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DedicationDedicated to the memory of Richard Du�n.AbstractThe Fokker{Planck equation, or forward Kolmogorov equation, describes the evolu-tion of the probability density for a stochastic process associated with an Ito stochasticdi�erential equation. It pertains to a wide variety of time{dependent systems in whichrandomness plays a role. In this paper, we are concerned with Fokker{Planck equationsfor which the drift term is given by the gradient of a potential. For a broad class ofpotentials, we construct a time{discrete, iterative variational scheme whose solutionsconverge to the solution of the Fokker{Planck equation. The major novelty of thisiterative scheme is that the time step is governed by the Wasserstein metric on prob-ability measures. This formulation enables us to reveal an appealing, and previouslyunexplored, relationship between the Fokker{Planck equation and the associated freeenergy functional. Namely, we demonstrate that the dynamics may be regarded as agradient 
ux, or a steepest descent, for the free energy with respect to the Wassersteinmetric.Keywords: Fokker-Planck equation, steepest descent, free energy, Wassersteinmetric.AMS subject classi�cations: 35A15, 35K15, 35Q99, 60J60.
1 Introduction and overviewThe Fokker-Planck equation plays a central role in statistical physics and in the study of
uctuations in physical and biological systems [?, ?, ?]. It is intimately connected with thetheory of stochastic di�erential equations: A (normalized) solution to a given Fokker-Planckequation represents the probability density for the position (or velocity) of a particle whose2



motion is described by a corresponding Ito stochastic di�erential equation (or Langevinequation). We shall restrict our attention in this paper to the case where the drift coe�cientis a gradient. The simplest relevant physical setting is that of a particle undergoing di�usionin a potential �eld [?].It is known that, under certain conditions on the drift and di�usion coe�cients, thestationary solution of a Fokker{Planck equation of the type that we consider here satis�es avariational principle. It minimizes a certain convex free energy functional over an appropriateadmissible class of probability densities [?]. This free energy functional satis�es an H{theorem: It decreases in time for any solution of the Fokker-Planck equation [?]. In this work,we shall establish a deeper, and apparently previously unexplored, connection between thefree energy functional and the Fokker{Planck dynamics. Speci�cally, we shall demonstratethat the solution of the Fokker{Planck equation follows, at each instant in time, the directionof steepest descent of the associated free energy functional.The notion of a steepest descent, or a gradient 
ux, makes sense only in context with anappropriate metric. We shall show that the required metric in the case of the Fokker{Planckequation is the Wasserstein metric (de�ned in Section 3) on probability densities. As faras we know, the Wasserstein metric cannot be written as an induced metric for a metrictensor (the space of probability measures with the Wasserstein metric is not a Riemannianmanifold). Thus, in order to give meaning to the assertion that the Fokker{Planck equationmay be regarded as a steepest descent, or gradient 
ux, of the free energy functional withrespect to this metric, we switch to a discrete time formulation. We develop a discrete,iterative variational scheme whose solutions converge, in a sense to be made precise below,to the solution of the Fokker-Planck equation. The time-step in this iterative scheme isassociated with the Wasserstein metric. For a di�erent view on the use of implicit schemesfor measures, see [?, ?].For the purpose of comparison, let us consider the classical di�usion (or heat) equation@�(t; x)@t = ��(t; x) ; t 2 (0;1) ; x 2 IRn ;which is the Fokker{Planck equation associated with a standard n{dimensional Brownian3



motion. It is well{known (see, for example, [?, ?]) that this equation is the gradient 
uxof the Dirichlet integral 12 RIRn jr�j2 dx with respect to the L2(IRn) metric. The classicaldiscretization is given by the schemeDetermine �(k) that minimizes12 k�(k�1) � �k2L2(IRn) + h2 ZIRnjr�j2 dx ; 9>>>=>>>;over an appropriate class of densities �. Here, h is the time step size. On the other hand,we derive as a special case of our results below that the schemeDetermine �(k) that minimizes12 d(�(k�1); �)2 + h ZIRn� log � dxover all � 2 K ;
9>>>>>>>=>>>>>>>; (1)where K is the set of all probability densities on IRn having �nite second moments, is also adiscretization of the di�usion equation when d is the Wasserstein metric. In particular, thisallows us to regard the di�usion equation as a steepest descent of the functional RIRn � log � dxwith respect to the Wasserstein metric. This reveals a novel link between the di�usionequation and the Gibbs{Boltzmann entropy (� RIRn � log � dx) of the density �. Furthermore,this formulation allows us to attach a precise interpretation to the conventional notion thatdi�usion arises from the tendency of the system to maximize entropy.The connection between the Wasserstein metric and dynamical problems involving dissi-pation or di�usion (such as strongly overdamped 
uid 
ow or nonlinear di�usion equations)seems to have �rst been recognized by Otto in [?]. The results in [?] together with our re-cent research on variational principles of entropy and free energy type for measures [?, ?, ?],provide the impetus for the present investigation. The work in [?] was motivated by thedesire to model and characterize metastability and hysteresis in physical systems. We planto explore in subsequent research the relevance of the developments in the present paper tothe study of such phenomena. Some preliminary results in this direction may be found in[?, ?]. 4



