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FAST COMPUTATION OF WASSERSTEIN BARYCENTERS

MARCO CUTURI AND ARNAUD DOUCET

Abstract. Wasserstein barycenters (Agueh and Carlier, 2011) define a new
family of barycenters between N probability measures that builds upon op-
timal transport theory. We argue using a simple example that Wasserstein
barycenters have interesting properties that differentiate them from other
barycenters proposed recently, which all build either or both on kernel smooth-
ing and Bregman divergences. We propose two algorithms to compute Wasser-
stein barycenters for finitely supported measures, one of which can be shown to
be a generalization of Lloyd’s algorithm. A naive implementation of these algo-
rithms is intractable, because it would involve numerous resolutions of optimal
transport problems, which are notoriously expensive to compute. We propose
to follow recent work by Cuturi (2013) and smooth these transportation prob-
lems to recover faster optimization procedures. We apply these algorithms to
the visualization of perturbed images and resampling in particle filters.

1. Introduction

Comparing, summarizing and reducing the dimensionality of empirical probabil-
ity measures on a given probability space Ω are fundamental tasks in statistics and
machine learning. Such tasks are usually carried out using pairwise comparisons of
measures. Classic information divergences (Amari and Nagaoka, 2001) are widely
used to carry out such comparisons.

These divergences are never directly applied to empirical measures and point
clouds, because they are usually ill-defined for measures that do not have con-
tinuous densities. They also fail to incorporate any form of prior knowledge on
the geometry of Ω, which might be available if, for instance, Ω is a metric or a
Hilbert space in addition to being a probability space. Both of these issues are
usually solved using Parzen’s approach (1962) to smooth empirical measures with
smoothing kernels. In addition to producing well-behaved densities from empirical
measures, a smoothing kernel has two virtues: it encodes prior knowledge on the
probability space Ω, and greatly facilitates computations if positive definite. For
instance, the Euclidean (Gretton et al., 2007) and χ2 distances (Harchaoui et al.,
2008), the Kullback-Leibler and Pearson divergences (Kanamori et al., 2012a,b) can
all be computed fairly efficiently by considering matrices of kernel evaluations.

A divergence defines implicitly the mean or the barycenter of a set of mea-
sures, as the particular measure that minimizes the sum of all its divergences to
that set of target measures (Veldhuis, 2002; Banerjee et al., 2005; Teboulle, 2007;
Nielsen and Nock, 2009; Nielsen, 2013). The goal of this paper is to compute effi-
ciently barycenters defined by the optimal transport distance of measures (Villani,
2009, §6), a.k.a the Wasserstein distance. Although the juxtaposition of efficient
and optimal transport may seem contradictory, since the latter is usually expensive
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2−Wasserstein Mean
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Figure 1. (Top) 25 images of “9” digits from the MNIST database
scattered randomly in [0, 1]2. (Below, left-to-right, top-to-bottom)
mean measures of these digits, using the Euclidean distance be-
tween histograms; the RKHS distance between smoothed densities
with a spherical Gaussian kernel (σ = 0.001); the Symmetrized
Kullback-Leibler divergence (Nielsen, 2013); the 2-Wasserstein dis-
tance.

to compute, we show in this work that we can obtain efficient algorithms using a
computational approach introduced by Cuturi (2013).

Wasserstein distances have many favorable properties, documented both in the-
ory (Villani, 2009) and practice (Rubner et al., 1997; Pele and Werman, 2009). We
argue that their versatility extends to the barycenters they define. We illustrate
this intuition in Figure 1, where we consider 25 handwritten “9” digits translated
randomly on a 40 × 40 grid. Each image is a discrete measure on [0, 1]2 (stored
as a histogram of size 1600 in memory) with normalized intensities. Comput-
ing the Euclidean, Gaussian RKHS mean-maps or Symmetrized Kullback-Leibler
means of these images results in mean measures that hardly make any sense. The
2-Wasserstein mean (defined in §3.1) produced by Algorithm 1 and displayed in
the lower-right corner captures perfectly the structure of these images. Note that
the Wasserstein mean does not consider any prior on these images: not on their
smoothness, nor their shape, nor their sparsity. The only ingredient that is used
is that of defining a distance – the Euclidean distance – in [0, 1]2. Such a distance
is also implicitly used in the definition of the Gaussian RKHS used to produce the
blob in the upper-right corner.

