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Abstract: Optimal transportation between densitiesf (X), g(Y ) can be interpreted as a
joint probability distribution with marginallyf (X), andg(Y ). We prove monotonicity
and concavity properties of optimal transportation(Y (X)) under suitable assumptions
on f andg. As an application we obtain the Fortuin, Kasteleyn, Ginibre correlation
inequalities as well as some generalizations of the Brascamp–Lieb momentum inequal-
ities.

0. Introduction

We start this introduction by giving some background on optimal transportation and the
FKG inequalities.

0.1. The problem of optimal transportation.We are given two probability densities
f (X),g(Y ), and we want to transport the (variableXwith) densityf onto the (variableY
with) densityg in a way that minimizes transportation costs, say for simplicity,C(Y−X).
Let us first say what we mean by transportingf to g.

(Pre) Definition. A smooth mapY (X) transportsf to g if

g(Y (X))detDXY = f (X).

That is, a small differential of volume

g(Y ) dy

is pulled back to
f (X) dx

by the mapY (X).
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A weak formulation is the following:

Definition 1. A (weak) transport is a measurable mapY (X), such that for anyC0 func-
tion h(Y ) the following (“change of variable”) formula is valid:∫

h(Y )g(Y ) dY =
∫
h(Y (X))f (X) dX.

Now, given the cost functionC(X), we define

Optimal transportation. The (weak) transportationY (X) is optimal if it minimizes

J (Y ) =
∫
C(Y (X)−X)f (X) dx

among all weak transportation.

Existence and regularity of such an optimal transportation has been studied in detail.
(See for instance [B,C2,C3] and [G-M].) We will discuss (and use) in this paper the
particular case where

C(X − Y ) = 1
2|X − Y |2.

The correlation inequalities part of the paper holds true for more general cost func-
tions, still convex and with the appropriate symmetries, but the proofs are technically
involved and we will present it elsewhere.

The second derivative estimates for the Monge-Ampere like equations corresponding
to non-quadratic cost functions, is a completely open matter. In the quadratic case, there
is a rather complete existence and regularity theory ([B,C2,C3]). We will be interested
in the following results.

Theorem 1 (Existence and stability, [B])). Let�1, �2 be two open domains inRn,
f (X), g(Y ) two strictly positive bounded, measurable functions in�i , with∫

�1

f (X) dX =
∫
�2

g(Y ) dY = 1.

Then,

a) There exists a unique optimal transportation mapY (X).
b) The optimal transportationY (X) (and its inverseX(Y)) are obtained from the fol-

lowing minimization process:
b1) Among all pairs of continuous functionsϕ(X), ψ(Y ) satisfying the constraint

ϕ(X)+ ψ(Y ) ≥ 〈X, Y 〉
minimize

J (ϕ,ψ) =
∫
�1

ϕ(X)f (X) dX +
∫
�2

ψ(Y )g(Y ) dY.

b2) ϕ andψ are unique and convex andY (X) is defined as the (possibly multiple
valued) mapY ∈ Y (X) if

ϕ(X)+ ψ(Y ) = 〈Y,X〉.
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Theorem 2 (Regularity, [C2,C3]). Hypothesis as before, assume further that�1, �2
are convex. Then

a) If 0< λ ≤ f, g ≤ �, the mapY (X) and its inverseX(Y) are single valued, of class
Cα in �i for someα.

b) If f, g are Hölder continuous, with exponentβ for someβ thenY (X), X(Y) are of
classC1,β .

c) In both cases, (a) and b)), there exists a pair of convex potentialsϕ(X), ψ(Y ) such
that

Y (X) = ∇ϕ(X),X(Y ) = ∇ψ(Y ).

d) ϕ satisfies the Monge–Ampére equation

detD2ϕ(X) = f (X)

g(∇ϕ(X))
in case a) in the Alexandrov weak sense, in case b) in the classical sense.

(Note thatϕ ∈ C2,β .) By approximation, we will develop all our discussion forf, g of
classCα, so we will always talk of “classical” solutions.

From the variational construction ofY , we also have a stability theorem.

Theorem 3 (Stability). Letfj , gj be uniformly bounded, measurable and supported in
a bounded domainBR. Assume thatfj → f in L1, gj → g in L1. Thenϕj → ϕ,
ψj → ψ uniformly inBR. In particular if ϕj , ψj are uniformlyC1,α, then∇ϕj , ∇ψj
also converge uniformly to∇ϕ, ∇ψ .

