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Abstract: Optimal transportation between densitjgsY), g(Y) can be interpreted as a
joint probability distribution with marginallyf' (X), andg(Y). We prove monotonicity

and concavity properties of optimal transportat{dt(X)) under suitable assumptions

on f andg. As an application we obtain the Fortuin, Kasteleyn, Ginibre correlation
inequalities as well as some generalizations of the Brascamp-Lieb momentum inequal-
ities.

0. Introduction

We start this introduction by giving some background on optimal transportation and the
FKG inequalities.

0.1. The problem of optimal transportatiolVe are given two probability densities
f(X),g(Y),and we wantto transport the (variabdevith) densityf onto the (variablé’
with) densityg in a way that minimizes transportation costs, say for simpli€ity, — X).
Let us first say what we mean by transportifigo g.

(Pre) Definition. A smooth magy (X) transportsy to g if
g(Y (X)) detDxY = f(X).
That is, a small differential of volume
g(Y)dy

is pulled back to
f(X)dx

by the mapy (X).

* Research was supported in part by the National Science Foundation, DMS-9714758.
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A weak formulation is the following:

Definition 1. A (weak) transport is a measurable mEpX), such that for any’o func-
tion 2(Y) the following (“change of variable”) formula is valid:

/ h(V)g(Y)dY = f h(Y (X)) f (X) dX.

Now, given the cost functiof’(X), we define

Optimal transportation. The (weak) transportatiori(X) is optimal if it minimizes

J(Y) :/C(Y(X)—X)f(X)dx

among all weak transportation.

Existence and regularity of such an optimal transportation has been studied in detail.
(See for instance [B,C2,C3] and [G-M].) We will discuss (and use) in this paper the
particular case where

CX-Y)=3X -7

The correlation inequalities part of the paper holds true for more general cost func-
tions, still convex and with the appropriate symmetries, but the proofs are technically
involved and we will present it elsewhere.

The second derivative estimates for the Monge-Ampere like equations corresponding
to non-quadratic cost functions, is a completely open matter. In the quadratic case, there
is a rather complete existence and regularity theory ([B,C2,C3]). We will be interested
in the following results.

Theorem 1 (Existence and stability, [B])). Let 21, 22 be two open domains iR”,
f(X), g(Y) two strictly positive bounded, measurable functionjnwith

/ F(X)dX =/ g(¥)dY = 1.
Q1 Qo

Then,

a) There exists a unique optimal transportation niggx).

b) The optimal transportatiory (X) (and its inverseX (Y)) are obtained from the fol-
lowing minimization process:
b1) Among all pairs of continuous functioggX), ¥ (Y) satisfying the constraint

e(X)+y () =(X,Y)
minimize

J(p,¥) =/ §0(X)f(X)dX+/ v(Y)g¥)dY.
Q1 Q2

b2) ¢ and ¢ are unique and convex and(X) is defined as the (possibly multiple
valued) mapy € Y (X) if

p(X) +y(¥) = (¥, X).
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Theorem 2 (Regularity, [C2,C3]). Hypothesis as before, assume further tfat Q2
are convex. Then

a)lf0<x < f, g < A,the mapY (X) and its inverseX (Y) are single valued, of class
C%in @; for somex.
b) If f, ¢ are Holder continuous, with exponegitfor someg thenY (X), X (Y) are of
classC1?.
¢) In both cases, (a) and b)), there exists a pair of convex potengi@9, ¥ (¥) such
that
Y(X) = Vo((X), XY) = Vy ().

d) ¢ satisfies the Monge—Ampére equation

J(X)
g(Vp(X))
in case a) in the Alexandrov weak sense, in case b) in the classical sense.

detD%p(X) =

(Note thaty € C%#.) By approximation, we will develop all our discussion forg of
classC?, so we will always talk of “classical” solutions.

From the variational construction &f, we also have a stability theorem.

Theorem 3 (Stability). Let f;, g; be uniformly bounded, measurable and supported in
a bounded domaiBg. Assume thayf; — fin L1, g; — gin LY. Theng; — o,

¥ ; — ¥ uniformly in Bg. In particular if ¢;, ¥ ; are uniformlyct-e, thenVe;, Vi ;
also converge uniformly t& ¢, V.

