transport between µ and ν and the cost
c1. �

We can now state the main Theorem of this section, whose proof consists
only in putting together all the results we have obtained above.
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Theorem 3.8. Let Ω be a bounded domain in Rn, f a C1 strictly convex
function, p ≥ 1 and ν a probability measure on Ω: then there exists a unique
measure µ ∈ P(Ω) minimizing F

p
ν and it is absolutely continuous with density

u. Moreover, there exists a Kantorovich potential ψ for the transport between
µ and ν and the cost c(x, y) = |x− y|p such that it holds u = k(−ψ), where
k = (f ′)−1.

Consequences on the regularity of u come from this expression, which gives
Lipschitz-type continuity, and from the relationship between Kantorovich
potentials and optimal transport, which can be expressed through some
PDE’s. It is not difficult, for instance, in the case p = 2, to obtain a Monge-
Ampère equation for the density u.

As we already mentioned, we provide a sketch of an alternative proof to
Theorem 3.8. The idea of such a proof consists in looking at the subdifferen-
tial of the functional F

p
ν , in order to get optimality conditions on the unique

minimizer measure µ and its density u (here we will identify any absolutely
continuous probability measure with its density).

Sketch of Proof – Step 1 Consider the minimizing probability µ with
density u ∈ L1(Ω) and define the vector space X = span (L∞(Ω), {u}),
with dual X ′ =

{
ξ ∈ L1(Ω) :

∫
Ω |ξ|u dL

n < +∞
}
. Then, we consider the

minimization problem for the functional H defined on X by

H(v) =

{
F

p
ν(v) if v ∈ P(Ω);

+∞ otherwise.

It is clear that u minimizes H. We will prove

(3.4) ∂H(u) =
{
f ′(u) + ψ : ψ maximizes

∫
Ω
φdµ+

∫
Ω
φcdν for φ ∈ X ′

}
,

and then consider as an optimality condition 0 ∈ ∂H(u). The subdifferential
∂H of the convex functional H is to be considered in the sense of the duality
between X and X ′. Notice that, in this setting, the c−transform φc of a
function φ ∈ X ′ has to be defined replacing the inf by a ess inf. Finally, in
order to achieve the proof, it is sufficient to recognize that for a function ψ
attaining the maximum in the duality formula it holds necessarily ψ = ψcc

a.e. on {u > 0} and that this, together with 0 = f ′(u) + ψ, implies ψ =
ψcc ∧ 0. This means that ψ is an optimal c−concave function (since it is
expressed as an infimum of two c−concave functions) in the duality formula
between µ and ν and so it is a Kantorovich potential. In this way the thesis
of Theorem 3.8 is achieved, provided formula (3.4) is proved.

Step 2 By using the same computations as in Lemma 3.1, for any u1 ∈
X ∩ P(Ω), if we set uε = u+ ε(u1 − u), we may prove that

lim
ε→0

F (µε)− F (µ)
ε

=
∫

Ω
f ′(u)(u1 − u) dLn.
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Notice that, since
∫
Ω f

′(u)|u1 − u| dLn < +∞, by choosing u1 = 1/|Ω|, it
follows that f ′(u) and f ′(u)u are L1 functions, i.e. f ′(u) ∈ X ′. Then it is
possible to prove that this implies ∂H(u) = f ′(u) + ∂T (u), where T is the
convex functional Tp(·, ν).

Step 3 It remains to prove that

(3.5) ∂T (u) =
{
ψ : ψ maximizes

∫
Ω
φdµ+

∫
Ω
φcdν for φ ∈ X ′

}
.

In fact, if we define K(φ) =
∫
Ω φ

cdν, the key point is to prove that K is
concave and upper semicontinuous in φ. Then, by standard convex analysis
tools, (3.5) is a consequence of the equality T (v) = supφ v ·φ+K(φ), where
v ·φ stands for the duality product between X and X ′ and equals

∫
Ω vφ dL

n.