We complete the discussion with the following interpretation (see [B]).
If we think off (X), g(Y ) as probability densities, we may think of the mapY (X) as

a joint probability distribution:ν0(X, Y ) in�1×�2, sitting on the graphX, Y (X) with
the property that the marginalsµ1(X), µ2(Y ) of ν0 are exactlyf (X) dx andg(Y ) dy.

In factν0 has the following minimizing property:

Theorem ([B] ). Among all probability measuresν(X, Y )with marginalsf (X) dX and
g(Y ) dY , Y (X) minimizes

E(ν) =
∫

|X − Y |2 dν(X, Y ).

0.2. The FKG inequalities.The FKG inequalities (see [FKG,H,P]) play a fundamental
role in statistical mechanics.

In this paper, we are interested in a theorem of Holley [H] from which the inequalities
follow. Holley’s Theorem establishes a monotonicity condition for probability measures
µ1, µ2 defined on a finite lattice,�.

Let us discuss briefly his two main theorems. We consider a finite lattice� (that we
will think of as embedded in the setP of vertices of the unit cube ofRN for someN
(i.e., the set of allN -tuples,X = (x1, . . . , xN) with xi = 0 or 1. On�, we have two
non-vanishing probability measuresµ1(X), µ2(X) with the “monotonicity property”:

GivenX, Y in �,

µ2(X ∨ Y )µ1(X ∧ Y ) ≥ µ2(X)µ1(Y ).

(As usual∨ denotes taking max in each entry,∧ min.) Then
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Theorem 4 ([H] ). There exists a joint measure

ν(X, Y )

with marginalsµ1(X), µ2(Y ) such that

ν(X, Y ) �= 0 �⇒ X ≤ Y.

As a corollary, he obtains

Corollary 1. If h is an increasing function ofX, then∫
�

h(X) dµ1(X) ≤
∫
h(X) dµ2(X)

(that isµ2 is “concentrated more to the right” thanµ1).

The purpose of this paper is to study the relation between optimal transportation and
the FKG inequalities, in particular to show:

a) In the continuous case, the optimal transportation from the unit cube ofR
n into itself

(µ1 = f (X), µ2 = g(Y )) has the proper monotonicity properties (Y (X) ≥ X) of
Holley’s joint probability density provided thatf, g do).

b) If we “spread” the measuresµi from the vertices of the unit cube to half cubes, the
densitiesf, g so obtained satisfy these properties, recuperating from this approach
Holley’s theorem, for the lattice formed by all vertices of the cube.

c) For a general sublattice, one can extend the “spread” measure to all of the half cubes
recuperating in full the theorem of Holley.

d) In fact the discrete optimal transportation satisfiesY (X) ≥ X.

Our proof is based on the fact that first derivatives of solutions of the Monge–Ampére
equation satisfy an equation themselves. But it is also known that second derivatives are
subsolutions of an elliptic equation.

In the last section we explore what the implications of that fact are in terms of
correlation inequalities.

In closing this introduction we want to stress that in the continuous case the optimal
transport mapY (X) interpreted as a joint probability measure

ν(X, Y ) = δX,Y (X)(X, Y )f (X) dX = δX,Y (X)(X, Y )g(Y ) dY

is not just a joint distribution but a “change of variables”, i.e., a one to one map that
carries one density to the other, and it is further the gradient of a convex potential, giving
the map (or the measureν(X, Y )) a lot of stability.

1. Optimal Transportation from the Unit Cube to the Unit Cube and Periodic
Monge–Ampére

We start this section with a reflection property of optimal transportation maps. Given
X ∈ R

n we denote byX̄ its reflection with respect tox1, i.e., ifX = (x1, x2, . . . , xn)

thenX̄ = (−x1, x2, . . . , xn).

Lemma 1. Assume that

a) �1, �2 are symmetric with respect tox1, i.e.,X ∈ �i ⇔ X̄ ∈ �i ,
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b) f, g are also symmetric, i.e.,

f (X) = f (X̄), g(X) = g(X̄).

Then the optimal transportation is also symmetric, i.e.,

a) ϕ(X) = ϕ(X̄), ψ(Y ) = ψ(Ȳ ),
b) Y (X̄) = Ȳ (X).

Proof. By Brenier [B]ϕ,ψ are the unique minimizing pair of∫
ϕ(X)f (X) dX +

∫
ψ(Y )f (Y ) dY

under the constraint
ϕ(X)+ ψ(Y ) ≥ 〈X, Y 〉.