We complete the discussion with the following interpretation (see [B]).

If we think of f(X), g(Y) as probability densities, we may think of the miagX) as
a joint probability distributionvg(X, Y) in Q1 x Qp, sitting on the graplX, Y (X) with
the property that the marginals (X), u2(Y) of vg are exactlyf (X) dx andg(Y) dy.

In factvg has the following minimizing property:

Theorem ([B]). Among all probability measureg X, Y) with marginalsf (X) d X and
g(Y)dY, Y(X) minimizes

E() = / IX — Y|?dv(X, Y).

0.2. The FKG inequalitiesThe FKG inequalities (see [FKG, H, P]) play a fundamental
role in statistical mechanics.

In this paper, we are interested in a theorem of Holley [H] from which the inequalities
follow. Holley’s Theorem establishes a monotonicity condition for probability measures
w1, u2 defined on a finite latticen.

Let us discuss briefly his two main theorems. We consider a finite lattiitbat we
will think of as embedded in the sét of vertices of the unit cube @&”" for someN
(i.e., the set of allV-tuples,X = (x1,...,xy) with x; = 0 or 1. OnA, we have two
non-vanishing probability measurgs(X), u2(X) with the “monotonicity property”:

GivenX, Y in A,

m2(X V) u1(X AY) = pa(X)pua(Y).
(As usualv denotes taking max in each entrymin.) Then
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Theorem 4 ([H]). There exists a joint measure
v(X,Y)
with marginalsu1(X), u2(Y) such that
(X, Y)#£0 = X <VY.
As a corollary, he obtains

Corallary 1. If & is an increasing function aoX, then

fAh(X)dul(X) th(X)duz(X)

(that is 2 is “concentrated more to the right” thap1).

The purpose of this paper is to study the relation between optimal transportation and
the FKG inequalities, in particular to show:

a) Inthe continuous case, the optimal transportation from the unit cuR€ioto itself
(w1 = f(X), u2 = g(Y¥)) has the proper monotonicity propertigs(&) > X) of
Holley’s joint probability density provided that ¢ do).

b) If we “spread” the measures from the vertices of the unit cube to half cubes, the
densitiesf, g so obtained satisfy these properties, recuperating from this approach
Holley’'s theorem, for the lattice formed by all vertices of the cube.

¢) For ageneral sublattice, one can extend the “spread” measure to all of the half cubes
recuperating in full the theorem of Holley.

d) In fact the discrete optimal transportation satisHéX) > X.

Our proof is based on the fact that first derivatives of solutions of the Monge—Ampére
equation satisfy an equation themselves. But it is also known that second derivatives are
subsolutions of an elliptic equation.

In the last section we explore what the implications of that fact are in terms of
correlation inequalities.

In closing this introduction we want to stress that in the continuous case the optimal
transport mag (X) interpreted as a joint probability measure

v(X,Y) =4dxyo) (X, Y) f(X)dX = xyx)(X, Y)g(Y)dY

is not just a joint distribution but a “change of variables”, i.e., a one to one map that
carries one density to the other, and it is further the gradient of a convex potential, giving
the map (or the measurgX, Y)) a lot of stability.

1. Optimal Transportation from the Unit Cubeto the Unit Cube and Periodic
Monge-Ampére

We start this section with a reflection property of optimal transportation maps. Given
X € R" we denote byX its reflection with respect toy, i.e., if X = (x1,x2,..., x,)
thenX = (—x1, x2, ..., x,).

Lemma 1. Assume that

a) Q1, Qo are symmetric with respectiq, i.e., X € Q; < X € Q;,
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b) f, ¢ are also symmetric, i.e.,
fX) = f(X), gX)=gX),
Then the optimal transportation is also symmetric, i.e.,

a) p(X) = o(X), () =1y (),
b) Y(X) = Y(X).

Proof. By Brenier [B] ¢, ¥ are the unique minimizing pair of

/(p(X)f(X)dX+/lﬁ(Y)f(Y)dY
under the constraint
e(X)+y () = (X,Y).

By uniqueness, then, . .
(X)) =¢X), yF)=y(¥)
sincep(X), ¥ (Y) are a competing pair with the same energg

Remark.The lemma is valid for a general cost functi6iiX) symmetric inx;.