The paper is organized as follows. In Section (2), we �rst introduce the Fokker{Planckequation and brie
y discuss its relationship to stochastic di�erential equations. We then givethe precise form of the associated stationary solution and of the free energy functional thatthis density minimizes. In Section (3), the Wasserstein metric is de�ned, and a brief reviewof its properties and interpretations is given. The iterative variational scheme is formulatedin Section (4), and the existence and uniqueness of its solutions are established. The mainresult of this paper { namely the convergence of solutions of this scheme (after interpolation)to the solution of the Fokker-Planck equation { is the topic of Section (5). There, we stateand prove the relevant convergence theorem.2 The Fokker{Planck equation, stationary solutions,and the free energy functionalWe are concerned with Fokker-Planck equations having the form@�@t = div (r	(x)�) + ��1�� ; �(x; 0) = �0(x); (2)where the potential 	(x) : IRn ! [0;1) is a smooth function, � > 0 is a given constant,and �0(x) is a probability density on IRn. The solution �(t; x) of (??) must, therefore, be aprobability density on IRn for almost every �xed time t. That is, �(t; x) � 0 for almost every(t; x) 2 (0;1)� IRn, and RIRn �(t; x) dx = 1 for almost every t 2 (0;1).It is well known that the Fokker-Planck equation (??) is inherently related to the Itostochastic di�erential equation [?, ?, ?]dX(t) = �r	(X(t))dt+q2��1 dW (t) ; X(0) = X0 : (3)Here,W (t) is a standard n{dimensional Wiener process, and X0 is an n{dimensional randomvector with probability density �0. Equation (??) is a model for the motion of a particleundergoing di�usion in the potential �eld 	. X(t) 2 IRn then represents the position ofthe particle, and the positive parameter � is proportional to the inverse temperature. This5



stochastic di�erential equation arises, for example, as the Smoluchowski{Kramers approxi-mation to the Langevin equation for the motion of a chemically bound particle [?, ?, ?]. Inthat case, the function 	 describes the chemical bonding forces, and the term p2��1 dW (t)represents white noise forces resulting from molecular collisions [?]. The solution �(t; x) ofthe Fokker-Planck equation (??) furnishes the probability density at time t for �nding theparticle at position x.If the potential 	 satis�es appropriate growth conditions, then there is a unique stationarysolution �s(x) of the Fokker{Planck equation, and it takes the form of the Gibbs distribution[?, ?] �s(x) = Z�1 exp(��	(x)); (4)where the partition function Z is given by the expressionZ = ZIRn exp(��	(x)) dx:Note that, in order for equation (??) to make sense, 	 must grow rapidly enough to ensurethat Z is �nite. The probability measure �s(x) dx, when it exists, is the unique invariantmeasure for the Markov process X(t) de�ned by the stochastic di�erential equation (??).It is readily veri�ed (see, for example, [?]) that the Gibbs distribution �s satis�es avariational principle { it minimizes over all probability densities on IRn the free energyfunctional F (�) = E(�) + ��1S(�); (5)where E(�) := ZIRn 	� dx (6)plays the role of an energy functional, andS(�) := ZIRn � log � dx (7)is the negative of Gibbs-Boltzmann entropy functional.Even when the Gibbs measure is not de�ned, the free energy (??) of a density �(t; x)satisfying the Fokker{Planck equation (??) may be de�ned, provided that F (�0) is �nite.6



