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Abstract

The Fokker Planck equation, or forward Kolmogorov equation, describes the evolu-
tion of the probability density for a stochastic process associated with an Ito stochastic
differential equation. It pertains to a wide variety of time dependent systems in which
randomness plays a role. In this paper, we are concerned with Fokker Planck equations
for which the drift term is given by the gradient of a potential. For a broad class of
potentials, we construct a time—discrete, iterative variational scheme whose solutions
converge to the solution of the Fokker Planck equation. The major novelty of this
iterative scheme is that the time step is governed by the Wasserstein metric on prob-
ability measures. This formulation enables us to reveal an appealing, and previously
unexplored, relationship between the Fokker Planck equation and the associated free
energy functional. Namely, we demonstrate that the dynamics may be regarded as a
gradient flux, or a steepest descent, for the free energy with respect to the Wasserstein

metric.

Keywords: Fokker-Planck equation, steepest descent, free energy, Wasserstein

metric.
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1 Introduction and overview

The Fokker-Planck equation plays a central role in statistical physics and in the study of
fluctuations in physical and biological systems [?, 7, ?]. It is intimately connected with the
theory of stochastic differential equations: A (normalized) solution to a given Fokker-Planck

equation represents the probability density for the position (or velocity) of a particle whose



motion is described by a corresponding Ito stochastic differential equation (or Langevin
equation). We shall restrict our attention in this paper to the case where the drift coefficient
is a gradient. The simplest relevant physical setting is that of a particle undergoing diffusion
in a potential field [?].

It is known that, under certain conditions on the drift and diffusion coefficients, the
stationary solution of a Fokker Planck equation of the type that we consider here satisfies a
variational principle. It minimizes a certain convex free energy functional over an appropriate
admissible class of probability densities [?]. This free energy functional satisfies an H-
theorem: It decreases in time for any solution of the Fokker-Planck equation [?]. In this work,
we shall establish a deeper, and apparently previously unexplored, connection between the
free energy functional and the Fokker-Planck dynamics. Specifically, we shall demonstrate
that the solution of the Fokker—Planck equation follows, at each instant in time, the direction
of steepest descent of the associated free energy functional.

The notion of a steepest descent, or a gradient flux, makes sense only in context with an
appropriate metric. We shall show that the required metric in the case of the Fokker—Planck
equation is the Wasserstein metric (defined in Section 3) on probability densities. As far
as we know, the Wasserstein metric cannot be written as an induced metric for a metric
tensor (the space of probability measures with the Wasserstein metric is not a Riemannian
manifold). Thus, in order to give meaning to the assertion that the Fokker—Planck equation
may be regarded as a steepest descent, or gradient flux, of the free energy functional with
respect to this metric, we switch to a discrete time formulation. We develop a discrete,
iterative variational scheme whose solutions converge, in a sense to be made precise below,
to the solution of the Fokker-Planck equation. The time-step in this iterative scheme is
associated with the Wasserstein metric. For a different view on the use of implicit schemes
for measures, see [?, 7].

For the purpose of comparison, let us consider the classical diffusion (or heat) equation

t.x
%:Ap(t,@, te(0,00), z€ R

which is the Fokker—Planck equation associated with a standard n—dimensional Brownian



motion. It is well-known (see, for example, [?, ?]) that this equation is the gradient flux
of the Dirichlet integral § [p. [Vp|? dz with respect to the L*(IR") metric. The classical

discretization is given by the scheme

Determine p*) that minimizes

16— pll ey + & [Vl da,

over an appropriate class of densities p. Here, h is the time step size. On the other hand,

we derive as a special case of our results below that the scheme

\
Determine p®) that minimizes

Ld(p*D, p)? + h/Rnplogp dx (1)

over all p € K,

where K is the set of all probability densities on IR" having finite second moments, is also a
discretization of the diffusion equation when d is the Wasserstein metric. In particular, this
allows us to regard the diffusion equation as a steepest descent of the functional [5. plogp dz
with respect to the Wasserstein metric. This reveals a novel link between the diffusion
equation and the Gibbs Boltzmann entropy (— [p» plogp dx) of the density p. Furthermore,
this formulation allows us to attach a precise interpretation to the conventional notion that
diffusion arises from the tendency of the system to maximize entropy.

