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Abstract

We consider H expected utility maximizers that have to share a
risky aggregate multivariate endowment X ∈ R

N and address the
following two questions: does efficient risk-sharing imply restrictions
on the form of individual consumptions as a function of X? Can one
identify the individual utility functions from the observation of the
risk-sharing? We show that when H ≥ 2N

N−1 efficient risk sharings
have to satisfy a system of nonlinear PDEs. Under an additional rank
condition, we prove an identification theorem.

Keywords: multidimensional risk-sharing, restrictions, identification.
JEL classification: C10, D61, D81.

1 Introduction

In [9], Townsend tested restrictions of efficient risk-sharing in a pure exchange
economy on data from three villages in Southern India. In Townsend’s model,
the risk to be shared between the different agents is unidimensional and
Townsend’s test was based on the mutuality principle, that is, the idea that
an agent’s individual consumption should depend only on aggregate resources
and not on her idiosyncratic shocks. As a consequence, if a risk-sharing is
efficient then it should be comonotone in the sense that the consumption
of each agent should be nondecreasing in the total resource. The idea of
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comonotonicity and its connections with Pareto efficiency have been devel-
oped further in a series of papers. It has been shown to be relevant to the
case of utilities which are not of von Neumann-Morgenstern type, notably
strictly risk-averse rank-dependent expected utility (see [2]) as well as to the
multivariate setting (see [3]).

In the present work, we want to address the multivariate case where the
resource to be shared has several dimensions (wheat and meat production
for instance). We shall see that in this case there are some sharp restrictions
on efficient risk sharings between expected utility maximizers that take the
form of systems of nonlinear PDEs. We shall also prove an identification
theorem i.e. that under some rank condition the knowledge of an efficient
risk sharing enables us to reconstruct some sharp information on individual
preferences and Pareto weights. The framework of the present work is that of
the efficient risk-sharing of some multidimensional risky resource X among
several expected utility maximizers with strictly concave and smooth utility
functions that are not known to the econometrician. As observed in [3], the
first-order condition gives that the consumption of agent h takes the form
Xh = ∇V ∗

h (∇V (X)) (where V ∗

h is related to the Legendre transform of agent
h’s utility and her Pareto weight, see section 2 for details). A first question
is whether such forms entail sharp restrictions on the consumptions Xh as
functions of X , for instance in the form of a system of PDEs. The second
issue we shall address is whether the knowledge of the Xh’s as functions
of X enable us to identify the individual preferences. To be complete, one
should also take into account the economic integration issue i.e. the further
requirement that the functions V ∗

h and V should be concave, however, this
problem will not be addressed here.

We make no assumption about risk-sharing within the group, except that
the result is efficient. So our paper is part of the growing literature on for-
mal models of efficient group behavior (see [5] for a survey). This literature
considers each group as a black box: inputs (prices, initial endowments) and
outputs (consumption) can be observed but individual allocations cannot.
One can observe aggregate consumption of the group but not the individ-
ual consumption of its members. The problem then is to recover individual
consumptions with minimal assumptions on the allocation mechanism within
the box. This minimal assumption is that the allocation mechanism is ef-
ficient i.e. Pareto-optimal. Browning and Chiappori [1] have shown that
this is enough to derive restrictions on aggregate demand, analogous to (but
different from) the classical Slutsky conditions of consumer theory and they
have tested these conditions on microeconomic data.

Another issue to bear in mind is the so-called identifiability problem (see
[5], p.7 for a full discussion): we will not assume that the demand functions
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have a particular form (so our model is non-parametric) but we will assume
that they are smooth functions and that we can observe them. Of course, in
any practical situation, one can only observe finitely many values. Proceeding
as if one could observe the full demand function is an intermediate step for
the econometrician. If we can recover the individual demands in that case, it
will be up to him to find the adequate tools to recover the collective demand
functions from finitely many points. If he cannot recover the preferences,
even he knew the full demand functions, then clearly he will not be able to
do so either if he knows only finitely many points

The paper is organized as follows. The model is introduced in section 2.
Necessary conditions for a risk-sharing to be efficient are given in section 3 in
the form of systems of nonlinear PDEs. Section 4 is devoted to identification
issues. Section 5 is devoted to concluding remarks and a discussion of our
results.