This free energy functional then serves as a Lyapunov function for the Fokker-Planck equa-tion: If �(t; x) satis�es (??), then F (�(t; x)) can only decrease with time [?, ?]. Thus, thefree energy functional is an H{function for the dynamics. The developments that follow willenable us to regard the Fokker-Planck dynamics as a gradient 
ux, or a steepest descent,of the free energy with respect to a particular metric on an appropriate class of probabilitymeasures. The requisite metric is the Wasserstein metric on the set of probability measureshaving �nite second moments. We now proceed to de�ne this metric.3 The Wasserstein metricThe Wasserstein distance of order two, d(�1; �2), between two (Borel) probability measures�1 and �2 on IRn is de�ned by the formulad(�1; �2)2 = infp2P(�1;�2) ZIRn�IRn jx� yj2 p(dxdy); (8)where P(�1; �2) is the set of all probability measures on IRn� IRn with �rst marginal �1 andsecond marginal �2, and the symbol j � j denotes the usual Euclidean norm on IRn. Moreprecisely, a probability measure p is in P(�1; �2) if and only if for each Borel subset A � IRnthere holds p(A� IRn) = �1(A) ; p(IRn � A) = �2(A):Wasserstein distances of order q with q di�erent from 2 may be analogously de�ned [?].Since no confusion should arise in doing so, we shall refer to d in the sequel as simply theWasserstein distance.It is well known that d de�nes a metric on the set of probability measures � on Rnhaving �nite second moments: RIRn jxj2�(dx) <1 [?, ?]. In particular, d satis�es the triangleinequality on this set. That is, if �1; �2, and �3 are probability measures on IRn with �nitesecond moments, then d(�1; �3) � d(�1; �2) + d(�2; �3) : (9)We shall make use of this property at several points later on.7



We note that the Wasserstein metric may be equivalently de�ned by [?]d(�1; �2)2 = infEjX � Y j2 ; (10)where E(U) denotes the expectation of the random variable U , and the in�mum is takenover all random variables X and Y such that X has distribution �1 and Y has distribution�2. In other words, the in�mum is over all possible couplings of the random variablesX and Y . Convergence in the metric d is equivalent to the usual weak convergence plusconvergence of second moments. This latter assertion may be demonstrated by appealingto the representation (??) and applying the well{known Skorohod theorem from probabilitytheory (see Theorem 29.6 of [?]). We omit the details.The variational problem (??) is an example of a Monge{Kantorovich mass transferenceproblem with the particular cost function c(x; y) = jx� yj2 [?]. In that context, an in�mizerp� 2 P(�1; �2) is referred to as an optimal transference plan. When �1 and �2 have �nitesecond moments, the existence of such a p� for (??) is readily veri�ed by a simple adaptationof our arguments in Section 4. For a probabilistic proof that the in�mum in (??) is attainedwhen �1 and �2 have �nite second moments, see [?]. Brenier [?] has established the existenceof a one{to{one optimal transference plan in the case that the measures �1 and �2 havebounded support and are absolutely continuous with respect to Lebesgue measure. Ca�arelli[?] and Gangbo and McCann [?, ?] have recently extended Brenier's results to more generalcost functions c and to cases in which the measures do not have bounded support.If the measures �1 and �2 are absolutely continuous with respect to the Lebesgue measure,with densities �1 and �2, respectively, we will write P(�1; �2) for the set of probabilitymeasures having �rst marginal �1 and second marginal �2. Correspondingly, we will denoteby d(�1; �2) the Wasserstein distance between �1 and �2. This is the situation that we willbe concerned with in the sequel.
8



4 The discrete schemeWe shall now construct a time{discrete scheme that is designed to converge in an appropriatesense (to be made precise in the next section) to a solution of the Fokker-Planck equation.The scheme that we shall describe was motivated by a similar scheme developed by Ottoin an investigation of pattern formation in magnetic 
uids [?]. We shall make the followingassumptions concerning the potential 	 introduced in Section (2):	 2 C1(IRn);	(x) � 0 for all x 2 IRn ; (11)jr	(x)j � C (	(x) + 1) for all x 2 IRn ; (12)for some constant C < 1. Notice that our assumptions on 	 allow for cases in whichRIRn exp(��	) dx is not de�ned, so that the stationary density �s given by (??) does notexist. These assumptions allow us to treat a wide class of Fokker{Planck equations. Inparticular, the classical di�usion equation @�@t = ��1��, for which 	 � const., falls into thiscategory. We also introduce the set K of admissible probability densities:K := n �: IRn ! [0;1) measurable ��� ZIRn �(x) dx = 1 ;M(�) <1 o ;where M(�) = ZIRn jxj2 �(x) dx :With these conventions in hand, we now formulate the iterative discrete scheme:Determine �(k) that minimizes12 d(�(k�1); �)2 + hF (�)over all � 2 K :
9>>>>>>>=>>>>>>>; (13)Here we use the notation �(0) = �0. The scheme (??) is the obvious generalization of thescheme (??) set forth in the Introduction for the di�usion equation. We shall now establishexistence and uniqueness of the solution to (??).9