Corollary 2. Under the hypothesis and with the notation of the lemma,Tifis the
optimal transportation fronR2] to Q3 theny+ = YIQT’ whereY is againg(X), ¥ (Y)

restricted toX, Y in (R")* = {X : x; > 0} must be the minimizing pair.

We apply the previous lemma and corollary to densifi€X) andg(Y) in the unit
cube ofR". Let f, g be densities in the unit cube B, 01 = {X: 0 < x; < 1} andY
be the optimal transportation.

Let us writeY = X + V and respectively

o(X) = 31X >+ u(X)
(thatisV = Vu). Then

Theorem 5. If we extendf, g to f*, g* on a larger cubeQ by even reflections, then
u(X) also extends periodically t@*, to the same cub@* by even reflection antl (X)
to the optimal transportation map

Y* =X 4+ Vu*(X)
from Q* to Q*.

Corollary 3. If f, g are strictly positive andC“ in the unit cubeQ1, thenY (X) maps
each face of the cube to itself and bathX), X (Y) have aC1-* extension acros8Q.

Proof. It follows from the interior regularity theory (the above theorem) since each face
of O becomes interior after a reflection.

Remark.The problem of finding “periodic” solutions to the Monge—Ampére equation
was solved by Yanyan Li [L] by a different method.
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2. Monotonicity Propertiesof Y (X)
We start with a heuristic discussion. Recall that the Holley conditiongn, was that
w2(AV B)ui1(A A B) > u2(A)ui(B).

Logarithmically

logu2(A v B) —loguz(A) > logui(B) —logui(A A B).
Let us now think on smooth densitiggX), g(Y) on the unit cube, and assume we are
trying to prove, by a continuity argument thiafX) is monotone, that i¥ (X) > X. So
we are looking at a continuous family of densiti€s g’ for which Y (X) > X and we
find a first timerg and a pointXg, for whichY (Xg) # Xo, that is some coordinate, say
v1(Xo) = x1(Xp). That means that; (X) — x1(X) has a local minimum, zero, .

But it is well known thaty; = Djg, satisfies an elliptic equation, obtained by
differentiating the equation fas. From

log detD?p = log 7 (X) — logg(V¢)

we get
M;;D;j(D1¢p) = (log f(X))1 — (log g(Ve)); Di1¢.
Sincey; — x1 has a minimum, zero, &,
Dj1¢p = 61,
and we get aKg, Y (Xo),
M;jDijly1 — x1] = (log f)1(X) — (log g)1(Y).
SinceM;; is a strictly positive matrix fop strictly convex and1 — x1 has a minimum,
the left-hand side must be non-negative.

If we impose the right-hand to be non-positive we have a contradiction.
About the right-hand side, we know thiat> X and that

(Y —X,e1) =0,
so the natural hypothesis we want to imposefpg is that
Monotonicity hypothesis. If Y > X and(Y — X, g) = 0, then
D;(logg)(Y) = D;(log f)(X).

Note If we think of A =Y andB = X + re; we can argue that heuristicalB/v A =
Y+t andB A A = X, SO

logg(Y +re) —logg(Y) > log f (X + te) —log f(X)

becomes Holley’s condition. We will show in fact later how to associate to a discrete
“Holley” pair a continuous one satisfying our hypothesis.
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But first we prove our main comparison theorem.

Theorem 6. Let f, g beC¢, strictly positive probability densities in the unit cufeof
R". Assume that given ar¥, ¥, e; withX < Y,and(X —Y,e;) =0(i.e.,y; —x; = 0)

(Djlog f)(X) < (Djlogg)(Y),
and letY (X) be the optimal transportation map. Then for aXiyn Q,
Y(X)> X.

Proof. As we pointed out before, we know that the potentialX), v (Y) are of class
C2% across) Q;and theCc optimal transportationg(X), X (Y) map each face of the
cube into itself in ac1-¢ fashion.

In particular, classical regularity theory for fully non linear equations appligsito
the interior of the cube. More preciselysatisfies

f(X)

detD;;¢p =
YT g(Ve)

(see [G-T]) andf, g beingCL-¥ (this is not kept by reflection along the faces), we have
that:

¢ is of classC®%(Q).