4. Applications to urban planning problems
(with atomic services)

In this section we want to go through the consequences that Theorem 3.8
has in the problem of minimizing Fp, when this functional is built by using
a term G as in (2.3), which forces the measure ν, representing services, to
be purely atomic. Two are our goals: trying to have an explicit expression
for u in the case of a bounded domain Ω and proving an existence result in
the case Ω = Rn.

Theorem 4.1. Suppose (µ, ν) is optimal for problem (1.3). Suppose also
that the function g is locally Lipschitz in ]0, 1]: then ν has finitely many
atoms and is of the form ν =

∑m
i=1 aiδxi.

Proof. It is clear that ν is purely atomic, i.e. a countable sum of Dirac
masses. We want to show their finiteness. Consider a = max ai (such a
maximum exists since limi ai = 0 and ai > 0) and let L be the Lipschitz
constant of g on [a, 1]. Now consider an atom with mass ai and modify ν
by moving its mass onto the atom xj whose mass aj equals a, obtaining
a new measure ν ′. The G−part of the functional decreases, while it may
happen that the transport part increases. Since we do not change µ the
F−part remains the same. By optimality of ν we get Tp(µ, ν) + G(ν) ≤
Tp(µ, ν ′) +G(ν ′) and so

g(ai)− Lai ≤ g(ai) + g(a)− g(a+ ai) ≤ Tp(µ, ν ′)− Tp(µ, ν) ≤ aiD.

This implies
g(ai)
ai

≤ D + L,

and, by the assumption on the behaviour of g at 0, this gives a lower bound
δ on ai. Since we have proved that every atom of ν has a mass greater than
δ, we may conclude that ν has finitely many atoms. �

Now we can use the results from last section.
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Theorem 4.2. For any ν ∈ P(Ω) such that ν is purely atomic and composed
by finitely many atoms at the points x1, . . . , xm, if µ minimizes F

p
ν there exist

constants ci such that

(4.1) u(x) = k ((c1 − |x− x1|p) ∨ . . . (cm − |x− xm|p) ∨ 0) .

In particular the support of u is the intersection with Ω of a finite union of
balls centred around the atoms of ν.

Proof. On the Kantorovich potential ψ appearing in Theorem 3.8 we know
that

ψ(x) + ψc(y) = |x− y|p ∀(x, y) ∈ spt(γ),
ψ(x) + ψc(y) ≤ |x− y|p ∀(x, y) ∈ Ω× Ω,

where γ is an optimal transport plan between µ and ν. Taking into account
that ν is purely atomic we obtain, defining ci = ψc(xi),

−ψ(x) = ci − |x− xi|p µ− a.e. x ∈ Ωi,

−ψ(x) ≥ ci − |x− xi|p ∀x ∈ Ω, ∀i,

where Ωi = t−1(xi), where t is an optimal transport map between µ and ν.
Since µ−a.e. point in Ω is transported to a point xi, we know that u = 0
a.e. in the complement of

⋃
i Ωi. Since, by f ′(u) = −ψ, it holds −ψ(x) ≥ 0,

one gets that everywhere in Ω the function −ψ is greater than each of the
terms ci − |x − xi|p and 0, while a.e. it holds equality with at least one of
them. By changing u on a negligible set, one obtain (4.1). The support of
µ, consequently, turns out to be composed by the union of the intersection
with Ω of the balls Bi = B(xi, c

1/p
i ). �

Theorem 4.2 allows us to have an almost explicit formula for the density
of µ. Formula (4.1) becomes more explicit when the balls Bi are disjoint.
We give now a sufficient condition on ν under which this fact occurs.

Lemma 4.3. There exists a positive number R, depending on the function
k, such that any of the balls Bi has a radius not exceeding R. In particular,
for any atomic probability ν such that the distance between any two of its
atoms is larger than 2R, the balls Bi are disjoint.