Proposition. Given �0 2 K, there exists a unique solution of the scheme (??).ProofLet us �rst demonstrate that S is well{de�ned as a functional on K with values in(�1;+1] and that, in addition, there exist � < 1 and C < 1 depending only on n suchthat S(�) � �C (M(�) + 1)� for all � 2 K : (14)Actually, we shall show that (??) is valid for any � 2 ( nn+2 ; 1). For future reference, we provea somewhat �ner estimate. Namely, we demonstrate that there exists a C <1, dependingonly on n and �, such that for all R � 0, and for each � 2 K, there holdsZIRn�BR jminf� log �; 0gj dx � C � 1R2 + 1� (2+n)��n2 (M(�) + 1)� ; (15)where BR denotes the ball of radius R centered at the origin in IRn. Indeed, for � < 1 thereholds jminfz log z; 0gj � C z� for all z � 0:Hence by H�older's inequality, we obtainZIRn�BR jminf� log �; 0gj dx� C ZIRn�BR �� dx� C 0@ZIRn�BR  1jxj2 + 1! �1�� dx1A1�� (M(�) + 1)� :On the other hand, for �1�� > n2 , we haveZIRn�BR  1jxj2 + 1! �1�� dx � C � 1R2 + 1� �1���n2 :Let us now prove that for given �(k�1) 2 K, there exists a minimizer � 2 K of thefunctional K 3 � 7! 12 d(�(k�1); �)2 + hF (�) : (16)10



Observe that S is not bounded below on K and hence F is not bounded below on K either.Nevertheless, using the inequalityM(�1) � 2M(�0) + 2 d(�0; �1)2 for all �0; �1 2 K (17)(which immediately follows from the inequality jyj2 � 2jxj2+2jx�yj2 and from the de�nitionof d) together with (??) we obtain12 d(�(k�1); �)2 + hF (�)(??)� 14 M(�) � 12 M(�(k�1)) + hS(�) (18)(??)� 14 M(�) � C (M(�) + 1)� � 12 M(�(k�1)) for all � 2 K ;which ensures that (??) is bounded below. Now, let f��g be a minimizing sequence for (??).Obviously, we have that fS(��)g� is bounded above ; (19)and according to (??), fM(��)g� is bounded : (20)The latter result, together with (??) implies that�ZIRn jminf�� log ��; 0gj dx�� is bounded ;which combined with (??) yields that�ZIRn maxf�� log ��; 0g dx�� is bounded :As z 7! maxfz log z; 0g; z 2 [0;1), has superlinear growth, this result, in conjunction with(??) guarantees the existence of a �(k) 2 K such that (at least for a subsequence)�� w* �(k) in L1(IRn) : (21)Let us now show that S(�(k)) � lim inf�"1 S(��) : (22)11



As [0;1) 3 z 7! z log z is convex and [0;1) 3 z 7! maxfz log z; 0g is convex and nonnega-tive, (??) implies that for any R <1,ZBR �(k) log �(k) dx � lim inf�"1 ZBR �� log �� dx ; (23)ZIRn�BR maxf�(k) log �(k); 0g dx � lim inf�"1 ZIRn�BR maxf�� log �� ; 0g dx: (24)On the other hand we have according to (??) and (??)limR"1 sup�2IN ZIRn�BR jminf�� log ��; 0gj dx = 0 : (25)Now observe that for any R <1, there holdsS(�(k)) � ZBR �(k) log �(k) dx + ZIRn�BR maxf�(k) log �(k); 0g dx :which together with (??),(??) and (??) yields (??).It remains for us to show thatE(�(k)) � lim inf�"1 E(��) ; (26)d(�(k�1); �(k))2 � lim inf�"1 d(�(k�1); ��)2 : (27)Equation (??) follows immediately from (??) and Fatou's Lemma. As for (??), we choosep� 2 P(�(k�1); ��) satisfyingZIRn�IRn jx� yj2 p�(dx dy) � d(�(k�1); ��)2 + 1�By (??) the sequence of probability measures f�� dxg�"1 is tight, or relatively compactwith respect to the usual weak convergence in the space of probability measures on IRn(i.e., convergence tested against bounded continuous functions) [?]. This, together withthe fact that the density �(k�1) has �nite second moment, guarantees that the sequencefp�g�"1 of probability measures on IRn � IRn is tight. Hence, there is a subsequence offp�g�"1 that converges weakly to some probability measure p. From (??) we deduce thatp 2 P(�(k�1); �(k)). We now could invoke the Skorohod Theorem [?] and Fatou's Lemma to12