2 The model

Consider H ≥ 2 expected utility maximizing1 agents that have to share ex
ante a risky multivariate aggregate endowment X that is some (essentially
bounded say) R

N -valued random vector with N ≥ 2. Ex-ante, the agents
have to decide on how to share the total resource X between the H agents
in an efficient way. This leads to the following program2

sup
{

E

(

H
∑

h=1

λhUh(Xh)
)

:
H
∑

h=1

Xh = X
}

(1)

where the λh > 0 are the Pareto weights and Uh are agents’ von Neumann-
Morgenstern utility functions. Assume that the Uh are C

2, thatD2Uh is nega-
tive definite everywhere and set Vh = λhUh. The solution X = (X1, · · · , XH)
of (1) can be obtained as Xh = Xh(X) where for every x ∈ R

N ,
(X1(x), · · · , XH(x)) solves the sup-convolution problem:

V (x) = sup
{

H
∑

h=1

Vh(xh) :
H
∑

h=1

xh = x
}

. (2)

1Extensions of the subsequent analysis to a non expected utility framewok, for instance
to the case of maximin expected utility (see [4] or [6]) is an interesting issue but it is out
of the scope of this paper.

2The fact that the Pareto weights are fixed and do not depend on X is precisely justified
by the fact that the agents ex ante make a commitment on an allocation on the contract
curve before the risk is realized.
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The first-order optimality conditions of (2) read as

∇Vh(Xh(x)) = p(x) i.e. Xh(x) = ∇V ∗

h (p(x)).

In the previous formula, V ∗

h is the Legendre Transform of Vh, we then have
∇V ∗

h = ∇V −1
h and p(x) is the vector of shadow prices i.e. the multiplier

associated to the scarcity constraint
∑H

h=1 xh = x. Using that constraint,
one can compute p(x) as

p(x) =
(

H
∑

h=1

∇V ∗

h

)−1

(x) = ∇V (x).

We thus obtain the following form for the risk-sharing:

Xh(x) = ∇V ∗

h

(

∇V (x)
)

, for h = 1, · · · , H. (3)

The issues we shall investigate in the sequel are the following:

• Necessary conditions/restrictions: Given maps

x ∈ R
N 7→ (X1(x), · · · , XH(x)) ∈ R

N×H

that sum to the identity, what conditions should they satisfy if in ad-
dition, they come from a risk-sharing problem of the form (2) without
knowing neither the utility functions Uh nor the Pareto weights λh? As
seen in (3), each Xh should be the composition of two gradient maps,
the second one being independent of h, We shall see that when H is
large enough, H ≥ 2N

N−1
, this imposes that the vector fields Xh’s solve

a system of nonlinear PDEs.

• Identification: When the Xh’s are obtained from an efficient risk-
sharing process, can one recover information about the individual pref-
erences i.e. about the functions Vh = λhUh? We shall see that under
some rank condition, there is identification i.e. the knowledge of indi-
vidual consumptions as functions of the aggregate consumption enables
one to reconstruct the functions Vh.

Finding sufficient conditions for the Xh’s to be an efficient risk-sharing
seems to be more delicate as will be discussed in the concluding section. The
economic integration issue (i.e. the further requirement that the primitives
Vh should be concave, or at least quasiconcave) also seems more involved and
will not be discussed here.
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3 Necessary conditions

Before going further, let us set some notations. We denote by MN the space
of N×N real matrices, by A∗ the transpose of A ∈ MN , by SN (respectively
ASN) the subspace of MN consisting of symmetric (respectively antisymet-
ric) matrices and by GLN the linear group of nonsingular matrices. We shall
denote by 〈A,B〉 := tr(A∗B) the usual inner product on MN matrices and
recall that SN and ASN are orthogonal supplementary subspaces for this
inner product. For A ∈ MN we denote by sym(A) its symmetric part i.e.
sym(A) = 1

2
(A + A∗). Finally, given a linear map Q we denote respectively

by R(Q) and N(Q) its range and nullspace.

3.1 General case

We are given H vector fields X1, · · · , XH that sum to the identity i.e.