By uniqueness, then,
ϕ(X) = ϕ(X̄), ψ(Y ) = ψ(Ȳ )

sinceϕ(X̄), ψ(Ȳ ) are a competing pair with the same energy.��
Remark.The lemma is valid for a general cost functionC(X) symmetric inx1.

Corollary 2. Under the hypothesis and with the notation of the lemma, ifY+ is the
optimal transportation from�+

1 to�+
2 thenY+ = Y |�+

1
, whereY is againϕ(X),ψ(Y )

restricted toX, Y in (Rn)+ = {X : x1 > 0} must be the minimizing pair.

We apply the previous lemma and corollary to densitiesf (X) andg(Y ) in the unit
cube ofRn. Let f, g be densities in the unit cube ofR

n,Q1 = {X : 0 ≤ xi ≤ 1} andY
be the optimal transportation.

Let us writeY = X + V and respectively

ϕ(X) = 1
2|X|2 + u(X)

(that isV = ∇u). Then

Theorem 5. If we extendf, g to f ∗, g∗ on a larger cubeQ by even reflections, then
u(X) also extends periodically tou∗, to the same cubeQ∗ by even reflection andY (X)
to the optimal transportation map

Y ∗ = X + ∇u∗(X)
fromQ∗ toQ∗.

Corollary 3. If f, g are strictly positive andCα in the unit cubeQ1, thenY (X) maps
each face of the cube to itself and bothY (X),X(Y) have aC1,α extension across∂Q.

Proof. It follows from the interior regularity theory (the above theorem) since each face
of Q becomes interior after a reflection.

Remark.The problem of finding “periodic” solutions to the Monge–Ampére equation
was solved by Yanyan Li [L] by a different method.
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2. Monotonicity Properties of Y(X)

We start with a heuristic discussion. Recall that the Holley condition onµ2, µ1 was that

µ2(A ∨ B)µ1(A ∧ B) ≥ µ2(A)µ1(B).

Logarithmically

logµ2(A ∨ B)− logµ2(A) ≥ logµ1(B)− logµ1(A ∧ B).
Let us now think on smooth densitiesf (X), g(Y ) on the unit cube, and assume we are
trying to prove, by a continuity argument thatY (X) is monotone, that isY (X) ≥ X. So
we are looking at a continuous family of densitiesf t , gt for whichY (X) > X and we
find a first timet0 and a pointX0, for whichY (X0) �> X0, that is some coordinate, say
y1(X0) = x1(X0). That means thaty1(X)− x1(X) has a local minimum, zero, atX0.

But it is well known thaty1 = D1ϕ, satisfies an elliptic equation, obtained by
differentiating the equation forϕ. From

log detD2ϕ = logf (X)− logg(∇ϕ)
we get

MijDij (D1ϕ) = (logf (X))1 − (logg(∇ϕ))iDi1ϕ.
Sinceϕ1 − x1 has a minimum, zero, atX0,

Di1ϕ = δi1,

and we get atX0, Y (X0),

MijDij [y1 − x1] = (logf )1(X)− (logg)1(Y ).

SinceMij is a strictly positive matrix forϕ strictly convex andy1 − x1 has a minimum,
the left-hand side must be non-negative.

If we impose the right-hand to be non-positive we have a contradiction.
About the right-hand side, we know thatY > X and that

〈Y −X,e1〉 = 0,

so the natural hypothesis we want to impose onf, g is that

Monotonicity hypothesis. If Y ≥ X and〈Y −X,ei〉 = 0, then

Di(logg)(Y ) ≥ Di(logf )(X).

Note. If we think ofA = Y andB = X + tei we can argue that heuristicallyB ∨A =
Y + tei andB ∧ A = X, so

logg(Y + tei )− logg(Y ) ≥ logf (X + tei )− logf (X)

becomes Holley’s condition. We will show in fact later how to associate to a discrete
“Holley” pair a continuous one satisfying our hypothesis.
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But first we prove our main comparison theorem.

Theorem 6. Letf, g beC1,α, strictly positive probability densities in the unit cubeQ of
R
n. Assume that given anyX, Y,ej withX ≤ Y , and〈X−Y,ej 〉 = 0 (i.e.,yj −xj = 0)

(Dj logf )(X) ≤ (Dj logg)(Y ),

and letY (X) be the optimal transportation map. Then for anyX in Q,

Y (X) ≥ X.

Proof. As we pointed out before, we know that the potentialsϕ(X), ψ(Y ) are of class
C2,α across∂Qj and theC1,α optimal transportationsY (X),X(Y)map each face of the
cube into itself in aC1,α fashion.