infer (??) from this weak convergence, but we prefer here to give a more analytic proof. ForR <1 let us select a continuous function �R: IRn ! [0; 1] such that�R = 1 inside of BR and �R = 0 outside of B2R :We then have ZIRn�IRn�R(x) �R(y) jx� yj2 p(dx dy)= lim�"1 ZIRn�IRn�R(x) �R(y) jx� yj2 p�(dx dy)� lim inf�"1 d(�(k�1); ��)2 ;
9>>>>>>>>=>>>>>>>>; (28)for each �xed R < 1. On the other hand, using the monotone convergence theorem, wededuce that d(�(k�1); �(k))2 � ZIRn�IRn jx� yj2 p(dx dy)= limR"1 ZIRn�IRn �R(x) �R(y) jx� yj2 p(dx dy) ;which combined with (??) yields (??).To conclude the proof of the proposition we establish that the functional (??) has atmost one minimizer. This follows from the convexity of K and the strict convexity of (??).The strict convexity of (??) follows from the strict convexity of S, the linearity of E, andthe (obvious) convexity over K of the functional � 7! d(�(k�1); �)2. 2Remark. One of the referees has communicated to us the following simple estimate thatcould be used in place of (14){(15) in the previous and subsequent analysis: For any 
 � IRn(in particular, for 
 = IRn � BR) and for all � 2 K there holdsZ
 jminf� log �; 0gj dx � C Z
 e� jxj2 dx + �M(�) + 14� Z
 � dx ; (29)for any � > 0. To obtain the inequality (??), select C > 0 such that for all z 2 [0; 1],we have zj log zj � Cpz. Then, de�ning the sets 
0 = 
 \ f� � exp(�jxj)g and 
1 =
 \ fexp(�jxj) < � � 1g, we haveZ
 jminf� log �; 0gj dx = Z
0 �j(log �)�j dx+ Z
1 �j(log �)�j dx� C Z
 e� jxj2 dx + Z
 jxj� dx :13



The desired result (??) then follows from the inequality jxj � �jxj2 + 1=(4�); for � > 0.5 Convergence to the solution of the Fokker-PlanckequationWe come now to our main result. We shall demonstrate that an appropriate interpolationof the solution to the scheme (??) converges to the unique solution of the Fokker-Planckequation. Speci�cally, the convergence result that we will prove here is:Theorem. Let �0 2 K satisfy F (�0) < 1, and for given h > 0, let f�(k)h gk2IN be thesolution of (??). De�ne the interpolation �h: (0;1)�IRn ! [0;1) by�h(t) = �(k)h for t 2 [k h; (k+1) h) and k 2 IN [ f0gThen as h # 0, �h(t) * �(t) weakly in L1(IRn) for all t 2 (0;1) ; (30)where � 2 C1((0;1)�IRn) is the unique solution of@�@t = div(�r	) + ��1�� ; (31)with initial condition �(t) ! �0 strongly in L1(IRn) for t # 0 (32)and M(�); E(�) 2 L1((0; T )) for all T <1 : (33)Remark. A �ner analysis reveals that�h ! � strongly in L1((0; T )�IRn) for all T <1 :Proof of the theorem 14



The proof basically follows along the lines of [?, Proposition 2, Theorem 3]. The crucialstep is to recognize that the �rst variation of (??) with respect to the independent variablesindeed yields a time{discrete scheme for (??), as will now be demonstrated. For notationalconvenience only, we shall set � � 1 from here on in. As will be evident from the ensuingarguments, our proof works for any positive �. In fact, it is not di�cult to see that, withappropriate modi�cations to the scheme (??), we can establish an analogous convergenceresult for time{dependent �.Let a smooth vector �eld with bounded support, � 2 C10 (IRn; IRn), be given, and de�nethe corresponding 
ux f��g�2IR, by@� �� = � � �� for all � 2 IR and �0 = id :For any � 2 IR, let the measure �� (y) dy be the push forward of �(k)(y) dy under �� . Thismeans that ZIRn �� (y) �(y) dy = ZIRn �(k)(y) �(��(y)) dy for all � 2 C00(IRn) : (34)As �� is invertible, (??) is equivalent to the following relation for the densities:detr�� �� � �� = �(k) : (35)By (??), we have for each � > 01� ��12 d(�(k�1); �� )2 + hF (�� )�� �12 d(�(k�1); �(k))2 + hF (�(k))�� � 0; (36)which we now investigate in the limit � # 0. Because 	 is nonnegative, equation (??) alsoholds for � = 	, i.e., ZIRn �� (y)	(y) dy = ZIRn �(k)(y)	(��(y)) dy :This yields 1� �E(�� )� E(�(k))� = ZIRn 1� (	(�� (y))� 	(y)) �(k)(y) dy :15