Proof. Set Ri = c
1/p
i and notice that

1 =
∫

Ω
u ≥

∫
Bi

k(ci − |x− xi|p) dx =
∫ Ri

0
k(Rp

i − rp)nωnr
n−1 dr,

where the number ωn stands for the volume of the unit ball in Rn. This
inequality gives the required upper bound on Ri, since∫ Ri

0
k(Rp

i − rp)nωnr
n−1 dr ≥ C

∫ Ri−1

0
nrn−1 dr = C(Ri − 1)n. �
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When the balls Bi are disjoint we have Bi = Ωi for every i and we get a
simple relation between radii and masses corresponding to each atom. The
constants ci can then be found by using Ri = c

1/p
i . In fact, by imposing the

equality of the mass of µ in the ball and of ν in the atom, the radius R(m)
corresponding to a mass m satisfies

(4.2) m =
∫ R(m)

0
k(R(m)p − rp)nωnr

n−1dr.

For instance, if f(s) = s2/2, we have

R(m) =
(
m(n+ p)
ωnp

)1/(n+p)

.

The second aim of this section is to obtain an existence result for the problem
1.3 when Ω = Rn. A difference from the bounded case is the fact that we
must look for minimization among all pairs of measures inWp(Rn), the p−th
Wasserstein metric space (i.e. the space of measures λ ∈ P(Rn) such that∫
|x|pλ(dx) < +∞, endowed with the distance Wp), rather than in P(Rn).
We start by some simple results about the minimization problem for F

p
ν .

Lemma 4.4. For every fixed ν ∈ P(Rn) there exist a (unique if f is strictly
convex) minimizer µ for F

p
ν : it belongs to Wp(Rn) if and only if ν ∈ Wp(Rn),

and if ν does not belong to this space the functional F
p
ν is infinite on the whole

Wp(Rn). Moreover, if ν is compactly supported, the same happens for µ.

Proof. The existence of µ comes from the direct method of the calculus
of variations and the fact that if (Tp(µh, ν))h is bounded, then (µh)h is
tight. The behaviour of the functional with respect to the space Wp(Rn) is
trivial. Finally, the last assertion can be proved by contradiction, supposing
µ(B(0, R)c) > 0 for every R < +∞ and replacing µ by

µR = 1BR
· µ+

µ(Bc
R)

|Br|
1Br · Ln,

where B(0, r) is a ball containing the support of ν. By optimality, we should
have

(4.3) Tp(µR, ν) + F (µR) ≥ Tp(µ, ν) + F (µ),

but we have

Tp(µR, ν)− Tp(µ, ν) ≤ −((R− r)p − (2r)p)µ(Bc
R),(4.4)

F (µR)− F (µ) ≤
∫

Br

[
f

(
u+

µ(Bc
R)

|Br|

)
− f(u)

]
dLn.(4.5)

By summing up (4.4) and (4.5), dividing by µ(Bc
R) and taking into account

(4.3), we get

(4.6) −((R− r)p− (2r)p)+
1

µ(Bc
R)

∫
Br

[
f

(
u+

µ(Bc
R)

|Br|

)
− f(u)

]
dLn ≥ 0.
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Yet, by passing to the limit as R → +∞ and µ(Bc
R) → 0, the first term

in (4.6) tends to −∞, while the second is decreasing as R → +∞. This
last one tends to

∫
Br
f ′(u)dLn, provided it is finite for at least a value of R

(which ensures the finiteness of the limit as well). To conclude it is sufficient
to prove that ∫

Br

[
f

(
u+

µ(Bc
R)

|Br|

)
− f(u)

]
dLn < +∞.