In particular, classical regularity theory for fully non linear equations applies toϕ in
the interior of the cube. More precisely,ϕ satisfies

detDijϕ = f (X)

g(∇ϕ)
(see [G-T]) andf, g beingC1,α (this is not kept by reflection along the faces), we have
that:

ϕ is of classC3,α(Q).

We now study directional derivatives along the boundary ofQj .
ConsiderD1ϕ outside the facesx1 = 0,x1 = 1. Then, across the remaining boundary

of Q1, y1(X) = D1ϕ satisfies

MijDij (D1ϕ) = D1 logf (X)−D,(logg)D,1ϕ.

BothMij and the right-hand side are of classCα (sinceD1 logf is tangential to the
face). Hencey1(X) is of classC2,α across that part of the boundary and the equation is
satisfied in the classical sense.

In order to make thef, g relation strict we changeg to gε by defining

loggε(Y ) = logg +
∑

εyi + Cε,

where the constantCε is chosen so that∫
gε(Y ) = 1.

Then from the condition

Dj logf (X) ≤ Dj logg(Y )

for yj − xj = 0, we now have for 0< γ < δ(ε) small enough:

Dj logf (X) ≤ Dj loggε(Y )− δ

if |yj0 − xj0| < γ for somej0 andyj − xj > −γ for the remainingj . ��
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We now look at the continuous family of densitiesft , gt defined by

logft = t logf + C(t),

loggt = t loggε +D(t),

whereC(t),D(t) are chosen to keep
∫
ft =

∫
gt = 1 and we show

Lemma 2. For any 0 < t < 1 the corresponding (continuous int) family of optimal
transportsYt (X), satisfies

ytj ≥ xtj − 1
2γ.

Proof. For t = 0, Y (X) is the identity map, and thus the inequality is satisfied fort

small. As usual, suppose there exists a first valuet0 > 0, for which the inequality is not
satisfied. Thus, there existsX0 and aj (sayj = 1) such that

y1(X0) = x1(X0)− 1
2γ

and stilly1(X) ≥ x1(X)− 1
2γ everywhere else.

We first note thatx1(X0) �= 0,1 because, if not

y1(X0) = x1(X0).

But everywhere else we have

0 ≤ MijDij y1(X0)

(sincey1 − x1 has a minimum atX0) and

D1 logf (X0) ≤ D1 logg(Y (X0))− tδ

(since|y1 − x1| = γ /2 andyj ≥ xj − γ /2 for the remainingj ).
This is a contradiction that completes the proof of the lemma and the theorem.��

Corollary 4. Let 0 < λ ≤ f, g ≤ � be measurable. Suppose thatlogf , logg satisfies
the hypothesis of the theorem in the sense of distributions. Then, the theorem still holds,
i.e.,

Y (X) ≥ X.

Proof. Mollify log f , logg to logfε, loggε with a standard (radially symmetric, non-
negative, compactly supported) mollifierϕε. Then the hypothesis of Theorem 6 is satis-
fied as long asX, Y stay at distanceε from ∂Q1.

Take as center of coordinates the center of the cube:X = (1
2,

1
2, . . . ,

1
2) and make

a 2ε-dilation. The newfε, gε satisfy the hypothesis of Theorem 6 when restricted to
the unit cube. Thus Theorem 1 holds for them. By passing to the limit on the maps, the
theorem holds forf, g. ��
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3. Holley’s Theorem when the Lattice is all of the Vertices of the Unit Cube

Given a vertexX ∈ P , we will denote byQX the subcube ofQj , of side 1/2 that hasX
as a vertex

QX = {Z : |Z −X|L∞ ≤ 1/2}.
We prove the following theorem.

Theorem 7. Letf, g be step functions

f =
∑
X∈P

µ1(X)χQX,

g =
∑
X∈P

µ2(X)χQX.

Assume that given verticesX, Y ,X+ej , Y +ej withY ≥ X and〈Y,ej 〉 = 〈X,ej 〉 = 0
we have

logµ2(Y + ej )− logµ2(Y ) ≥ logµ1(X + ej )− logµ1(X).

ThenY (X) ≥ X.

Proof. As a distributionDi logf (resp.Di logg) is the jump function

logµi(X + ej )− logµ1(X)

supported on the face ofQX laying in the planexj = 1/2. ��
Corollary 5. LetZ1, Z2 ∈ P . Define

ν(Z1, Z2) = µ1(Z1)/|Q1/2| |{X ∈ QZ1/Y (X) ∈ QZ2}|
= µ2(Z2)/|Q1/2| |{Y ∈ QZ2/X(Y ) ∈ QZ1}|.