We now study directional derivatives along the boundar@ef
ConsiderD1¢ outside the faces; = 0,x1 = 1. Then, across the remaining boundary
of 01, y1(X) = D¢ satisfies

M;;D;j(D1¢) = D1log f(X) — D¢(log g) De1¢.

Both M;; and the right-hand side are of clag8 (since Dy log f is tangential to the
face). Hence1(X) is of classC%* across that part of the boundary and the equation is
satisfied in the classical sense.

In order to make thg, g relation strict we changg to g. by defining

logge(Y) =logg+ ) ey + Ce,

where the constartf; is chosen so that

/gs(Y) =1

Djlog f(X) < Djlogg(Y)

Then from the condition

for y; — x; = 0, we now have for < y < §(e) small enough:
Djlog f(X) = Djlogg:(Y) —

if |yjo — xjol < y for somejo andy; — x; > —y for the remaining/. O
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We now look at the continuous family of densitigs g, defined by

log f; =tlog f + C(1),
logg: =tlogge + D(2),

whereC(t), D(r) are chosen to keep f; = [ g; = 1 and we show

Lemma2. For any0 < ¢t < 1 the corresponding (continuous i family of optimal

transportsY; (X), satisfies
A

Proof. Fort = 0, Y(X) is the identity map, and thus the inequality is satisfied:for
small. As usual, suppose there exists a first vajue 0, for which the inequality is not
satisfied. Thus, there exisk and aj (sayj = 1) such that

y1(Xo) = x1(Xo) — %V

and stilly1(X) > x1(X) — 3y everywhere else.
We first note thak1(Xo) # 0, 1 because, if not

y1(Xo) = x1(Xo).
But everywhere else we have
0 < M;;D;jy1(Xo)
(sincey; — x1 has a minimum akg) and
Dilog f(Xo) < D1logg (Y (Xo)) — 18

(sincely; — x1] = y/2 andy; > x; — y/2 for the remaining;).
This is a contradiction that completes the proof of the lemma and the theomm.

Corollary 4. LetO < A < f, g < A be measurable. Suppose thag f, log ¢ satisfies
the hypothesis of the theorem in the sense of distributions. Then, the theorem still holds,
ie.,

Y(X) > X.

Proof. Moallify log f, logg to log f., logg. with a standard (radially symmetric, non-
negative, compactly supported) mollifigr. Then the hypothesis of Theorem 6 is satis-
fied as long a%(, Y stay at distance from 3 Q1.

Take as center of coordinates the center of the cibe: (3, 3. ..., 3) and make
a Z-dilation. The newf,, g. satisfy the hypothesis of Theorem 6 when restricted to
the unit cube. Thus Theorem 1 holds for them. By passing to the limit on the maps, the
theorem holds forf, g. O
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3. Holley’s Theorem when the Latticeisall of the Vertices of the Unit Cube

Given a vertexX € P, we will denote byQ x the subcube 0@ ;, of side 2 that hasX
as a vertex
Ox ={Z:1Z — X|r~ < 1/2}.
We prove the following theorem.
Theorem 7. Let f, g be step functions
f=> mX) Aoy,

XeP
g= ) n2(X)Xg,.
XeP

Assume that given verticeS Y, X +e;, Y +e; withY > X and(Y, e;) = (X,€;) =0
we have

log 2(Y + €;) —logu2(Y) > logui(X +€;) — logui(X).
ThenY(X) > X.

Proof. As a distributionD; log f (resp.D; log g) is the jump function
log i (X + €;) — log p1(X)
supported on the face @ laying in the plane;; =1/2. O
Corollary 5. LetZ1, Z, € P. Define
v(Z1, Z2) = n1(Z1)/10172l {X € Qz,/Y(X) € Oz}l
= u2(Z2)/10172l Y € 0z,/X(¥Y) € Oz}
Then

a) v is a probability measure with marginals;(Z1), n2(Z>),
b) v(Z1,Z2) #0 = Z> > Z1.

4. Holley’sTheorem for General Lattices

Given a latticeA C P, and two measuregi, u» satisfying the Holley condition we
want to extenqle1, 12 to small perturbationg, u5 in all of P keeping the inequalities.
Usually, 11, uo are extended by zero. We need to be a little more careful.