This is quite easy in the case f(z) = Azq with q > 1, while for general f the
assertion comes from the fact that u is continuous on Br, hence bounded.
If u = 0 a.e. in Br this is trivial, otherwise take the probability measures
µ′ = 1Br/µ(Br) · µ and ν ′ = t]µ

′ for an optimal transport map t between µ
and ν. It is clear that µ′ minimizes F

p
ν′ in the new domain Ω′ = Br. Then we

may apply Theorem 3.8 and get the continuity of its density, which ensures
the continuity of u on Br. �

To go through our proof we need to manage minimizing sequences, in the
sense of Lemma below.

Lemma 4.5. It is possible to choose a minimizing sequence ((µh, νh))h in
Wp(Rn)×Wp(Rn) such that for every h the measure νh is finitely supported,
and the density of µh is given by (4.1), with disjoint balls centred at the
atoms of νh.

Proof. First we start from an arbitrary minimizing sequence ((µ′h, ν
′
h))h.

Then we approximate each ν ′h in Wp by a finite support measure ν ′′h. To
do this we truncate the sequence of its atoms and move the mass in excess
to the origin. In this way, we have G(ν ′′h) ≤ G(ν ′h), by the subadditivity
of g, while the value of the transport term increases of an arbitrary small
quantity. Consequently, ((µ′h, ν

′′
h))h is still a minimizing sequence. Then, we

replace µ′h by µ′′h, chosen in such a way that it minimizes F
p
ν′′h

. By Lemma
4.4, each µ′′h has a compact support. Then, we translate every atom of each
ν ′′h together with its own set Ωi, to some disjoint sets Ω∗i . In this way we get
new measures µ′′′h and ν ′′′h . The value of the functional in this step has not
changed. We may choose to place the atoms of each ν ′′′h so far from each
other so that each distance between atoms is at least 2R. Then we minimize
again in µ, getting a new sequence of pairs ((µ′′′′h , ν ′′′h ))h and we set νh = ν ′′′h
and µh = µ′′′′h . Thanks to Theorem 4.2 and Lemma 4.3 the requirements of
the thesis are fulfilled. �

It is clear now that, if one can obtain a uniform estimate on the number
of atoms of the measures νh, the existence problem is easily solved: in fact
we already know that each ball belonging to the support of µh is centred
at an atom of νh and has a radius not larger than R. Provided we are able
to prove an estimate like ] {atoms of νh} ≤ N , it would be sufficient to act
by translation on the atoms and their corresponding balls, obtaining a new
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minimizing sequence (the value of Fp does not change) with supports all
contained in a same bounded set (for instance, the ball BNR).

We now try to give sufficient conditions in order to find minimizing se-
quences where the number of atoms stays bounded. Notice that, on se-
quences of the form given by Lemma 4.5, the functional Fp has the expres-
sion

(4.7) Fp(µh, νh) =
k(h)∑
i=1

E(mi,h), if νh =
k(h)∑
i=1

mi,hδxi,h
,

where the quantity E(m) is the total contribute given by an atom with mass
m to the functional. We may compute:

(4.8) E(m) = g(m)+

+
∫ R(m)

0
[f(k(R(m)p − rp)) + k(R(m)p − rp)rp]nωnr

n−1dr,

taking into account the particular form of the density in the ball.

Theorem 4.6. Let us suppose f ∈ C2((0,+∞)), g ∈ C2((0, 1])∩C0([0, 1]),
in addition to all previous assumptions. Then the minimization problem for
Fp in Wp(Rn)×Wp(Rn) has a solution, provided

lim sup
R→0+

g′′
(∫ R

0
k(Rp − rp)nωnr

n−1dr

) ∫ R

0
k′(Rp − rp)nωnr

n−1dr < −1.