Then

a) ν is a probability measure with marginalsµ1(Z1), µ2(Z2),
b) ν(Z1, Z2) �= 0 �⇒ Z2 ≥ Z1.

4. Holley’s Theorem for General Lattices

Given a lattice� ⊂ P , and two measuresµ1, µ2 satisfying the Holley condition we
want to extendµ1, µ2 to small perturbationsµ∗1, µ∗2 in all of P keeping the inequalities.
Usually,µ1, µ2 are extended by zero. We need to be a little more careful.

We state the following presentation of�.

Lemma 3. There is a partition of

R
N = R

k1 ⊗ R
k2 ⊗ · · · ⊗ R

k,

and a family of elementswji (1 ≤ j ≤ ,, 1 ≤ i ≤ kj ) such that any non zero element

X ∈ � is the max ofwji ,

x =
∨
i,j∈IX

w
j
i

and
w
j
i = eji + v

with the coordinatesvsi = 0 ∀ s ≥ j . (More preciselyw1
i = e1

i , w
2
i = e2

i + v, with
v ∈ R

k1, w3
i = e3

i + v with v ∈ R
k1+k2 and so on.
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Proof. The decomposition is by first choosing the minimal elementsē1, ē2, . . . , ēk1 and
contracting the ones in them to only one position. Next we choose minimal elements
among those not inRk1 and so on.

We now extend the lattice and the measure. Let�̄ be the following extension of�:

�̄ = � ∪�0, wherew ∈ �0 ⇔ max(w,e1) ∈ �
(that is, we add to all those elements with a 1 asfirst coordinates, those with a zero).
Givenw in �̄ define

w+ = w ∨ e1,

w− = w+ − e1 (i.e.,w with a zero in the position e1).

Define

µ∗(w) =
{
µ(w) if w ∈ �
µ(w+)/M otherwise (M large)

. ��

Theorem 8. �̄ is a lattice andµ∗1, µ∗2 still satisfy

logµ∗2(v1 ∨ v2)− logµ∗2(v2) ≥ logµ∗1(v1)− logµ∗1(v1 ∧ v2).

Proof. Elements in�̄ arew+ andw− of elements in� (w+ is always in� since e1 ∈ λ).
Then

v1 ∧ v2 = w±
1 ∧ w±

2

for w ∈ �.
If one of the signs is a−,

v1 ∧ v2 = (w1 ∧ w2)
−.

If not
v1 ∧ v2 = w1 ∧ w2.

Also
v1 ∨ v2 = w±

1 ∨ w±
2 .

If one of the signs is a+ (sincew+ ∈ �),

v1 ∨ v2 = w1 ∨ w2.

If not
v1 ∨ v2 = (w1 ∨ w2)

−.
About the measuresµ∗1, µ∗2, let us verify the proper inequalities. For that purpose we

chooseM # µi(X) for anyX. There are several cases to consider

a) w1, w2 ∈ �, thenw1 ∧ w2, w1 ∨ w2 ∈ � and everything is as before.
b) w1 ∈ �, w2 /∈ � (thusw2 = w−

2 ).
b1) If w1 = w−

1 , we have thatw1 ∧w2 ∈ � andw1 ∨w2 /∈ � and the factor logM
cancels in theµ∗2 expression.

b2) If w1 = w+
1 , w1 ∨ w2 ∈ �. If w1 ∧ w2 ∈ �, the extra factor logM in the

µ∗2 expression controls everything else (we choose logM # sup| logµi |. If
w1 ∧ w2 /∈ �, µ∗1(w1 ∧ w2) = µ1(w1 ∧ w+

2 )/M, andµ∗(w2) = µ(w+
2 )/M,

thus each term has an extra logM factor that cancels.
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c) w2 ∈ �, w1 /∈ �.
c1) If w2 = w+

2 , thenw1 ∨ w2 ∈ �. If w1 ∧ w2 ∈ � the extra term− logM in the
µ1 expression controls everything. Ifw1 ∧ w2 /∈ � then

µ∗1(w1 ∧ w2) = µ(w+
1 ∧ w2)/M,

µ∗1(w1) = µ(w+
1 )/M,

and we have logM cancellation.
c2) If w2 = w−

2 , thenw1 ∧ w2 ∈ �, butw1 ∨ w2 /∈ � and we have

µ∗2(w1 ∨ w2) = µ2(w
+
1 ∨ w2)/M,

µ∗1(w1)∗ = µ1(w
+
1 )/M,

and there is a logM factor cancellation.
d) If w1 /∈ �, w2 /∈ �, thenw1 ∨ w2 /∈ �. If w1 ∧ w2 /∈ �, the factors logM cancel.