This paper is structured as follows: we provide required background on opti-
mal transport in §2, followed by the definition of Wasserstein barycenters with
additional motivating examples in §3. Novel contributions are presented from §4:
we start with two projected subgradient descent algorithms that can be used to
compute Wasserstein barycenters. These algorithms are extremely costly, even
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for measures of small support or histograms of small size. We show in §5 that
smoothing a key element of these algorithms (the repeated computation of optimal
transports) results in a projected gradient scheme and execution times that are
orders of magnitudes faster. We conclude with two applications of our algorithms
in §6.

2. Background on Optimal Transport

Let (Ω, D) be a metric Polish space. All measures considered in this paper are
Borel measures, on the Borel σ-algebra induced by D. Let P (Ω) be the set of Borel
probability measures on Ω, that is the set of non-negative measures with total unit
mass. R+ is the half-line of nonnegative reals.

2.1. Wasserstein Distances. For p ∈ [1,∞) and probability measures µ, ν in
P (Ω), their p-Wasserstein distance (Villani, 2009, §6) is

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫

Ω2

D(x, y)pdπ(x, y)

)1/p

,

where Π(µ, ν) is the set of all probability measures on Ω2 that have marginals µ
and ν.

2.2. Measures with Discrete and Finite Support.

2.2.1. Discrete Probability Simplex. In what follows, we will mostly consider mea-
sures with discrete, finite support. In that context, the probability simplex Σn of
n bins will play an important role throughout the paper:

Σn
def
= {u ∈ R

n
+ |

n∑

i=1

ui = 1}.

2.2.2. Measures supported on a finite set X. For any point x ∈ Ω, δx denotes the
Dirac unit mass on point x. For any subset X = {x1, . . . , xn} of n > 1 points of Ω,
we write P (X) for the set of probability measures of Ω supported by X :

P (X)
def
= {µ =

n∑

i=1

aiδxi
, a ∈ Σn} ⊂ P (Ω).

2.2.3. Measures supported on up to k points. Following the definition of P (X), we
consider the set Pk(Ω) of measures of Ω that have discrete support of size up to k,
namely measures supported on any set X ∈ Ωk,

Pk(Ω)
def
=

⋃

X∈Ωk

P (X).

2.3. Wasserstein and Optimal Transport. Consider two sets X = {x1, . . . , xn}
and Y = {y1, . . . , ym} of points in Ω. When µ ∈ P (X) and ν ∈ P (Y ), the Wasser-
stein distance Wp(µ, ν) between µ and ν is the pth root of the optimum of a Linear
Program (LP) – a network flow problem to be precise – known as the transporta-
tion problem (Bertsimas and Tsitsiklis, 1997, §7.2). This problem builds upon two
elements: the matrix MXY of pairwise distances between elements of X and
Y raised to the power p,

(1) MXY
def
= [D(xi, yj)

p]ij ∈ R
n×m
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and the transportation polytope U(a, b) of a ∈ Σn and b ∈ Σm, defined as the set
of n×m nonnegative matrices such that their row and column marginals are equal
to a and b respectively, that is, writing 1n for the n-dimensional column vector of
ones,

(2) U(a, b)
def
= {T ∈ R

n×m
+ | T1n = a, T⊤1m = b}.

Combining these two definitions, the distance Wp(µ, ν) raised to the power p,
henceforth abbreviated as W p

p (µ, ν), is the optimum of a LP of n×m variables,

(3) W p
p (µ, ν) = S(a, b;MXY )

def
= min

T∈U(a,b)
〈T,MXY 〉.