H
∑

h=1

Xh(x) = x, ∀x ∈ R
N (4)

and we wonder whether these Xh can be obtained as a solution of a nonde-
generate risk-sharing problem as in section 2 i.e. can be written as in (3) for
some functions V ∗

h and V with a nonsingular Hessian. Taking x ∈ R
N (fixed

for the moment), differentiating (3) we get

Fh := DXh(x) = D2V ∗

h (∇V (x))D2V (x). (5)

This in particular implies that each Fh is nonsingular,

H
∑

h=1

Fh = IN (6)

and one can find nonsingular and symmetric matrices Sh and S such that

Fh = ShS, ∀h ∈ {1, · · · , H}

which, defining σ := S−1 and Φh(σ) := Fhσ for h = 1, · · · , H and Φ(σ) :=
(F1σ, · · · , FHσ) we may rewrite as Φ(σ) = (S1, · · · , SH). A necessary condi-
tion for the Fh = DXh’s to satisfy (5) for some Vh and V is then:

there exists σ ∈ SN ∩GLN such that Φ(σ) ∈ SH
N . (7)
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As we shall see in the next lemma, it is convenient to express (7) in terms
of the linear map L ∈ L(ASH−1

N ,SN) defined by:

L(A1, · · · , AH−1) := sym
(

H−1
∑

h=1

AhFh

)

, ∀(A1, · · · , AH−1) ∈ ASH−1
N . (8)

Note that if the matrices Fh are observed, the maps Φ and L are known.
In the sequel, we will derive restrictions on these maps.

Lemma 1 If σ ∈ SN the following assertions are equivalent:

1. Φ(σ) ∈ SH
N ,

2. σ ∈ R(L)⊥.

Condition (7) is thus equivalent to the fact that R(L)⊥∩GLN 6= ∅ which
in particular implies that L is not surjective.

Proof. Let σ ∈ SN , σ ∈ R(L)⊥ means that for every (A1, · · · , AH−1) ∈
ASH−1

N one has

0 = tr(σ

H−1
∑

h=1

AhFh) =

H−1
∑

h=1

tr(AhFhσ) = −
H−1
∑

h=1

tr(A∗

hFhσ) = −
H−1
∑

h=1

〈Ah,Φh(σ)〉 .

This is equivalent to the fact that Φh(σ) ∈ SN for h = 1, · · · , H − 1 but
recalling (6) we also have

ΦH(σ) = (IN −
H−1
∑

h=1

Fh)σ = σ −
H−1
∑

h=1

Φh(σ) ∈ SN .

This proves the desired equivalence.

We deduce the following restrictions on nondegenerate efficient risk-sharings:

Theorem 1 If H ≥ 2N
N−1

and x 7→ (X1(x), · · · , XH(x)) is a nondegenerate
efficient risk-sharing then it solves a system of nonlinear PDEs expressing
the fact that the map L defined by (8) is nonsurjective.

Proof. Since

dim
(

ASH−1
N

)

=
(H − 1)N(N − 1)

2
and dim

(

SN

)

=
N(N + 1)

2
the fact that L is nonsurjective entails restrictions on the Jacobian matrices
Fh = DXh as soon as (H − 1)(N − 1) ≥ N + 1 i.e. H ≥ 2N

N−1
. More

precisely, in this case, (7) implies that all N(N+1)
2

× N(N+1)
2

minors of L should
identically vanish: since L depends linearly on the DXh’s this gives a system

of

(

(H − 1)N(N − 1)/2
N(N + 1)/2

)

equations that are homogeneous of degree N(N+1)
2

in the derivatives (DX1, · · · , DXH−1).
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At this point, a few remarks are in order:

• The previous theorem asserts that there are restrictions on efficient
risk-sharings as soon as the number of agents is large enough: for in-
stance H needs to be larger than 4 when N = 2 and larger than 3 if
N ≥ 3. This contrasts with the literature on aggregate demand (in
the Debreu-Mantel-Sonnenschein line) which typically finds that there
are restrictions only when the number of agents is small enough. This
is by no means a contradiction since here we are observing individual
consumptions so that more agents increase the available information.

• In fact (7) is stronger than the condition that L is not surjective since
it requires R(L)⊥ ∩GLN 6= ∅.

• To obtain restrictions as above, it is important to consider the whole
system Fh = ShS, h = 1, · · · , H . Indeed, each equation Fh = ShS
taken separately only implies that Fh is the product of two symmetric
matrices and according to a theorem of Frobenius (see for instance [7]),
any matrix can be written in such a way.