If not, the extra factor logM in theµ∗1 expression controls everything else.

The proof of the theorem is complete.��
Theorem 9. We are given� ⊂ P andµ1, µ2. As before, letf, g be the step functions

f =
∑
wi∈�

µ1(wi)χQwi ,

g =
∑
wi∈�

µ2(wi)χQwi .

Then, the optimal transportation mapY (X) is monotone.

Proof. If we start withM = M0 and we repeat the extension process (M1 # M0,M2 ≥
M1 and so on) we exhaustP . Note that once we have extended through e1

1, . . . ,e
1
k1

,

the elements e21, . . . ,e
2
k2

belong now to the lattice and are minimal, so we can keep
extending. AsM0 goes to infinity the measuresµ∗i converge toµi . ��

We complete this work by showing that, actually, the discrete optimal transportation
map is monotone. In this case the map is in general multi-valued. That is the massµ1(w)

may have to be spread through several pointsv. Still, for all thosev’s, v(w) ≥ w.

Theorem 10. Let� be a sublattice ofP , the set of vertices of the unit cube onR
n, and

let µ1, µ2 be positive measures in� satisfying the usual monotonicity condition. Let
ν(X, Y ) be the (discrete) optimal transportation. Thenν(X, Y ) �= 0 �⇒ Y ≥ X.

Proof. From the previous theorem we may assume thatµi is defined and positive in all
of P . We will approximate it by bounded densitiesf, g that satisfy the hypothesis of
Theorem 6. We define them as follows.

Let 1 be the vector 1= (1,1, . . . ,1). In the stripSεω = {εω < X ≤ ω + ε1}, let
N(X,ω) be the number of coordinates,j , for whichwj − xj > ε and we define there,
for δ $ ε,

f (X) = µ1(ω)δ
N .

Note thatSεω coverQ1 disjointly (givenXwe determinew by those coordinatesxj > ε).
Same definition forg.
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Of course, we have to multiply as usual by a normalization constant to make
∫
f =∫

g = 1, but this does not affect the logarithmic inequality. Also ifδ goes to zero much
faster thanε, (say likeε2N ) f andg converge toµ1 andµ2, since most of the mass
concentrates in the cubeQε(ω) = {|xi − ωi | < ε}.

AboutDi logf ,Di logg, they are jump functions concentrated on the planesxj = ε

or 1− ε so we have to check that the jump inequalities are satisfied. We also may
disregard plane intersections since they will not affectDif in the distributional sense.

So we check that

a) ForX ≤ Y andxi = yi = ε we have Jump(logg) ≥ Jump(logf ). Indeed when
xi, yi go throughε we change from evaluating the measures atw1, (resp.w2) to
w1 + ei ,w2 + ei , and bothN(X),N(Y ) increase by one, so the jump relation holds
(they are the lattice relations plus a factor logδ.

b) Whenxi, yi go through(1−ε),w1 andw2 remain unchanged andN(X),N(Y ) both
decrease by one.

Also here the jump relation holds (both jumps are just logδ).
This completes the proof.��

5. Second Derivative Estimates

In this section we explore what the implications are of the fact that second derivatives
of solutions to Monge–Ampére equations are subsolutions of an elliptic equation.

First an heuristic discussion: Let us take a second pure derivative of the equation

log detDijϕ = logf (x)− logg(∇ϕ).
We get

MijDijϕαα +Mij,k,DijαϕDijβϕ = Dαα logf − (logg)ijϕiαϕjα − (logg)iϕααi .

From the concavity of log det the second term on the left is negative. Ifϕαα reaches
atX0 the maximum value among all pure second derivatives, then the right-hand side
must be negative. Let us look at the explicit case in which up to a constant,f = e−Q(X)
andg = e−(Q(Y )+F(Y )), whereQ is a nonnegative quadratic polynomial,aij xixj (for
instance, near neighborhood or other “Dirichlet Integral” like interactions in field theory).

We may assume thatα = e1. Then, we must compute

D11(−Q(X)+Q(∇ϕ)+ F(∇ϕ),
we have

D11(−Q)(X) = −a11,

D11Q(∇ϕ) = aijϕi1ϕj1 + aijϕi11ϕj .