The connection between the Wasserstein metric and dynamical problems involving dissi-
pation or diffusion (such as strongly overdamped fluid flow or nonlinear diffusion equations)
seems to have first been recognized by Otto in [?]. The results in [?] together with our re-
cent research on variational principles of entropy and free energy type for measures [?, 7, 7],
provide the impetus for the present investigation. The work in [?] was motivated by the
desire to model and characterize metastability and hysteresis in physical systems. We plan
to explore in subsequent research the relevance of the developments in the present paper to

the study of such phenomena. Some preliminary results in this direction may be found in

7, 7].



The paper is organized as follows. In Section (2), we first introduce the Fokker—Planck
equation and briefly discuss its relationship to stochastic differential equations. We then give
the precise form of the associated stationary solution and of the free energy functional that
this density minimizes. In Section (3), the Wasserstein metric is defined, and a brief review
of its properties and interpretations is given. The iterative variational scheme is formulated
in Section (4), and the existence and uniqueness of its solutions are established. The main
result of this paper mnamely the convergence of solutions of this scheme (after interpolation)
to the solution of the Fokker-Planck equation — is the topic of Section (5). There, we state

and prove the relevant convergence theorem.

2 The Fokker—Planck equation, stationary solutions,
and the free energy functional

We are concerned with Fokker-Planck equations having the form

% = div (VU (z)p) + 6 'Ap, p(x,0) = p’(2), (2)

where the potential ¥(z) : IR" — [0,00) is a smooth function, § > 0 is a given constant,
and p°(x) is a probability density on IR". The solution p(t,x) of (??) must, therefore, be a
probability density on IR" for almost every fixed time ¢. That is, p(¢,2) > 0 for almost every
(t,x) € (0,00) x IR", and [gn p(t, z) dz = 1 for almost every ¢ € (0, 00).

It is well known that the Fokker-Planck equation (??) is inherently related to the Ito

stochastic differential equation [?, 7, 7]
dX(t) = =V (X (t))dt +/26-1dW(t), X(0)=X". (3)

Here, W (t) is a standard n dimensional Wiener process, and X" is an n dimensional random
vector with probability density p°. Equation (?7) is a model for the motion of a particle
undergoing diffusion in the potential field W. X(¢) € IR" then represents the position of

the particle, and the positive parameter (3 is proportional to the inverse temperature. This



stochastic differential equation arises, for example, as the Smoluchowski—Kramers approxi-
mation to the Langevin equation for the motion of a chemically bound particle [?, 7, ?]. In
that case, the function W describes the chemical bonding forces, and the term /231 dW (¢)
represents white noise forces resulting from molecular collisions [?]. The solution p(¢, z) of
the Fokker-Planck equation (??) furnishes the probability density at time ¢ for finding the
particle at position .

If the potential W satisfies appropriate growth conditions, then there is a unique stationary
solution p,(z) of the Fokker—Planck equation, and it takes the form of the Gibbs distribution
7, 7]

ps(z) = Z " exp(—p¥(x)), (4)

where the partition function 7 is given by the expression

Z = /R” exp(— (¥ (x)) dx.

Note that, in order for equation (??) to make sense, ¥ must grow rapidly enough to ensure
that Z is finite. The probability measure py(x)dz, when it exists, is the unique invariant
measure for the Markov process X (¢) defined by the stochastic differential equation (?7).
It is readily verified (see, for example, [?]) that the Gibbs distribution p, satisfies a
variational principle — it minimizes over all probability densities on IR" the free energy

functional
F(p) = E(p) +B7S(p), (5)

where

E(p) = Up dx (6)

R™

plays the role of an energy functional, and

S(p) = [ plogpda (7)

is the negative of Gibbs-Boltzmann entropy functional.
Even when the Gibbs measure is not defined, the free energy (??) of a density p(t, x)
satisfying the Fokker—Planck equation (??) may be defined, provided that F(p°) is finite.
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This free energy functional then serves as a Lyapunov function for the Fokker-Planck equa-
tion: If p(¢, ) satisfies (?7), then F'(p(t,z)) can only decrease with time [?, ?]. Thus, the
free energy functional is an H function for the dynamics. The developments that follow will
enable us to regard the Fokker-Planck dynamics as a gradient flux, or a steepest descent,
of the free energy with respect to a particular metric on an appropriate class of probability
measures. The requisite metric is the Wasserstein metric on the set of probability measures

having finite second moments. We now proceed to define this metric.