• The proportional risk-sharing rule corresponds to the most degenerate
case where L ≡ 0, indeed in this case Fh(x) = αhIN for every x (where
the αh’s sum to 1), so, for every (A1, · · · , AH−1) ∈ ASH−1

N one has

L(A1, · · · , AH−1) := sym
(

H−1
∑

h=1

αhAh

)

= 0.

3.2 Special cases

We now consider some special cases and write explicitly the system of PDEs
that nondegenerate risk-sharings should solve in these cases. These two cases
are the first ones for which efficient risk-sharing implies some nontrivial re-
strictions namely:

• the case of 4 agents and 2 goods, in this case L can be identified with
an endomorphism of R3 and (X1, X2, X3) should solvea single PDE,

• the case of 5 agents and 2 goods, in this case L can be identified with
an element of L(R4,R3) and (X1, X2, X3, X4) should solve a system of
4 nonlinear PDEs.
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These two cases also illustrate the general case. In fact, the computations
and arguments below can easily be generalized to larger values of H and N
for which H ≥ 2N

N−1
. Indeed, (H,N) = (4, 2) serves as a prototype for the

case H = 2N
N−1

whereas (H,N) = (5, 2) serves as a prototype for the case

H > 2N
N−1

. Before studying the examples in details, let us remark that the

case H = 2N
N−1

is rather rare3, more precisely it consists only of the two cases
(H,N) = (4, 2) and (H,N) = (3, 3).

The case H = 4, N = 2
Writing Xh = (X1

h, X
2
h), we have

Fh =

(

∂1X
1
h ∂2X

1
h

∂1X
2
h ∂2X

2
h

)

,

let then

Ah =

(

0 xh

−xh 0

)

, h = 1, · · · , 3,

a direct computation gives

L(A1, A2, A3) =













3
∑

h=1

∂1X
2
hxh

1

2

3
∑

h=1

(∂2X
2
h − ∂1X

1
h)xh

1

2

3
∑

h=1

(∂2X
2
h − ∂1X

1
h)xh −

3
∑

h=1

∂2X
1
hxh













.

Identifying L with the endomorphism of R3

(x1, x2, x3) 7→
(

3
∑

h=1

∂1X
2
hxh,

3
∑

h=1

∂2X
1
hxh,

3
∑

h=1

(∂2X
2
h − ∂1X

1
h)xh

)

,

we see that a necessary condition for (X1, X2, X3) to be an efficient risk-
sharing reads:

det





∂1X
2
1 ∂2X

1
1 (∂2X

2
1 − ∂1X

1
1 )

∂1X
2
2 ∂2X

1
2 (∂2X

2
2 − ∂1X

1
2 )

∂1X
2
3 ∂2X

1
3 (∂2X

2
3 − ∂1X

1
3 )



 = 0

The case H = 5, N = 2

3Indeed, assume N ≥ 2 and that N − 1 divides 2N . If N is odd, write N = 2k+1 and
then 2N

N−1
= 4k+2

2k
= 2 + 1

k
so that k = 1 and then N = 3 and H = 3. If N is even, N − 1

being odd, it follows from Gauss Lemma that N − 1 divides N so that N = 2 and then
H = 4.
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Denoting for h = 1, · · · , 4, Xh = (X1
h, X

2
h) and performing similar com-

putations as before, we find that a necessary condition for (X1, X2, X3, X4)
to be an efficient risk sharing reads:

0 = det





∂1X
2
1 ∂2X

1
1 (∂2X

2
1 − ∂1X

1
1 )

∂1X
2
2 ∂2X

1
2 (∂2X

2
2 − ∂1X

1
2 )

∂1X
2
3 ∂2X

1
3 (∂2X

2
3 − ∂1X

1
3 )





= det





∂1X
2
1 ∂2X

1
1 (∂2X

2
1 − ∂1X

1
1 )

∂1X
2
2 ∂2X

1
2 (∂2X

2
2 − ∂1X

1
2 )

∂1X
2
4 ∂2X

1
4 (∂2X

2
4 − ∂1X

1
4 )





= det





∂1X
2
1 ∂2X

1
1 (∂2X

2
1 − ∂1X

1
1 )

∂1X
2
3 ∂2X

1
3 (∂2X

2
3 − ∂1X

1
3 )

∂1X
2
4 ∂2X

1
4 (∂2X

2
4 − ∂1X

1
4 )





= det





∂1X
2
2 ∂2X

1
2 (∂2X

2
2 − ∂1X

1
2 )

∂1X
2
3 ∂2X

1
3 (∂2X

2
3 − ∂1X

1
3 )

∂1X
2
4 ∂2X

1
4 (∂2X

2
4 − ∂1X

1
4 )



 .