But sinceϕ11(X0) is the maximum among all pure second derivatives,ϕ11i = 0 for all
i, andϕ1i = 0 for i �= 1. SoD11Q(∇ϕ(X0)) = a11(ϕ11)

2. Finally, if F is convex

D11F(∇ϕ) = Fijϕi1ϕj1 + Fiϕi11

is non-negative.
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ThereforeD11(R.H.S.)≥ a11((ϕ11)
2−1). We get a contradiction ifϕ11 > 1. That is

Theorem 11. Let, up to a multiplicative constant,

f (X) = e−Q(X),
g(Y ) = e−(Q(Y )+F(Y ))

with F convex. Then the potentialϕ of the optimal transportation satisfies

0 ≤ ϕαα ≤ 1.

In particular
Y = X + ∇u(X),

where
u = ϕ − 1

2|X|2
is concave and

−1 ≤ uαα ≤ 0

(independently of dimension).

Proof. To make the previous theorem valid we have to take care of what happens when
X goes to infinity.

Again by approximation we may assume that the convex functionF(X) is +∞
outside the ballBR (that isg is supported in the ball of radiusR, and smooth bounded
away from zero and infinity inside it.

We will replace the second derivative by an incremental quotient, and show that it
still satisfies a maximum principle and goes to zero at infinity. Let

(δϕe)(X) = ϕ(X + he)+ ϕ(X − he)− 2ϕ(X).

We fix h, and study what happens ifδϕ = δϕe1 attains a local maximum atX0,
for all possible e. From the concavity of log det, we still have that, for the linearization
coefficientsMij , of log det atX0,

Mij δϕ(X0) ≤ δ(logf − logg) = δ(−Q(X))+Q(∇ϕ)+ F(∇ϕ).
From the fact thatδϕe1 realizes a maximum amongX and e, we obtain

a) ∇δϕ = ∇ϕ(X0 + he1)+ ∇ϕ(X0 − he1)− 2∇ϕ(X0) = 0
and

b) for anyτ ⊥ e1,

Dτδϕ = τ · (∇ϕ(X0 + he1)− ∇ϕ(X0 − he1) = 0.

Therefore
∇ϕ(X ± he1) = ∇ϕ(X)± λe1

andδϕ = 2λ (λ positive). Then, from the convexity ofF ,

δF (∇ϕ(X0)) ≥ 0.
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If we writeQ(X) as a bilinear formQ(X) = B(X,X),

δQ(∇ϕ) = B(∇ϕ(X0)+ λe1,∇ϕ(X0)+ λe1)

+ B(∇ϕ(X0)− λe1,∇ϕ(X0)− λe1)

− 2B(∇ϕ(X0),∇ϕ(X0))

= λ2B(e1,e1).

Similarly δQ(X) = h2B(e1,e1) so we get: Ifδϕ has an interior maximum atX0, then
it must hold:

∇ϕ(X0 ± he1) = ∇ϕ(X0)± λe1

with λ < h.
But, sinceϕ is convex

ϕ(X0 ± he1)− ϕ(X0) ≤ 〈∇ϕ(X0 ± he1)− ∇ϕ(X0),±he1〉 = λh ≤ h2.

Thus,
δϕ ≤ 2h2,

the desired inequality. ��
To complete the proof of the theorem it would be enough to show thatδϕ goes to

zero (for fixedδ) whenX goes to infinity.
We show that:

Lemma 4. AsX goes to infinityY converges uniformly toR X
|X| .

Proof. LetX0 = λe1 for λ large andY0 its image. Letν be a unit vector with

angle(ν,e1) ≤ π

2
− ε.

From the monotonicity of the map, any point onBR of the form

Y ′ = Y0 + tν

must come from a vector
X′ = X0 + sµ,

with 〈µ, ν〉 ≥ 0.
In particular, we must have

angle(µ,e1) ≤ (π − ε).

In other words if inY space we consider the cone,

= = {Y ′ = Y0 + tν, with t > 0, angle(ν,e1) ≥ π

2
− ε,

its intersection withBR must be covered by the image of the (concave) cone

= = {X′ = X0 + sµ, with s > 0 and angle(µ,e1) ≤ π − ε}.
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But = has very smallf measure

µf ( = ) ≤ (ελ)ne−(ελ)2, ελ > λ1/2,

since the ball of radiusελ is not contained in=.
On the other hand,g is strictly positive inBR, so

µg(= ∩ BR) ∼ |= ∩ BR| ≤ µf ( = ).