Proof. According to what previously proven, it is sufficient to produce a
minimizing sequence of the form of Lemma 4.5, with a bounded number of
atoms. We claim that it is enough to prove that the function E is subadditive
on an interval [0,m0]. In fact, once proven it, we start from a sequence
((µh, νh))h built as in Lemma 4.5 and use the characterization of Fp given
in (4.7). Then we modify our sequence by replacing in each νh any pair of
atoms of mass less than m0/2 by a single atom with the sum of the masses.
We keep atoms far away from each other, in order to use (4.7). We may
perform such a replacement as far as we find more than one atom whose
mass is less or equal than m0/2. At the end we get a new pair ((µ′h, ν

′
h))h

where the number of atoms of ν ′h is less than N = 1 + b2/m0c. The value
of the functional Fp has not increased, thanks to the subadditivity of E on
[0,m0].

Taking into account that E(0) = 0 and that concave functions vanishing
at 0 are subadditive, we look at concavity properties of the function E in an
interval [0,m0]. It is sufficient to compute the second derivative of E and
find it negative in a neighbourhood of the origin.

By means of the explicit formula (4.8), and taking into account also (4.2),
setting E(m) = g(m)+K(R(m)), we start by computing dK/dr. Using the
facts that f ′ ◦ k = id and that k(0) = 0, we can obtain the formula

dK(R(m))
dm

(m) = R(m)p.
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From another derivation and some standard computation we finally obtain

E′′(m) = g′′(m) +
1∫ R(m)

0 k′(R(m)p − rp)nωnrn−1dr
.

The assumption of this Theorem ensures that such a quantity is negative
for small m, and so the proof is achieved. �

Remark 4.7. Notice that, when the functions f and g are of the form f(t) =
atq, q > 1, g(t) = btr, r < 1, with a and b positive constants, it holds

g′′
(∫ R

0
k(Rp − rp)nωnr

n−1dr

)
≤ −CR(n+ p

q−1
)(r−2);∫ R

0
k′(Rp − rp)nωnr

n−1dr ≤ CR
n+p 2−q

q−1 ,

and so the lim sup in Theorem 4.6 may be estimated from above by

lim
R→0+

−CR
p

q−1
(r−q)+n(r−1) = −∞.

Consequently the assumption in Theorem 4.6 is always verified when f and
g are power functions.

Remark 4.8. From the proof of the existence Theorem it is clear that there
exists a minimizing pair (µ, ν) ∈ Wp(Rn) × Wp(Rn) where ν has finitely
many atoms and µ is supported in a finite, disjoint union of balls centred
at the atoms of ν and contained in a bounded domain Ω0, with a density
given by Theorem 4.2. The same happens if we look for the minimizers in a
bounded domain Ω, provided Ω is large enough to contain Ω0, and hence a
solution to the problem in Rn. For instance all the open sets containing N
balls of radius R admit a minimizing solution supported in disjoint balls.

We conclude by stressing the fact that, in order to solve the problem in
Rn, we have only to look at the function E and find out the number of atoms
and their respective masses (mi)i=1...k The problem to solve is then

(4.9) min

{
k∑

i=1

E(mi) : k ∈ N,
k∑

i=1

mi = 1

}
.

Typically, for instance when f and g are power functions, the function E
involved in (4.9) is a concave-convex function, as sketched in picture 1. Due
to such a concave-convex behaviour, it is not in general clear whether the
values of the numbers mi solving (4.9) and representing sub-cities’ sizes are
all equal or may be different.
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Figure 1. Typical behaviour of E
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[2] G. Bouchitté and G. Buttazzo. New lower semicontinuity results for nonconvex func-
tionals defined on measures. Nonlinear Analysis 15, no. 7, 679–692, 1990.

[3] G. Carlier and I. Ekeland. Optimal transportation and the structure of cities.
Preprint available at www.math.ubc.ca/∼ekeland, 2003.

[4] G. Dal Maso. An Introduction to Γ−convergence. Birkhauser, Basel, 1992.
[5] L. C. Evans W. Gangbo. Differential Methods for the the Monge-Kantorovich Mass

Transfer Problems. Memoirs of AMS., no 653, vol. 137, 1999.
[6] F. Santambrogio. Misure ottime per costi di trasporto e funzionali locali (in
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