3 The Wasserstein metric

The Wasserstein distance of order two, d(uq, p2), between two (Borel) probability measures
i1 and pg on IR"™ is defined by the formula

A, ) = inf [ o=yl pldedy), (8)
) JR"xR"

PEP (11,12

where P (1, 12) is the set of all probability measures on IR" x IR" with first marginal p; and
second marginal iy, and the symbol | - | denotes the usual Euclidean norm on IR". More
precisely, a probability measure p is in P(uq, u2) if and only if for each Borel subset A C IR"
there holds

P(AX R") = pu(A) , p(R" x A) = pa(A).

Wasserstein distances of order ¢ with ¢ different from 2 may be analogously defined [?].
Since no confusion should arise in doing so, we shall refer to d in the sequel as simply the
Wasserstein distance.

It is well known that d defines a metric on the set of probability measures p on R"
having finite second moments: [pn |2[*u(dz) < oo [?, ?]. In particular, d satisfies the triangle
inequality on this set. That is, if uq, uo, and us are probability measures on IR" with finite

second moments, then

d(p, pz) < d(pn, po) + d(paa, pr3) - (9)

We shall make use of this property at several points later on.



We note that the Wasserstein metric may be equivalently defined by [?]
A1, 12)? = inf X — Y2, (10)

where E(U) denotes the expectation of the random variable U, and the infimum is taken
over all random variables X and Y such that X has distribution p; and Y has distribution
fo. In other words, the infimum is over all possible couplings of the random variables
X and Y. Convergence in the metric d is equivalent to the usual weak convergence plus
convergence of second moments. This latter assertion may be demonstrated by appealing
to the representation (?7?) and applying the well known Skorohod theorem from probability
theory (see Theorem 29.6 of [?]). We omit the details.

The variational problem (??) is an example of a Monge-Kantorovich mass transference
problem with the particular cost function c(x,y) = |z —y|? [?]. In that context, an infimizer
p* € P(u1, po) is referred to as an optimal transference plan. When p; and ps have finite
second moments, the existence of such a p* for (??) is readily verified by a simple adaptation
of our arguments in Section 4. For a probabilistic proof that the infimum in (?7?) is attained
when p; and ps have finite second moments, see [?]. Brenier [?] has established the existence
of a one—to—one optimal transference plan in the case that the measures p; and puo have
bounded support and are absolutely continuous with respect to Lebesgue measure. Caffarelli
[?] and Gangbo and McCann [?, ?] have recently extended Brenier’s results to more general
cost functions ¢ and to cases in which the measures do not have bounded support.

If the measures 7 and ps are absolutely continuous with respect to the Lebesgue measure,
with densities p; and py, respectively, we will write P(p;, p2) for the set of probability
measures having first marginal p; and second marginal py. Correspondingly, we will denote
by d(p1, p2) the Wasserstein distance between p; and py. This is the situation that we will

be concerned with in the sequel.



4 The discrete scheme

We shall now construct a time discrete scheme that is designed to converge in an appropriate
sense (to be made precise in the next section) to a solution of the Fokker-Planck equation.
The scheme that we shall describe was motivated by a similar scheme developed by Otto
in an investigation of pattern formation in magnetic fluids [?]. We shall make the following

assumptions concerning the potential ¥ introduced in Section (2):

U e C®(IR");
U(x) > 0 forallz e R"; (11)
VU (z)] < C(¥(z)+1) forallz € R", (12)

for some constant C' < oco. Notice that our assumptions on ¥ allow for cases in which
Jre exp(—BY) dx is not defined, so that the stationary density p, given by (??) does not
exist. These assumptions allow us to treat a wide class of Fokker—Planck equations. In
particular, the classical diffusion equation % = B 'Ap, for which ¥ = const., falls into this

category. We also introduce the set K of admissible probability densities:
K = {p: R" — [0, 00) measurable‘ / plx)de =1,M(p) < oo },

where
Mip) = [ o pla) da.