We state the following presentation af

Lemma 3. There is a partition of
RV=—Rir @R g...@ Rk
and a family of elementﬁsij (1<j =<4 1<i<kj) suchthatany non zero element
X € A is the max ofv/
x=\/ v

i,jelx
and ‘ ‘
w) =¢ +v
with the coordinates} = 0V s > j. (More preciselyw! = el, w? = € + v, with
veRR, w3 = e+ v with v € R“+*2 and so on.
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Proof. The decomposition is by first choosing the minimal elements, ... , &, and
contracting the ones in them to only one position. Next we choose minimal elements
among those not iit** and so on.

We now extend the lattice and the measure. A dte the following extension oA :

A=AUAg, wherewe Ag< maxw,e)) € A

(that is, we add to all those elementstwi 1 adfirst coordinates, those with a zero).
Givenw in A define

wh=wve,

w™ =w" —e (i.e.,w with a zero in the position®.

Define

*(w) = m(w) if weA
potwr = w(wt)/M otherwise | large)’

Theorem 8. A is a lattice andu}, 113 still satisfy
log 15(v1 V v2) —l0g p5(v2) = log ui(ve) — log ui(vi A v2).

Proof. Elementsim\ arew™ andw~ of elements im (w™ is always inA since g € 1).
Then
V1 AV = wf VAN wf

forw € A.
If one of the signs is &,

v1 A v = (wy A wp) .

If not
V1 A V2 = w1 A w2.

Also

U1Vv2=w1in§t.

If one of the signs is & (sincew™ € A),
V1 VU2 = w1V wo.

If not
v1 Vo= (w1Vw) .
About the measurgs;, 5, let us verify the proper inequalitigs. For that purpose we
chooseM > u;(X) for any X. There are several cases to consider

a) w1, w2 € A, thenwi A wp, w1 V w2 € A and everything is as before.
b) w1 e A, wz ¢ A (thuswz = w,).

b1) If wy =wy, we have thatv; A wp € A andw; v w2 ¢ A and the factor log/
cancels in the:; expression.

b)) If wy = wf, w1V wy € A.If wy Awz € A, the extra factor log/ in the
w3 expression controls everything else (we chooseMog> sup|log u;|. If
w1 Awz & A, wi(wi A wz) = pa(wi A wy)/M, andu*(wz) = w(wy)/M,
thus each term has an extra lgfactor that cancels.
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C) wpe A, wy ¢ A.
c1) If wy = w], thenwy v wz € A. If wi A wy € A the extra term-log M in the
wn1 expression controls everything.udfi A wz ¢ A then

Hiwi A wz) = p(wi Awp)/M,
wiw1) = u(wi)/M,

and we have log/ cancellation.
C2) If wo = w5, thenwy A w2 € A, butwy v w2 ¢ A and we have

w3(w1 VvV wo) = pa(wl v wp)/M,
pi(wyx = pi(wi)/M,

and there is a log factor cancellation.
d) Ifwg ¢ A, w2 ¢ A, thenwy v ws ¢ A. If wy Awa ¢ A, the factors logi cancel.
If not, the extra factor lo@/ in the u expression controls everything else.

The proof of the theorem is completen

Theorem 9. We are giverA C P and 1, 2. As before, letf, ¢ be the step functions

f=Y mwxg,,

w; EA

g= Y uawi)Xo, .

w; EA
Then, the optimal transportation maf(X) is monotone.

Proof. If we start withM = Mg and we repeat the extension proce¥s (> Mo, M2 >
M and so on) we exhaust. Note that once we have extended through. e. , &,

the elements{e... ,e,fz belong now to the lattice and are minimal, so we can keep
extending. AsM goes to infinity the measureg™ converge tqu;. O

We complete this work by showing that, actually, the discrete optimal transportation
map is monotone. In this case the map is in general multi-valued. That is thesi@ss
may have to be spread through several painttill, for all thosev’s, v(w) > w.

Theorem 10. Let A be a sublattice oP, the set of vertices of the unit cube &f, and
let u1, u2 be positive measures in satisfying the usual monotonicity condition. Let
v(X, Y) be the (discrete) optimal transportation. ThefX,Y) #0 — Y > X.