Observe that the di�erence quotient under the integral converges uniformly to r	(y)��(y),hence implying that dd � [E(�� )]�=0 = ZIRn r	(y)��(y) �(k)(y) dy : (37)Next, we calculate dd � [S(�� )]�=0. Invoking an appropriate approximation argument (forinstance approximating log by some function that is bounded below), we obtainZIRn �� (y) log(�� (y)) dy(??)= ZIRn �(k)(y) log(�� (�� (y))) dy(??)= ZIRn �(k)(y) log( �(k)(y)detr�� (y)) dy :Therefore, we have1� �S(�� )� S(�(k))� = � ZIRn �(k)(y) 1� log(detr�� (y)) dy :Now using dd� [detr�� (y)]�=0 = div�(y) ;together with the fact that �0 = id, we see that the di�erence quotient under the integralconverges uniformly to div�, hence implying thatdd � [S(�� )]�=0 = � ZIRn �(k) div� dy : (38)Now, let p be optimal in the de�nition of d(�(k�1); �(k))2 (see Section 3). The formulaZIRn�IRn �(x; y) p�(dx dy) = ZIRn�IRn �(x;�� (y)) p(dx dy) ; � 2 C00 (IRn�IRn)then de�nes a p� 2 P(�(k�1); �� ). Consequently, there holds1� �12 d(�(k�1); �� )2 � 12 d(�(k�1); �(k))2�� ZIRn�IRn 1� �12 j�� (y)� xj2 � 12 jy � xj2� p(dx dy) ;
16



which implies that lim sup�#0 1� �12 d(�(k�1); �� )2 � 12 d(�(k�1); �(k))2�� ZIRn�IRn(y � x)��(y) p(dx dy) : (39)We now infer from (??), (??), (??), and (??) (and the symmetry in � ! ��) thatZIRn�IRn(y � x)��(y) p(dx dy) + h ZIRn (r	�� � div�) �(k) dy = 0for all � 2 C10 (IRn; IRn) : 9>>=>>; (40)Observe that because p 2 P(�(k�1); �(k)), there holds����ZIRn(�(k) � �(k�1)) � dy � ZIRn�IRn(y � x)�r�(y) p(dx dy)����= ����ZIRn�IRn ��(y)� �(x) + (x� y)�r�(y)� p(dx dy)����� 12 supIRn jr2�j ZIRn�IRn jy � xj2 p(dx dy)= 12 supIRn jr2�j d(�(k�1); �(k))2 ;for all � 2 C10 (IRn). Choosing � = r� in (??) then gives����ZIRn n 1h (�(k) � �(k�1)) � + (r	�r� ���) �(k)o dy����� 12 supRn jr2�j 1h d(�(k�1); �(k))2 for all � 2 C10 (IRn) : (41)We wish now to pass to the limit h # 0. In order to do so we will �rst establish thefollowing a priori estimates: For any T < 1, there exists a constant C < 1 such that forall N 2 IN and all h 2 [0; 1] with N h � T , there holdsM(�(N)h ) � C ; (42)ZIRn maxf�(N)h log �(N)h ; 0g dx � C ; (43)E(�(N)h ) � C ; (44)NXk=1 d(�(k�1)h ; �(k)h )2 � C h : (45)17



Let us verify that the estimate (??) holds. Since �(k�1)h is admissible in the variationalprinciple (??), we have that12 d(�(k�1)h ; �(k)h )2 + hF (�(k)h ) � hF (�(k�1)h ) ;which may be summed over k to giveNXk=1 12h d(�(k�1)h ; �(k)h )2 + F (�(N)h ) � F (�0) : (46)As in the Proposition in Section 3, we must confront the technical di�culty that F is notbounded below. The inequality (??) is established via the following calculations:M(�(N)h ) (??)� 2 d(�0; �(N)h )2 + 2M(�0)� 2N NXk=1 d(�(k�1)h ; �(k)h )2 + 2M(�0)(??)� 4 hN �F (�0)� F (�(N)h )� + 2M(�0)(??)� 4T �F (�0) + C (M(�(N)h ) + 1)�� + 2M(�0) ;which clearly gives (??). To obtain the second line of the above display, we have made useof the triangle inequality for the Wasserstein metric (see equation (??)) and the Cauchy{Schwarz inequality. The estimates (??), (??), and (??) now follow readily from the bounds(??) and (??), the estimate (??), and the inequality (??), as follows:ZIRn maxf�(N)h log �(N)h ; 0g dx � S(�(N)h ) + ZIRn jminf�(N)h log �(N)h ; 0gj dx(??)� S(�(N)h ) + C (M(�(N)h ) + 1)�� F (�(N)h ) + C (M(�(N)h ) + 1)�(??)� F (�0) + C (M(�(N)h ) + 1)� ;E(�(N)h ) = F (�(N)h ) � S(�(N)h )(??)� F (�(N)h ) + C (M(�(N)h ) + 1)�(??)� F (�0) + C (M(�(N)h ) + 1)� ;18