With these conventions in hand, we now formulate the iterative discrete scheme:

\

Determine p*) that minimizes

1d(p*=V, p)? + hF(p) (13)

over all pe K.

/

Here we use the notation p(® = p°. The scheme (??) is the obvious generalization of the
scheme (?7?) set forth in the Introduction for the diffusion equation. We shall now establish

existence and uniqueness of the solution to (?77?).

9



PROPOSITION.  Given p° € K, there exists a unique solution of the scheme (77).

PROOF

Let us first demonstrate that S is well defined as a functional on K with values in
(—o0, +0oc] and that, in addition, there exist & < 1 and C' < oc depending only on n such
that

S(p) > —C (M(p)+1)* forallpe K. (14)

Actually, we shall show that (?7) is valid for any o € (;%5,1). For future reference, we prove

a somewhat finer estimate. Namely, we demonstrate that there exists a C' < oo, depending

only on n and «, such that for all R > 0, and for each p € K, there holds

(24n)a—n
2

1
Rz 4+1

[, Imin{plogp, 0} do < C ( M+, (19)

where Bg denotes the ball of radius R centered at the origin in IR". Indeed, for a < 1 there
holds

|min{z logz,0}| < Cz* forallz>0.
Hence by Holder’s inequality, we obtain

/ | min{p log p, 0}| dz
R"—Bpg

< C p% dx
R"-Bg

SIS o s

On the other hand, for t*~ > 7, we have

1 = 1 N\ %
— ) T < c( ) .
/R"BR <x|2+1> — R?+1

(k1)

Let us now prove that for given p € K, there exists a minimizer p € K of the

functional

K3pw 3d(p* Y, p)” + hF(p). (16)

10



Observe that S is not bounded below on K and hence F' is not bounded below on K either.

Nevertheless, using the inequality
M(p1) < 2M(po) +2d(po, p1)* for all py, pr € K (17)

(which immediately follows from the inequality |y|* < 2|z|*42|x—y|? and from the definition

of d) together with (??) we obtain

3"V, p)> + B F(p)
M(p) — 5 M(p* V) + nS(p) (18)

TM(p) — C (M(p)+1)" — %M(p(kfl)) forall p € K,

which ensures that (??) is bounded below. Now, let {p,} be a minimizing sequence for (?7).

Obviously, we have that

{S(p,)}, is bounded above, (19)

and according to (?7),

{M(p,)}, 1is bounded. (20)

The latter result, together with (??) implies that

{/ ' min{p, logp,,0}| dx} is bounded ,
R"’L

v

which combined with (??) yields that

{/ max{p, logp,,0} d:r} is bounded .
JR"

v

As z — max{zlogz,0},2 € [0,00), has superlinear growth, this result, in conjunction with

(??) guarantees the existence of a p*) € K such that (at least for a subsequence)

py % p®)in L' (IR™). (21)
Let us now show that
S(p™) < liminfS(p,). (22)

11



As [0,00) 2 z +— zlog z is convex and [0, 00) 3 z — max{zlogz,0} is convex and nonnega-

tive, (??) implies that for any R < oo,

/B p®) log p*¥) dz < liminf [ p, logp, dz, (23)
" R

vtoo Br

/ max{p® log p™,0} dz < lim inf max{p, log p,, 0} dz. (24)
R"—Bp vtoe JR"—Bpg

On the other hand we have according to (??) and (?7?)
lim sup | min{p, logp,,0}| dz = 0. (25)

Rtoo ye N JR™—Bg

Now observe that for any R < oo, there holds

S(pM) < /B p*) log o™ dx + /R . max{p® logp™), 0} dz.
R — DR

which together with (2?),(2?) and (2?) yields (2?).