4 Identification

In the previous section, we have found necessary conditions on the Jacobian
matrices Fh(x) = DXh(x) for (X1, · · · , XH) to be a nondegenerate efficient
risk-sharing. In this section, we address the identification issue: we assume
that x 7→ (X1(x), · · · , XH(x)) is a nondegenerate efficient risk-sharing and
we wonder what information on the individual preferences and on the shadow
price can be deduced from this risk-sharing.

Given a nondegenerate efficient risk-sharing (X1, · · · , XH) we wish to find
functions (maybe locally) Vh and V smooth and with nonsingular Hessians
such that

Xh = ∇V ∗

h ◦ ∇V, h = 1, · · · , H.

By assumption, Xh can be written in such way, and the identification problem
consists in reconstructing the functions ∇Vh and ∇V from the knowledge of
Xh; this essentially is a uniqueness problem. The best one can hope for is to
identify ∇Vh and ∇V up to a common translation (adding the same linear
function to the Vh’s does not affect the corresponding risk-sharing) and up
to a common multiplicative factor. In other words, what one can expect to
identify at best is the collection of Hessian matrices D2V and D2Vh up to a
multiplicative constant.

In general, one cannot expect an identification result, even for linear effi-
cient risk-sharing rules. In the linear risk-sharing case, Xh can be identified

9



with a nonsingular matrix and the identification problem consists in study-
ing the uniqueness (up to a multiplicative constant) of the decompostion
Xh = ShS with Sh and S symmetric. If Xh = αhIN (proportional risk shar-
ing) the decomposition is highly nonunique since S can be any symmetric
nonsingular matrix and Sh = αhS

−1. We do not have identification in this
case and this is related to the fact that under proportional risk-sharing, the
map L defined by (8) is identically 0. More generally, thanks to Lemma
1, we know that when R(L) has a codimension larger than 2 then there is
nonuniqueness of the decomposition. Indeed, by assumption, one can write
DXhσ = Sh where σ and Sh are symmetric and nonsingular but since R(L)
has codimension 2, by Lemma 1 there is a symmetric matrix σ̃ such σ and σ̃
are linearly independent and DXhσ̃ = S̃h ∈ SN . For small enough ε, σ + εσ̃
is nonsingular and DXh = (Sh + εS̃h)(σ + εσ̃)−1 which proves that the de-
composition is highly nonunique. We will see however that when R(L) has
codimension 1, there is identification even in the nonlinear case.

In the previous section, the value of aggregate endowment x was somehow
frozen, it is now essential to let x vary and in particular to emphasize the
x-dependence of the map L defined in (8), from now on, we will therefore
denote this map by Lx.

4.1 Identification when R(Lx) has codimension 1

For all x ∈ R
N , we of course assume the rank condition

rank(Lx) ≤
N(N + 1)

2
− 1 (9)

which we already know to be necessary for (Xh)h to be an efficient risk-
sharing. Our aim is to identify the shadow price ∇V (and then the prefer-
ences) near a point x ∈ R

N such that

rank(Lx) =
N(N + 1)

2
− 1 (10)

which implies that for every x in a neighbourhood U of x, the subspace

R(Lx) of SN has codimension one4 and thus an orthogonal of dimension 1.
For all x ∈ U , we may therefore find a symmetric (and nonsingular since
(X1, · · · , XH) is nondegenerate) matrix σ(x) such that:

R(Lx)
⊥ = Rσ(x), ∀x ∈ U . (11)

4We already noticed that this rank condition is necessary for identication.
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Moreover, thanks to condition (10), it is easy to see that we may choose
x 7→ σ(x) in such way that σ is C1 with respect to x.