Proof. From the previous theorem we may assume thas defined and positive in all
of P. We will approximate it by bounded densitigsg that satisfy the hypothesis of
Theorem 6. We define them as follows.
Let 1 be the vector = (1, 1,..., 1). In the stripSt, = {ew < X < w + €1}, let
N (X, w) be the number of coordinates, for whichw; — x; > ¢ and we define there,
for§ « ¢,
0 = pa(@)s”.

Note thatS;, coverQ; disjointly (givenX we determinew by those coordinates; > ¢).
Same definition fog.
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Of course, we have to multiply as usual by a normalization constant to ifhgke:
/ & = 1, but this does not affect the logarithmic inequality. Alsé goes to zero much
faster thare, (say likee?V) f andg converge tou; and iz, since most of the mass
concentrates in the culi®; (w) = {|x; — w;| < &}.

AboutD; log f, D; log g, they are jump functions concentrated on the planes ¢
or 1 — ¢ so we have to check that the jump inequalities are satisfied. We also may
disregard plane intersections since they will not affect in the distributional sense.

So we check that

a) ForX < Y andx; = y; = ¢ we have Jum@ogg) > Jumglog f). Indeed when
x;, yi go throughe we change from evaluating the measuresvat (resp.w>) to
w1 + €, w2 + €, and bothV (X), N(Y) increase by one, so the jump relation holds
(they are the lattice relations plus a factor dog

b) Wheny;, y; go through(1— ¢), w1 andw> remain unchanged and(X), N (Y) both
decrease by one.

Also here the jump relation holds (both jumps are justslpg
This completes the proof.o

5. Second Derivative Estimates

In this section we explore what the implications are of the fact that second derivatives
of solutions to Monge—Ampére equations are subsolutions of an elliptic equation.
First an heuristic discussion: Let us take a second pure derivative of the equation

logdetD;;¢ =log f(x) —logg(Ve).
We get
M;;D;ij¢oa + MijkeDija@Dijpp = Dao 109 f — (109 8)ij@ia®ja — (109 8)i Paai-

From the concavity of log det the second term on the left is negativg,lfreaches

at X the maximum value among all pure second derivatives, then the right-hand side

must be negative. Let us look at the explicit case in which up to a congtaaig—2X)

andg = e (CW+FI) 'where( is a nonnegative quadratic polynomia);x;x; (for

instance, near neighborhood or other “Dirichlet Integral” like interactions in field theory).
We may assume that= e;. Then, we must compute

D11(=0(X) + (Vo) + F(Vo),

we have

D11(—0)(X) = —aa1,
D110(Vo) = a;jpir@j1 + aij@i11¢;.

But sinceg11(Xp) is the maximum among all pure second derivatiyag, = O for all
i, andgy = 0fori # 1. SoD110(Ve(Xo)) = a11(¢11)?. Finally, if F is convex

D11F (Vo) = Fijeirpji + Figi1a

is non-negative.
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ThereforeD11(R.H.S.)> a11((¢11)% — 1). We get a contradiction if11 > 1. Thatis

Theorem 11. Let, up to a multiplicative constant,

fX)=e 2%,
g(Y) = e (QU+FI)

with F convex. Then the potentialof the optimal transportation satisfies

0<@u <1
In particular
Y = X + Vu(X),
where
u=¢—3X?

is concave and
-1 < Ugy = 0

(independently of dimension).

Proof. To make the previous theorem valid we have to take care of what happens when
X goes to infinity.

Again by approximation we may assume that the convex funclio) is +oo
outside the balBg (that isg is supported in the ball of radiug, and smooth bounded
away from zero and infinity inside it.

We will replace the second derivative by an incremental quotient, and show that it
still satisfies a maximum principle and goes to zero at infinity. Let

(8pe)(X) = ¢(X + he) + ¢(X — he) — 2¢(X).