It remains for us to show that

E(pM) < liminf B(p,), (26)
a0, M) < liminfd(p* ), p,)? (27)

Equation (??) follows immediately from (??) and Fatou’s Lemma. As for (?7), we choose

p, € P(p*=Y, p,) satisfying

R =

/ann @ =yl po(dzdy) < d(p* "V, p,)* +

By (??) the sequence of probability measures {p, dz}, 100 is tight, or relatively compact
with respect to the usual weak convergence in the space of probability measures on IR"
(i.e., convergence tested against bounded continuous functions) [?]. This, together with
the fact that the density p*~Y has finite second moment, guarantees that the sequence
{pv}100 of probability measures on IR" x IR" is tight. Hence, there is a subsequence of
{Pv}1100 that converges weakly to some probability measure p. From (??) we deduce that

p € P(p*=V, p)). We now could invoke the Skorohod Theorem [?] and Fatou’s Lemma to

12



infer (?7) from this weak convergence, but we prefer here to give a more analytic proof. For

R < 00 let us select a continuous function ng: R™ — [0, 1] such that
ng = 1 inside of By and 7z = 0 outside of Byg .

We then have
[ () ne(y) v — yl* pldz dy)
JR"™xR"

= lim (@) nr(y) |z =y p,(de dy) (28)
vtoc JR™ x R™

< lim inf d(p*~V, p,)?,

for each fixed R < oo. On the other hand, using the monotone convergence theorem, we

deduce that

. 0

IN

/ |z — y|? p(dx dy)

= lim nr(2) nr(y) |v — y|* p(dz dy)
Too JR™ x R™

which combined with (?7?) yields (?77?).

To conclude the proof of the proposition we establish that the functional (??) has at
most one minimizer. This follows from the convexity of K and the strict convexity of (?7).
The strict convexity of (??) follows from the strict convexity of S, the linearity of E, and

the (obvious) convexity over K of the functional p — d(p*~Y, p)2. O

REMARK. One of the referees has communicated to us the following simple estimate that
could be used in place of (14) (15) in the previous and subsequent analysis: For any 2 C IR"
(in particular, for Q = IR" — Bg) and for all p € K there holds

@ 1
/|min{plogp,0}|dm§0/e’% d.r—i—eM(p)—l——/pd.r, (29)
Q Ja de Ja

for any ¢ > 0. To obtain the inequality (??), select C' > 0 such that for all z € [0,1],
we have z|logz| < Cy/z. Then, defining the sets Qy = QN {p < exp(—|z|)} and Q; =
QN {exp(—|z]) < p <1}, we have

[ 1min{plogp.0}de = [ pl(ogp)-|de+ [ pllogp)-|da
0 1

< C’/e*%d.r—l-/ |z|pdx .
Jo Jo

13



The desired result (?7) then follows from the inequality |z| < €|z|* + 1/(4¢), for € > 0.

5 Convergence to the solution of the Fokker-Planck
equation

We come now to our main result. We shall demonstrate that an appropriate interpolation
of the solution to the scheme (?7) converges to the unique solution of the Fokker-Planck

equation. Specifically, the convergence result that we will prove here is:

THEOREM. Let p° € K satisfy F(p°) < oo, and for given h > 0, let {pgk)}kelv be the
solution of (7). Define the interpolation pp: (0,00)xIR" — [0,00) by

on(t) = pgk) for telkh,(k+1)h) and k€ INU{0}
Then as h | 0,
pn(t) — p(t) weakly in L'(IR™) for all t € (0,00), (30)

where p € C*°((0,00)xIR"™) is the unique solution of

% = div(pVV¥) + 8 'Ap, (31)
with initial condition
p(t) — p° strongly in L'(IR") for t]0 (32)
and
M(p), E(p) € L*((0,T)) forall T <oo. (33)

REMARK. A finer analysis reveals that

pn — p strongly in L'((0, T)xIR") for all T < co.

PROOF OF THE THEOREM

14



The proof basically follows along the lines of [?, Proposition 2, Theorem 3]. The crucial
step is to recognize that the first variation of (??) with respect to the independent variables
indeed yields a time discrete scheme for (?7), as will now be demonstrated. For notational
convenience only, we shall set § = 1 from here on in. As will be evident from the ensuing
arguments, our proof works for any positive (. In fact, it is not difficult to see that, with
appropriate modifications to the scheme (?7), we can establish an analogous convergence
result for time dependent f3.

Let a smooth vector field with bounded support, £ € C§°(IR", IR"), be given, and define

the corresponding flux {®,},cr, by
0, P, = £od, forallT € IR and &y = id.