NXk=1 d(�(k�1)h ; �(k)h )2 (??)� 2 h �F (�0) � F (�(N)h )�(??)� 2 h �F (�0) + C (M(�(N)h ) + 1)�� :Now, owing to the estimates (??) and (??), we may conclude that there exists a measur-able �(t; x) such that, after extraction of a subsequence,�h * � weakly in L1((0; T )�IRn) for all T <1 : (47)A straightforward analysis reveals that (??), (??) and (??) guarantee that�(t) 2 K for a.e. t 2 (0;1) ;M(�); E(�) 2 L1((0; T )) for all T <1 : (48)Let us now improve upon the convergence in (??) by showing that (??) holds. For a given�nite time horizon T <1, there exists a constant C <1 such that for all N;N 0 2 IN andall h 2 [0; 1] with N h � T , and N 0 h � T , we haved(�(N 0)h ; �(N)h )2 � C jN 0 h�N hj :This result is obtained from (??) by use of the triangle inequality (??) for d and the Cauchy{Schwarz inequality. Furthermore, for all �; �0 2 K ; p 2 P(�; �0), and � 2 C10 (IRn), thereholds ����ZIRn � �0 dx � ZIRn � � dx���� = ����ZIRn�IRn(�(x) � �(y)) p(dx dy)����� supIRn jr�j ZIRn�IRn jx� yj p(dx dy)� supIRn jr�j �ZIRn�IRn jx� yj2 p(dx dy)�12 ;so that from the de�nition of d we obtain����ZIRn � �0 dx � ZIRn � � dx���� � supIRn jr�j d(�; �0) for �; �0 2 K and � 2 C10 (IRn) :19



Hence, it follows that����ZIRn� �h(t0) dx � ZIRn� �h(t) dx���� � C supIRn jr�j (jt0 � tj+ h) 12for all t; t0 2 (0; T ) and � 2 C10 (IRn) : 9>>=>>; (49)Let t 2 (0; T ) and � 2 C10 (IRn) be given, and notice that for any � > 0, we have����ZIRn � �h(t) dx � ZIRn � �(t) dx����� �����ZIRn � �h(t) dx � 12 � Z t+�t�� ZIRn � �h(�) dx d� �����+ ����� 12 � Z t+�t�� ZIRn � �h(�) dx d� � 12 � Z t+�t�� ZIRn � �(�) dx d� �����+ ����� 12 � Z t+�t�� ZIRn � �(�) dx d� � ZIRn � �(t) dx����� :According to (??), the �rst term on the right hand side of this equation is bounded byC supIRn jr�j (� + h) 12 ;and owing to (??), the second term converges to zero as h # 0 for any �xed � > 0. Atthis point, let us remark that from the result (??) we may deduce that � is smooth on(0;1)�IRn. This is the conclusion of assertion a) below, which will be proved later. >Fromthis smoothness property, we ascertain that the �nal term on the right hand side of theabove display converges to zero as � # 0. Therefore, we have established thatZIRn � �h(t) dx ! ZIRn � �(t) dx for all � 2 C10 (IRn) : (50)However, the estimate (??) guarantees that M(�h(t)) is bounded for h # 0. Consequently,(??) holds for any � 2 L1(IRn), and therefore, the convergence result (??) does indeed hold.It now follows immediately from (??), (??) and (??) that � satis�es�Z(0;1)�IRn� (@t� �r	�r� +��) dx dt = ZIRn�0 �(0) dx ;for all � 2 C10 (IR�IRn) : 9>>=>>; (51)In addition, we know that � satis�es (??). We now show that20



a) any solution of (??) is smooth on (0;1)�IRn and satis�es equation (??);b) any solution of (??) for which (??) holds satis�es the initial condition (??);c) there is at most one smooth solution of (??) which satis�es (??) and (??).The corresponding arguments are, for the most part, fairly classical.Let us sketch the proof of the regularity part a). First observe that (??) impliesZIRn�(t1) �(t1) dx� Z(t0;t1)�IRn� (@t� �r	�r� +��) dx dt= ZIRn�(t0) �(t0) dx ; (52)for all � 2 C10 (IR�IRn) and a. e. 0 � t0 < t1 :We �x a function � 2 C10 (IRn) to serve as a cuto� in the spatial variables. It then followsdirectly from (??) that for each � 2 C10 (IR�IRn) and for almost every 0 � t0 < t1, thereholds ZIRn� �(t1) �(t1) dx � Z(t0;t1)�IRn� � (@t� +��) dx dt= Z(t0;t1)�IRn� (�� �r	�r�) � dx dt+ Z(t0;t1)�IRn� (2r� � �r	) �r� dx dt+ ZIRn� �(t0) �(t0) dx ;
9>>>>>>>>>>>>=>>>>>>>>>>>>; (53)