Again denoting Fh = DXh, we know that there are smooth functions V ∗

h

and V with nonsingular Hessians such that

Xh = ∇V ∗

h ◦ ∇V hence Fh(x) = D2V ∗

h (∇V (x))D2V (x)

for every x and we want to deduce as much information as we can from the
Xh’s to reconstruct ∇V and ∇Vh. It follows from Lemma 1 that D2V (x)−1

should belong to R(Lx)
⊥ = Rσ(x) so that setting T (x) := σ(x)−1, D2V (x)

should be of the form

D2V (x) = λ(x)T (x), x ∈ U

for some nonvanishing scalar function λ. In particular, by Schwarz’s symme-
try theorem, in addition to the symmetry of T , one should have5

∂k(λ(x)Tij(x)) = ∂i(λ(x)Tkj(x)), ∀(i, j, k) ∈ {1, · · · , N}3

that is

∂kλ(x)Tij(x)− ∂iλ(x)Tkj(x) = λ(x)(∂iTkj(x)− ∂kTij(x)). (12)

To see that these equations enable us to recover λ (hence D2V ) in a
neighbourhood of x up to a multiplicative constant, we shall use the following:

Lemma 2 Let T be an N × N symmetric and nonsingular matrix and let
(e1, · · · , eN) be the canonical basis of R

N then the family {Tijek−Tkjei, i, j, k}
spans RN .

Proof. It is easy to see that the desired statement amounts to proving that
the linear map Π ∈ L(RN ,RN3

) defined by (Π(x))ijk = Tijxk − Tkjxi for all
x ∈ R

N and all (i, j, k) ∈ {1, · · · , N}3 is injective. Let x be in the null space
of Π i.e.

Tijxk = Tkjxi, ∀i, j, k

Multiply the previous by arbitrary reals αi and βj and sum over i and j to
get

〈Tα, β〉x = 〈α, x〉Tβ, ∀(α, β) ∈ R
N × R

N

Taking α = x yields:

〈Tx, β〉x = |x|2Tβ, ∀β ∈ R
N

Choosing β 6= 0 orthogonal to Tx, since Tβ 6= 0 we deduce that x = 0.

5Since we have differentiated D2V here, we are assuming that V is at least C3.
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The following identification theorem follows:

Theorem 2 Let (X1, · · ·XH) be a nondegenerate efficient risk-sharing such
that the rank condition (10) holds in a neighbourhood of x ∈ R

N , then there
is local identification of shadow prices and preferences: one can deduce from
(X1, · · · , XH) the shadow price ∇V (x) (up to a multiplicative factor and an
additive constant) in a neighbourhood of x as well as the marginal utilities
∇Vh in a neighbourhood of Xh(x) (up to the same multiplicative and additive
constants).

Proof. Assume that Xh = ∇V ∗

h ◦ ∇V . Then as already noted D2V (x) =
λ(x)T (x), where T (x) is a given SN -valued map and λ does not vanish and
should satisfy the system of linear PDEs (12) in U , which we simply rewrite
as

bα ·
∇λ

λ
= aα, α = (i, j, k), bα(x) = Tij(x)ek − Tkj(x)ei.

It follows from Lemma 2 that the family {bα(x)}α spans RN for every x ∈ U
hence the system (12) contains as subsystem a system of the form

B(x)∇(log(λ)(x) = a(x)

for some B(x) ∈ GLN so that ∇(log(λ)(x) = B(x)−1a(x) which means that
λ, and hence D2V (x), is determined up to a multiplicative constant, It follows
that ∇V = α0∇V0+p0 where V0 is totally determined (and has a nonsingular
Hessian) by the risk sharing and α0 ∈ R\{0} and p0 ∈ R

N are two constants.
Once one knows ∇V one easily obtains the desired identification of ∇Vh by
observing that Xh = ∇V ∗

h ◦ ∇V can be rewritten as ∇Vh = ∇V ◦ X−1
h =

α0∇V0 ◦X
−1
h + p0.

The previous result is optimal: we already explained why the rank con-
dition is important and why the quantities that may be identified are ∇Vh

and ∇V up to multiplicative and additive constants.

4.2 The particular case H = 4, N = 2

We now restrict ourselves again to the simplest case H = 4, N = 2.