For any 7 € IR, let the measure p,(y)dy be the push forward of p*)(y) dy under ®,. This

means that
[ o) cwrdy = [ pP() (@) dy for all ¢ € CHR™). (34)
As @, is invertible, (?7?) is equivalent to the following relation for the densities:
det V&, p, o ®, = pk) (35)
By (?7), we have for each 7 > 0

(3D + hF () — (3% V.09 + F (™)) > 0, (36)

3=

which we now investigate in the limit 7 | 0. Because ¥ is nonnegative, equation (?7) also

holds for ( =V, i.e.,

This yields

15



Observe that the difference quotient under the integral converges uniformly to VU (y)-£(y),

hence implying that

LBy = [ TU@)Ew) oY () dy. (37)

Next, we calculate == [S(p,)],_,. Invoking an appropriate approximation argument (for

T=

instance approximating log by some function that is bounded below), we obtain

| pr(y) Log(p, (1)) dy

?7?
S M) log(o (@ (1) dy
(7?7 k) PP (y)
Therefore, we have
L(S(er) -~ SG™)) =~ [ p¥(y) L log(det VO, (y)) dy.

Now using

et Ve, (y)]r=o = divE(y),

together with the fact that ®; = id, we see that the difference quotient under the integral

converges uniformly to div€, hence implying that

&S0y = [ AV dive dy. (38)

Now, let p be optimal in the definition of d(p*~1, p!))? (see Section 3). The formula

| Caypldedy) = [ () pldrdy) .C € CYR"xR)
R"XR JR"XR

then defines a p, € P(p(k’l), p-). Consequently, there holds
Lo ()~ a” — §ly - 2*) pldady)

16



which implies that

limisoup% (% d(p(k—l),pT)Z o %d(p(kfl),p(k)y)
< [ e pldedy). (39)
JR" X R™

We now infer from (??), (??), (??7), and (??) (and the symmetry in £ — —£) that

[ o)€@ pldedy) + b [ (Vg dive) o9 dy = 0
R" xR R

(40)
for all € € C3°(IR", IR") .
Observe that because p € P(p(k’l), p(k)), there holds
/n(p('“) —p* ) ¢dy - /ann(y — )-V¢(y) p(dz dy)‘
= | (€)= @) + (= ) V) pldady)
< Ssup W [y o pldedy)
R™ JR"™ x R™
= b op VLA, 07,
for all ¢ € C§°(IR"). Choosing £ = V( in (?77) then gives
A 50 (V¢ - A 4} dy
' (41)

sup| V2| £ d(p" 0, pM)? for all ¢ € G (R").

We wish now to pass to the limit A | 0. In order to do so we will first establish the
following a priori estimates: For any T' < oo, there exists a constant C' < oo such that for

all N € IN and all h € [0,1] with N h < T, there holds

M) < C, (42)
/R” max{p%N) log p%N), 0}dx < C, (43)
E(p) < C, (44)
Sl AP < O (45)
k=1

17



Let us verify that the estimate (??) holds. Since pglkfl) is admissible in the variational

principle (??), we have that
k—1)  (k k
Ld(ph Y o) + hF(pY) < hF(pf ),
which may be summed over k to give

Z% Lo+ Pl < ). (46)

As in the Proposition in Section 3, we must confront the technical difficulty that F' is not

bounded below. The inequality (??) is established via the following calculations:

M(piM) 2d(p°, p")? + 2 M(p°)

77
<
N
< 2N Y d(p V) + 2M(p)
(7?7
<

AhN (F(°) = F(pi)) + 2M(p")
AT (F(P) +C (M) +1)7) + 2M ("),

which clearly gives (??7). To obtain the second line of the above display, we have made use
of the triangle inequality for the Wasserstein metric (see equation (??)) and the Cauchy
Schwarz inequality. The estimates (?7?), (??), and (??) now follow readily from the bounds

(??) and (?7), the estimate (?7?), and the inequality (?7), as follows:

/anax{pﬁzm logp, 0} dz < S(pf) +/ ‘min{pf" log p}"’, 0}| d

7
<" S + oMMy 1)

< Fp") + cM(p) +1)
*?)
< F(p) + C(M(p") + 1)
Ep™) = F@") — S
(*?) (N) (V) o
< F(p, ') + C(M(p, " )+1)