We fix h, and study what happensdfy = d¢e, attains a local maximum aXo,
for all possible e. From the concavity of log det, we still have that, for the linearization
coefficientsM;;, of log det atXg,

M;jdp(Xo) < 8(log f —logg) = 8(=0Q(X)) + Q(Ve) + F(Vg).
From the fact thadge, realizes a maximum amorj and e, we obtain
a) Végp = Vo(Xo + he1) + Vo(Xo — her) — 2Vep(Xo) =0
b) ?(;lrdanyr 1 ey,
D:ép =7 - (Vo(Xo + hey) — Vo(Xo — hey) = 0.

Therefore
Vo(X £ her) = Ve(X) L Aeg

andd¢ = 2X (A positive). Then, from the convexity daf,

§F(Ve(Xo) = 0.
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If we write Q(X) as a bilinear fornQ(X) = B(X, X),

§Q(Vp) = B(Ve(Xo) + A€y, Vo(Xo) + 2e1)
+ B(Vo(Xo) — Ae1, Vo(Xo) — A€1)
—2B(Vo(Xo), Vo(Xo))

= A°B(e, e1).

Similarly §Q(X) = h?B(ey, e1) so we get: Ifs¢ has an interior maximum &, then
it must hold:
Vo(Xo + her) = Vo(Xo) = Aeg

with A < h.
But, sincey is convex

¢(Xo % her) — p(Xo) < (Vo(Xo + hey) — Vo(Xo), £hey) = ah < h?.

Thus,
8¢ < 2n?,

the desired inequality. O

To complete the proof of the theorem it would be enough to showsthaoes to
zero (for fixeds) whenX goes to infinity.
We show that:

Lemma 4. As X goes to infinityy converges uniformly t(Rl’;—‘.
Proof. Let Xg = Aey for A large andyy its image. Letv be a unit vector with
g
angle(v, e1) < 5 e.
From the monotonicity of the map, any point 8 of the form
Y =Yg+1tv

must come from a vector
X' =Xo+ SK,

with (u, v) > 0.
In particular, we must have

angle(u, e1) < (7 —¢).
In other words if inY space we consider the cone,
I'={(Y' =Yo+tv, with t >0, angle(v,e) > % —e,
its intersection withBg must be covered by the image of the (concave) cone

T = (X' = Xo+su, withs > 0and angléu, e;) < 7 — ).
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ButT has very smallf measure
up(T) < (en)'e™ @, en > 212,

since the ball of radius) is not contained .
On the other hand; is strictly positive inBg, so

tg(T' N Br) ~ T N Br| < puy(T).

This forces the exponential convergence’ab Re;.
This completes the proof of the lemma and the theorem, since the uniform conver-

gence ofVg to % makess¢ go to zero (for any fixed, positivie). O

We state three corollaries of this last inequality. The first two are a generalization of
the classic Brascamp—Lieb moment inequality and the third an eigenvalue inequality.

Corollary 6. Let f(X) = ¢~ 2% g(H) = ¢ [CM+FM] with Q quadratic andF
convex, and lel" be a convex function of one variable{|® in [B-L]). Then

Eg(T'(y1— Eg(y1) < Ef(T'(x1)).

Proof. It follows from [B-L] that it is enough to prove it in the one dimensional case
(see Theorem 5.1 of [B-L]). We can also assume by a translatiorEtiat) = O.
By the change of variable formula that means

/y(X)f(X)dx =0.

Also
Eo(T(y1) = / F(y100) f (1) dix.

But y(x) = x + u(x), wherey = ¢’(x), ¢ convex and: = v/ (x), ¥ concave. Thus
y is increasing, and is decreasing and changes sign, since

/ W) f () dx = / y(0) £ () dx = 0.
Sayu(xg) = 0. Then, we write
[rowse = [ire+ Moo - s,
Sincer is convex,
= EfT'(x) + /[F’(y(X)) = T'(x)1(y — %) f (x).

But at xg, I''(y(x0)) = I'"(x0) and y(xg) = xg, and furtherl'’ is increasing, while
y—x = u is decreasing, thus the last integrand is negative, and this completes the proof.
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If we want to repeat the argument above for functidnihat depend on more than one
variable, and we want to prove that
E (T'(Y — Eg(Y)) = Ef(I'(X)),

we may as before assume tiai(Y) = 0.
Thatmeans, withh = X+ U, thatU (Xp) = 0 for someXg (i.e., the concave function
—1 has a maximum). The same computation then gives us

E(I'(Y)) = Ef(I'(X)) + /(VF(Y) — VI (X)) (V¥ () f(X)dx,

whereyr andI” — (VI'(Xg), X — Xo) are both convex with a minimum &ty, so there
is some hope that the integrand be negative.