The linear case

Let us first consider the case of a linear risk sharing where Xh(x) = Fh × x
(x ∈ R

2, h = 1, · · · , 3) and denote by f ij

h the entries of the matrix Fh ∈ M2.
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We have seen in section 3 that a necessary condition for the Xh to be an
efficient risk-sharing is that:

det





f 21
1 f 21

2 f 21
3

−f 12
1 −f 12

2 −f 12
3

(f 22
1 − f 11

1 ) (f 22
2 − f 11

2 ) (f 22
3 − f 11

3 )



 = 0. (13)

Our goal is to find symmetric matrices σ and Sh such that Fhσ = Sh and we
have seen that to identify the matrix σ up to a constant we further need that
this matrix has rank 2, for instance, we assume that its first two columns are
linearly independent6. The computation of σ is explicit7 and gives

σ =

(

−f 12
1 (f 22

2 − f 11
2 ) + f 12

2 (f 22
1 − f 11

1 ) −f 21
1 f 12

2 + f 12
1 f 21

2

−f 21
1 f 12

2 + f 12
1 f 21

2 −f 21
1 (f 22

2 − f 11
2 ) + f 21

2 (f 22
1 − f 11

1 )

)

(14)
and this matrix is invertible as soon as the Xh is a nondegenerate efficient
risk-sharing.

The nonlinear case

In the nonlinear case, denote by Fh(x) := DXh(x), the same computations
as before give a matrix σ(x) which spans R(Lx)

⊥, it is the same as in (14)
except that we now understand the entries as f ij

h (x) := ∂jX
i
h(x). An explicit

matrix T (x) that is proportional to σ(x)−1 is then given by

T11 = −∂1X
2
1 (∂2X

2
2 − ∂1X

1
2 ) + ∂1X

2
2 (∂2X

2
1 − ∂1X

1
1 )

T12 = ∂1X
2
1∂2X

1
2 − ∂2X

1
1∂1X

2
2

T22 = −∂2X
1
1 (∂2X

2
2 − ∂1X

1
2 ) + ∂2X

1
2 (∂2X

2
1 − ∂1X

1
1 ).

We wish now to identify D2V which is of the form λ(x)T (x) and the fact
that λT is a Hessian field gives the system of two PDEs:

T12∂1λ− T11∂2λ = λ(∂2T11 − ∂1T12)

T22∂1λ− T12∂2λ = λ(∂2T12 − ∂1T22)

6At least in this example, we see that the rank condition (10) is generic: among non-
singular matrices F1, F2, F3 for which (13) holds, it is generic that one of the 2× 2 minors
in (13) is nonzero.

7It is convenient to identify S2 with R
3 by identifying the vector (a, b, c) with the

symmetric matrix

(

a b√
2

b√
2

c

)

, this isomorphism has the advantage to preserve the inner

product hence orthogonality, to find a matrix in R(L)⊥ we simply take the wedge product
of the first two columns of its matrix in the canonical basis of R3.
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which we can rewrite as

∇λ

λ
=

(

F1(DX,D2X)
F2(DX,D2X)

)

where

(

F1(DX,D2X)
F2(DX,D2X)

)

:=

(

T12 −T11

T22 −T12

)−1(
∂2T11 − ∂1T12

∂2T12 − ∂1T22

)

=
1

det(T )

(

−T12(∂2T11 − ∂1T12) + T11(∂2T12 − ∂1T22)
−T22(∂2T11 − ∂1T12) + T12(∂2T12 − ∂1T22)

)

We now wish to emphasize the fact that since the previous vector field is
a gradient, we have an additional third-order nonlinear PDE for (X1, X2),
namely

∂2F1(DX,D2X) = ∂1F2(DX,D2X)

this supplementary equation is another necessary condition for efficient risk-
sharing.

5 Discussion and concluding remarks

In this paper, we found that efficient risk-sharing entails sharp restrictions
on individual consumptions as soon as the number of agents is large enough.
We have also shown that under a certain rank condition, one can identify
individual preferences.