This forces the exponential convergence ofY toRe1.
This completes the proof of the lemma and the theorem, since the uniform conver-

gence of∇ϕ to X
|X| , makesδϕ go to zero (for any fixed, positiveh). ��

We state three corollaries of this last inequality. The first two are a generalization of
the classic Brascamp–Lieb moment inequality and the third an eigenvalue inequality.

Corollary 6. Let f (X) = e−Q(X), g(H) = e−[Q(Y)+F(Y )] with Q quadratic andF
convex, and let= be a convex function of one variable (|x1|α in [B-L]). Then

Eg(=(y1 − Eg(y1)) ≤ Ef (=(x1)).

Proof. It follows from [B-L] that it is enough to prove it in the one dimensional case
(see Theorem 5.1 of [B-L]). We can also assume by a translation thatEg(y1) = 0.

By the change of variable formula that means∫
y(x)f (x) dx = 0.

Also

Eg(=(y1)) =
∫
=(y1(x)f (x) dx.

But y(x) = x + u(x), wherey = ϕ′(x), ϕ convex andu = ψ ′(x), ψ concave. Thus
y is increasing, andu is decreasing and changes sign, since∫

u(x)f (x) dx =
∫
y(x)f (x) dx = 0.

Sayu(x0) = 0. Then, we write∫
=(y(x))f (x) ≤

∫
[=(x)+ =′(y(x))(y − x)]f (x).

Since= is convex,

≤ Ef (=(x))+
∫
[=′(y(x))− =′(x0)](y − x)f (x).

But at x0, =′(y(x0)) = =′(x0) andy(x0) = x0, and further=′ is increasing, while
y−x = u is decreasing, thus the last integrand is negative, and this completes the proof.
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If we want to repeat the argument above for functions= that depend on more than one
variable, and we want to prove that

Eg(=(Y − Eg(Y )) ≤ Ef (=(X)),

we may as before assume thatEg(Y ) = 0.
That means, withY = X+U , thatU(X0) = 0 for someX0 (i.e., the concave function

−ψ has a maximum). The same computation then gives us

Eg(=(Y )) ≤ Ef (=(X))+
∫
(∇=(Y )− ∇(=(X0))(−∇ψ(Y )f (X) dx,

whereψ and= − 〈∇=(X0),X −X0〉 are both convex with a minimum atX0, so there
is some hope that the integrand be negative.��

For instance, if we are looking at statistics ofk-variables we have the following
corollary.

Corollary 7. Assume thatQ(X), F(X) in the definition off (X), g(Y ) are symmetric
with respect to(x1, . . . , xk) and that=(x1, . . . , xk) is convex and symmetric. Then

Eg(=(Y )) ≤ Ef (=(X)).

Proof. As before we may assume the problem isk-dimensional ([B-L], Theorem 4.3).
SinceQ andF are symmetric, the potentialsϕ(X), ψ(X) are symmetric. Therefore
∇ϕ,∇ψ,∇= = 0 forX = 0 and further,

signϕi(X) = signψi(X) = sign=i(X) = signxi = signyi.

From the computation above it suffices to show that for allY ,

∇= · ∇ψ ≥ 0.

That follows since=i · ψi ≥ 0 for all i. ��
A final consequence of the estimateϕαα ≤ 1 for log concave perturbations of the

Gaussian is that any Raleigh-like quotient (log Sobolev inequality, isoperimetric in-
equality, Poincaré inequality) that involves a quotient between first derivatives and the
function themselves is smaller for the perturbation than for the Gaussian.

For instance, letF(t), G(t), H(t), K(t) be non-negative, non-decreasing functions
of t ∈ [0,∞), then we have the

Corollary 8. Letf, g be densities as in Theorem 11 (i.e., a Gaussian and its log concave
perturbation) then consider the “Raleigh” quotient

λf = inf
F(

∫
G(|∇u|)f (X) dX)

H(
∫
K(|u|)f (X) dX) .

Thenλg ≥ λf .

Proof. If we apply the change of variable formula to any functionu(Y ), we get∫
K(|u(Y )|)g(Y ) dY =

∫
K(|u(X)|)f (X) dX,

while ∇Xu(Y (X)) = DX(Y )∇Y u(X). ButDXY is a symmetric matrix with all eigen-
values less than one, so|∇Xu(Y (X))| ≤ |∇Y u(Y )| which proves the corollary. ��
Remark.The monotonicity for the log Sobolev inequality under log concave perturba-
tions of the Gaussian follows from the Bakry–Emery theorem ([B-E]).
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