Notice that for �xed (t1; x1) 2 (0;1)�IRn and for each � > 0, the function��(t; x) = G(t1 + � � t; x� x1)is an admissible test function in (??). Here G is the heat kernel:G(t; x) = t�n2 g(t� 12x) with g(x) = (2�)�n2 exp(�12 jxj2): (54)Inserting �� into (??) and taking the limit � # 0, we obtain the equation(� �)(t1) = Z t1t0 [�(t) (�� �r	�r�)] �G(t1 � t) dt+ Z t1t0 [�(t) (2r� � �r	)] � rG(t1 � t) dt+ (� �)(t0) �G(t1 � t0) for a.e. 0 � t0 < t1 ;
9>>>>>>>=>>>>>>>; (55)
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where � denotes convolution in the x{variables. From (??), we extract the following estimatein the Lp{normk(� �)(t1)kLp = Z t1t0 k�(t) (�� �r	�r�)kL1 kG(t1 � t)kLp dt+ Z t1t0 k�(t) (2r� � �r	)kL1 krG(t1 � t)kLp dt+ k(� �)(t0)kL1 kG(t1 � t0)kLp for a.e. 0 � t0 < t1 :Now observe that kG(t)kLp = t( 1p�1) n2 kgkLpkrG(t)kLp = t 1p n2�n+12 krgkLp ;which leads tok(� �)(t1)kLp= ess supt2(t0;t1) k�(t) (�� �r	�r�)kL1Z t1�t00 t( 1p�1) n2 kgkLp dt+ ess supt2(t0;t1) k�(t) (2r� � �r	)kL1Z t1�t00 t 1p n2�n+12 krgkLp dt+ k(� �)(t0)kL1 kG(t1 � t0)kLp for a.e. 0 � t0 < t1 :For p < nn�1 the t{integrals are �nite, from which we deduce that� 2 Lploc((0;1)�IRn) :We now appeal to the Lp{estimates [?, x3,(3.1) and (3.2)] for the potentials in (??) toconclude by the usual bootstrap arguments that any derivative of � is in Lploc((0;1)�IRn),from which we obtain the stated regularity condition (a).We now prove assertion b). Using (??) with t0 = 0, and proceeding as above, we obtaink(� �)(t1) � (�0 �) �G(t1)kL1= ess supt2(0;t1) k�(t) (�� �r	�r�)kL1Z t10 kgkL1 dt+ ess supt2(0;t1) k�(t) (2r� � �r	)kL1Z t10 t� 12 krgkL1 dt for all t1 > 022



and therefore, (� �)(t) � (�0 �) �G(t) ! 0 in L1(IRn) for t # 0 :On the other hand, we have(�0 �) �G(t) ! �0 � in L1(IRn) for t # 0 ;which leads to (� �)(t) ! �0 � in L1(IRn) for t # 0 :>From this result, together with the boundedness of fM(�(t))gt#0, we infer that (??) issatis�ed.Finally, we prove the uniqueness result c) using a well-known method from the theory ofelliptic{parabolic equations (see for instance [?]). Let �1; �2 be solutions of (??) which aresmooth on (0;1)�IRn and satisfy (??), (??). Their di�erence � satis�es the equation@�@t � div [�r	+r�] = 0We multiply this equation for � by �0�(�), where the family f��g�#0 is a convex and smoothapproximation to the modulus function. For example, we could take��(z) = (z2 + �2) 12 :This procedure yields the inequality@t[��(�)] � div [��(�)r	+r[��(�)]]= ��00� (�) jr�j2 + (�0�(�) �� ��(�)) �	� (�0�(�) �� ��(�)) �	which we then multiply by a nonnegative spatial cuto� function � 2 C10 (IRn) and integrateover IRn to obtainddt �ZIRn ��(�(t)) � dx� + ZIRn ��(�(t)) (r	�r� ���) dx� ZIRn (�0�(�) �� ��(�)) �	 � dx :23



Integrating over (0; t) for given t 2 (0;1), we obtain with help of (??)ZIRn ��(�(t)) � dx + Z(0;t)�IRn ��(�(t)) (r	�r� ���) dx dt� Z(0;t)�IRn (�0�(�) �� ��(�)) �	 � dx dt :Letting � tend to zero yieldsZIRn j�(t)j � dx + Z(0;t)�IRn j�(t)j (r	�r� ���) dx dt � 0 : (56)According to (??) and (??), � and �r	 are integrable on the entire IRn. Hence, if we replace� in (??) by a function �R satisfying�R(x) = �1( xR) ; where �1(x) = 1 for jxj � 1 ; �1(x) = 0 for jxj � 2 ;and let R tend to in�nity, we obtain RIRn j�(t)j dx = 0. This produces the desired uniquenessresult. 2
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