5.1 Empirical implications

Although the previous considerations are rather theoretical, we believe that
they may have some practical or empirical implications if one wishes to test
efficiency on real data. A typical econometric approach would consist in
regressing individual consumption Xh on the aggregate resource X so as
to obtain an estimation of, say, a linear (or linearized) model of the form
Xh = FhX for certain matrices Fh. To test efficiency, one could then directly
use the approach of section 3 on the nonsurjectivity of the map L given
by (8), i.e. test as null hypothesis the fact that certain minors of a matrix
that depends linearly on the Fh’s identically vanish. In the case H = 4,
N = 2, this amounts to test the single equation (13). It seems important to
emphasize that our approach is actually robust to the aggregation of groups
of agents, that is, our results remain valid if agents h are replaced by groups of
agents (households or even much larger groups). The necessary conditions of
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section 3 can therefore in principle be tested on macro data which makes our
results applicable to international trade data, agricultural data in developing
countries...

5.2 On limited commitment

Our results rely very much on the assumption of ex ante efficiency or full com-
mitment i.e. the fact that the Pareto weights are given. In an intertemporal
framework, Mazzocco [8] developed a test for intra-household ex ante effi-
ciency and actually rejected this assumption. This suggests that one should
also consider the possibility of limited commitment in our analysis. Under
limited commitment, it would be more realistic to allow the Pareto weights to
depend (at least) on the realization x of the total resource. The analysis of op-
timality conditions for efficient risk-sharings is of course much more complex
in this extended setting. Whether one can derive tractable restrictions on
multi-dimensional risk-sharings under limited commitment is an interesting
question that can probably be attacked with the tools of exterior differential
calculus but this is out of the scope of the present paper.

5.3 Towards sufficient conditions

In this paper, we found a number of necessary conditions for maps x 7→
(Xh(x))h=1,...,H to be an efficient risk-sharing based on the simple observation
that, by first order optimality conditions, theXh’s should be of the formXh =
∇V ∗

h ◦∇V where Vh and V are smooth and strictly concave functions (see (3)).
Differentiating (3), one sees that for every x, the Jacobian matrix DXh(x)
should be the product of two (semidefinite negative) symmetric matrices, the
second one being independent of h. In theorem 1, we have shown that when
H ≥ 2N/(N − 1) this implies that the Xh’s satisfy a system of first-order
nonlinear PDEs. These equations are however far from being sufficient for
the Xh’s to be an efficient risk-sharing. Let us briefly explain why there are
additional restrictions, a more detailed study of these conditions being left
for future research:

• arguing as in section 4, if the Xh’s form an efficient risk-sharing and
if the rank condition (10) is satisfied, there is a nonsingular symmetric
matrix valued function T (which can be computed as we explicitly did
in the case H = 4, N = 2) such that D2V (x) = λ(x)T (x) for some
scalar function λ. Expressing the fact that λT is a field of Hessian
matrices leads to the system of linear PDE’s (12) for λ which can be
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written as
C(x)∇ log(λ) = b(x)

where C is an N3 × N matrix and b ∈ R
N3

. In this system C is an
explicit functions of T (hence of the first derivatives of (Xh)h) whereas b
is an explicit function of DT (hence of the second derivatives of (Xh)h).
The linear system above being overdetermined (more equations than
unknowns), we should have b(x) ∈ R(C(x)) for every x which is a
system of nonlinear second-order PDEs for (Xh)h. These clearly are
additional restrictions on the Xh’s not captured by Theorem 1.

• on top of this, as proved in Lemma 2, the linear system (12) contains
an invertible N ×N subsystem B(x)∇ log(λ) = a(x), which gives that
B−1(x)a(x) is a gradient so that it should have a symmetric Jacobian.
This imposes additional third-order PDEs for (Xh)h (exactly as in the
case H = 4, N = 2 detailed above).

We have not detailed all the conditions listed above because, on the one
hand, they lead to complicated expressions in general (we just gave some
details for the case H = 4, N = 2) and, on the other hand, they are not
sufficient yet. Indeed, the considerations above on the system (12) eventu-
ally ensure that one can write DXh(x) = Sh(x)D

2V (x) where the Sh are
symmetric, but this does not guarantee that Sh is of the form D2V ∗

h (∇V )...
Finally, we have ignored economic integration issues i.e. the requirement that
V ∗

h and V should be concave so that DFh should be the product of semidef-
inite negative matrices, in particular DXh should have a positive trace and
a positive determinant.
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