For instance, if we are looking at statistics lef/ariables we have the following
corollary.
Corollary 7. Assume thap(X), F(X) in the definition off (X), g(Y) are symmetric
with respect tqx, . .. , x¢) and thatl"(x1, ... , x¢) is convex and symmetric. Then
E (I'(Y)) < Ef(I'(X)).

Proof. As before we may assume the problentidimensional ([B-L], Theorem 4.3).
Since Q and F are symmetric, the potentialsg(X), ¥ (X) are symmetric. Therefore
Vo, Vi, VI = 0 for X = 0 and further,
signg; (X) = signy; (X) = signT;(X) = signx; = signy;.
From the computation above it suffices to show that forall
VI -Vy > 0.

That follows sincd™; - y; > Oforalli. O

A final consequence of the estimatg, < 1 for log concave perturbations of the
Gaussian is that any Raleigh-like quotient (log Sobolev inequality, isoperimetric in-
equality, Poincaré inequality) that involves a quotient between first derivatives and the
function themselves is smaller for the perturbation than for the Gaussian.

For instance, lef'(¢), G(¢), H(t), K () be non-negative, non-decreasing functions
of r € [0, o0), then we have the

Corallary 8. Let f, g be densities asin Theorem 11 (i.e., a Gaussian and its log concave
perturbation) then consider the “Raleigh” quotient

F(fG(Vul) f(X)dX)
H([ K(lul) f(X)dX) '

Ap = inf

Theni, > Ay.
Proof. If we apply the change of variable formula to any functigiy), we get

/ K(lu(¥Y)Dg(¥)dY = / K(lu(X)Df(X)dX,
while Vxu(Y (X)) = Dx(Y)Vyu(X). But DxY is a symmetric matrix with all eigen-
values less than one, $8xu (Y (X))| < |Vyu(Y)| which proves the corollary. o

Remark.The monotonicity for the log Sobolev inequality under log concave perturba-
tions of the Gaussian follows from the Bakry—Emery theorem ([B-E]).



Monotonicity Properties of Optimal Transportation 563

References

[B-E] Bakry, D. and Emery, M.: Diffusions hypercontractives. Bém. Prob. XIXLNM 1123 Berlin—
Heidelberg—New York: Springer, 1985, pp. 177-206

[B-L] Brascamp, H. and Lieb, E.: On extentions of the Brunn-Minkowski and Prékopa-Leindler Theorems,
Including Inequality for Log Concave functions, and with an Application to the Diffusion Equation.
J. Funct. Anal22, 366389 (1976)

[B] Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure
Appl. Math. XL 1V, 375-417 (1991)

[C1]  Caffarelli, L.A.: Interiorw?2 ? estimates for solutions of the Monge—Ampére equation. Ann. of Math.
131, 135-150 (1989)

[C2] Caffarelli, L.A.: The regularity of mappings with a convex potential. J.A.N,29-104 (1992)

[C3] Caffarelli, L.A.: Boundary regularity of maps with convex potential . Comm. Pure Appl. M#h.
1141-1151 (1992)

[FKG] Fortiun, C.M., Kasteleyn, P.W., Ginibre, J.: Correlation inequalities on some partially ordered sets.
Commun. Math. Phy2, 89-103 (1971)

[G-M] Ganzbo, W., McCann, R.J.: The geometry of optimal transport. Acta M&th.2, 113-161 (1996)

[G-T] Gilbarg, P., Trudinger, N.Elliptic partial differential equations of second ordeBecond edition,
Berlin—Heidelberg—New York: Springer, 1983

[H] Holley, R.: Remarks on the FKG inequalities. Commun. Math. PB§s227-231 (1974)

[L] Li, Yanyan: Some existence results of fully non-linear elliptic equations of Monge-Ampere type.
Comm. Pure Appl. Math43, 233-271 (1990

[P] Preston, C.J.: A generalization of the FKG inequalities. Commun. Math. Béy232—241 (1974)

Communicated by J. L. Lebowitz