Y ey e G 0 )
Sd(py Vo) < 2m (F(°) = F(p)
(77

< 20 (F() + C(M(p") +1)%) |

Now, owing to the estimates (?7) and (??), we may conclude that there exists a measur-

able p(t, ) such that, after extraction of a subsequence,
pn — p weakly in L'((0, T)xIR") for all T < oo. (47)

A straightforward analysis reveals that (?7), (?7) and (??) guarantee that

p(t) € K forae.t e (0,00),
(48)
M(p), E(p) € L>((0,T7)) forall T < co.
Let us now improve upon the convergence in (??) by showing that (??) holds. For a given

finite time horizon T" < oo, there exists a constant C' < oo such that for all N, N’ € IN and

all h € [0,1] with Nh <T,and N'h < T, we have
d(p™, piV)? < CIN"h— Nhl.

This result is obtained from (??) by use of the triangle inequality (??) for d and the Cauchy
Schwarz inequality. Furthermore, for all p,p’ € K ,p € P(p,p'), and ¢ € C{°(IR"), there
holds

= [ (@)~ Cw) pdndy)

< sup|V(| lz — y| p(dzx dy)
R™ R"xR™

[ i~ [ Cpaa
R" R"

< sup V¢ ([ e yPptdudy))
R™ R"xR"

so that from the definition of d we obtain

[ crdr— [ Cpia
R" JR™

< sup|V¢|d(p, p') for p,p' € K and ¢ € C°(IR").
Rn
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Hence, it follows that

[ Conttyde = [ Contt) do

for all ¢,#' € (0,T) and ¢ € C§°(IR") .

< Csup|Ve| (|t =t/ +h)?
B (49)

Let t € (0,7) and ¢ € C§°(IR") be given, and notice that for any § > 0, we have

/RnCph(t) dv — /RnCp(t) dx

t+d
< Con(t) de — 55 Cpn(7) dz dr
E" Jt—5 JR"
N a t+0
+ 2_‘5/1“75 Rn(ﬂh()dfrdT—Q—é -, Rn(p(T)dxdT

t+d
+ 5[ crydear = [ ¢t

According to (?7?), the first term on the right hand side of this equation is bounded by

sup V(] (6 + h)%

and owing to (?7), the second term converges to zero as h | 0 for any fixed 6 > 0. At
this point, let us remark that from the result (??) we may deduce that p is smooth on
(0,00)xIR"™. This is the conclusion of assertion a) below, which will be proved later. ;From
this smoothness property, we ascertain that the final term on the right hand side of the

above display converges to zero as ¢ | 0. Therefore, we have established that

/ Conlt) do — / Cp(t) da for all ¢ € CF(IR™). (50)
R™ JR™

However, the estimate (?7) guarantees that M (py(f)) is bounded for h | 0. Consequently,
(?7?) holds for any ( € L*>(IR"), and therefore, the convergence result (??) does indeed hold.

It now follows immediately from (??), (??) and (?7?) that p satisfies

—/ p(8iC — VUV + AC) dodt = / 2 ¢(0
(0,00)XRn (51)
for all ¢ € C§°(IRxIR").

In addition, we know that p satisfies (?7). We now show that
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a) any solution of (?7) is smooth on (0, 00)xIR" and satisfies equation (?7?);
b) any solution of (??) for which (??) holds satisfies the initial condition (?7?);
c) there is at most one smooth solution of (??) which satisfies (??) and (?7?).

The corresponding arguments are, for the most part, fairly classical.

Let us sketch the proof of the regularity part a). First observe that (??7) implies
/ p(t)) C(th) da — / p (8¢ — VUV + AC) du dt
R" (to,tl)XRn

= | olto) C(ts) dr . (52)
for all ( € C3°(IRxIR") and a. e. 0 <ty <t;.

We fix a function n € C§°(IR") to serve as a cutoff in the spatial variables. It then follows
directly from (??) that for each ( € C°(IRxIR") and for almost every 0 < #, < #;, there
holds

[onottoctyde = [ np(0C+AC) dedt
R™ (to,tl)an
= S (An — VU-Vn) (drdt
. (to,tl) R (53)
+ / p (2V1 — V) -V da dt
(to,tl)XR"
+ [ motto) C(to) do
Notice that for fixed (¢1,z1) € (0, 00)xR" and for each 6 > 0, the function
G(t,z) = Git1+60—t,x —1q)
is an admissible test function in (??). Here G is the heat kernel:
G(t,z) = t 5 g(t 7)) with g(z) = (2m) % exp(—1|a]?). (54)
Inserting (5 into (??) and taking the limit § | 0, we obtain the equation
t1 \
() = [ [p(t) (An— VO-Tn)] « Glty — 1) dt
0
t1
+ / (1) 2V — V)] « VG(t — 1) dt (55)
to
+ (pn)(to) x G(t, —to) forae 0<ty<t,
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where x denotes convolution in the x—variables. From (?7), we extract the following estimate

in the LP—norm

lomEls = [ llott) (An— VEI0) 13 [Glts — 1)1

t1
+ [l @V - VO VG~ D)0 at
0

+

||(p’l7)(tg)||L1 ||G(t1 — tU)HLP for a.e. 0 S t() < tl .

Now observe that
1_1yn
G = %% gl
ln_ntl
IVG#)||r» = tr2" > |[Vyllrs,

which leads to

[Gom () e

ti=to 1 |yn
= ess sup o(t) (A= VO-Vn) [0 [ GV g dt

te(to,tl)

t1—to n
ess sup [lo(t) @V V)| [ 5E Vgt
JO

te(to,tl)
+ [(pn)(to) |1 ||G(t1 — to) ||z for ae. 0 <ty < ;.

For p < 5 the t-integrals are finite, from which we deduce that

p € L ((0,00)xIR").

loc

We now appeal to the L estimates [?, §3,(3.1) and (3.2)] for the potentials in (??) to
conclude by the usual bootstrap arguments that any derivative of p is in L} ((0,00)xR"),

loc

from which we obtain the stated regularity condition (a).

We now prove assertion b). Using (??) with ¢y = 0, and proceeding as above, we obtain

[(pn)(t1) = (p°n) = G(t1)]| 1
= ess sup p(t) (An— VO-In) [ [ gl at

te(0,t1)

t1 1
+ess sup [lp(t) 2V g V)| [ H|Vglade forall >0
J0

te(0,61)
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and therefore,

(pm)(t) — (0°n) xG(t) — 0 in L'(R") fort]0.
On the other hand, we have
(P"n) xG(t) — p’n in L'(R") fort |0,
which leads to
(pm)(t) — p°n in L'(R") fort 0.

;From this result, together with the boundedness of {M(p(t))}+0, we infer that (??) is

satisfied.

Finally, we prove the uniqueness result c¢) using a well-known method from the theory of
elliptic—parabolic equations (see for instance [?]). Let p1, p» be solutions of (??) which are

smooth on (0, 00)x IR" and satisfy (??), (??). Their difference p satisfies the equation

o
Eﬁgfmvmvm+tm]:0

We multiply this equation for p by ¢5(p), where the family {¢s}s,0 is a convex and smooth

approximation to the modulus function. For example, we could take
0s(z) = (22 +06%)7.
This procedure yields the inequality

A[ds(p)] — div[gs(p) VI + V]gs(p)]]
= —¢5(p) Vo> + (¢5(p) p— ds(p)) AW
< (¢5(p) p— ds(p)) AT

which we then multiply by a nonnegative spatial cutoff function n € C§°(IR") and integrate
over IR" to obtain

S ooy nds

[, oslp0) (V- = A do

S,anump—¢am>A¢nm,
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Integrating over (0,%) for given ¢t € (0,00), we obtain with help of (??)

/n ds(p(t)) ndx  + 6s(p(1)) (VU-Vn — An) da dt
R (0,t) X R

< /(U’t)xm (85(p) p— ¢5(p)) AV ndzdt.

Letting 0 tend to zero yields

[ o) nde + (O] (VE-Vy — A dzdt < 0. (56)
JR" (0,t) X R™

According to (??) and (?7?), p and pVV are integrable on the entire IR". Hence, if we replace
nin (?7?) by a function ng satisfying

nr(T) = 771(%) . where ni(z) =1 for [z| <1, m(z) =0 for [z > 2,

and let R tend to infinity, we obtain [g. |p(f)| dz = 0. This produces the desired uniqueness

result. O
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