3. Wasserstein Barycenters

3.1. Definition and Previous Work.

Definition 1 (Agueh and Carlier (2011)). A Wasserstein barycenter of N mea-
sures {ν1, . . . , νN} in any set P ⊂ P (Ω) is any minimizer of f over P, where

(4) f(µ)
def
=

1

N

N∑

i=1

W p
p (µ, νi).

The variational formulation1 of barycenters used by Agueh and Carlier is similar
to that used by Veldhuis (2002) or Banerjee et al. (2005). This idea can be traced
back to the concept of Fréchet means (1948), as pointed out by Bigot and Klein
(2012).

In their original paper, Agueh and Carlier (2011) consider conditions on the
νi’s for such a barycenter in P = P (Ω) to be unique, describe its characteristics,
relate it to the multi-marginal transportation problem and describe known solutions
(Agueh and Carlier, 2011, §6) in the cases where (i) Ω = R; (ii) N = 2 using
McCann’s interpolant (1997); (iii) when all the measures νi are Gaussians in Ω = R

d

centered on 0.
Rabin et al. (2012) were – to our knowledge – the first to consider practical

algorithmic approaches to compute Wasserstein barycenters between point clouds.
Their method relies on sliced Wasserstein distances, a simplified proxy for the
Wasserstein distance that uses 1-dimensional random projections of point clouds.
The sliced approximation is very attractive for computational reasons: because Wp

has a closed form for point clouds on the real line, which can be computed simply by
sorting them, Rabin et al. can avoid solving general optimal transport problems.
Negative results by Naor and Schechtman (2007) suggest however that the sliced
Wasserstein distance is bound to have a large distortion factor with respect to the
original Wasserstein distance.

We propose in this work computational answers to the problem raised by
Agueh and Carlier: we describe algorithms to compute Wasserstein barycenters
when (i) each of the N measures νi has a discrete and finite support (ii) the search
for a barycenter is not considered on P (Ω) but restricted to either P (X) (the set
of measures supported on a predefined finite set X , §2.2) or Pk(Ω) (the set of mea-
sures supported on up to k atoms, §2.2). This setting is similar to that explored

1Agueh and Carlier consider more generally non-uniform weights on the distances from µ to
the N target measures. The algorithms we propose extend trivially to that case. We use uniform
weights to keep notations simpler.
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by Rabin et al. who considered point clouds, except that we consider continuous
weights. This setting is also known to encompass a few relevant problems:

3.2. Related Problems and Relevance.

3.2.1. N = 1,P = P (X), X fixed. When only one measure ν, supported on Y ∈
Ωm, m > 1 is considered, its closest element µ in P (X) in the Wasserstein metric
can be computing by simply defining a weight vector a on the atoms of X that
results from assigning all of the mass bi to the closest neighbor of yi in X .

3.2.2. N = 1,P = Pk(Ω) and k-means. When N = 1 and only one target measure
ν of support Y of size m is considered, minimizing f(µ) over P (Ω) is trivially solved
by setting µ = ν. When the feasible set is restricted to Pk(Ω), k < m, Ω = R

d and
p = 2, minimizing f over Pk(Ω) is known to be equivalent to the k-means problem
(Pollard, 1982; Canas and Rosasco, 2012).

3.2.3. N > 1,P = P (X), Clustering of Histograms. When Ω can be reduced to the

union of all supports of the νi with X , of total size d, and a matrix M ∈ R
d×d
+

describes the pairwise distances between these d points (usually called in that case
bins or features), the 1-Wasserstein distance is known as the Earth Mover’s Distance
(EMD) (Rubner et al., 1997). In most applications, histograms of features (bags-of-
words, image features) are high-dimensional and sparse, as illustrated in Figure 1.
Wasserstein barycenters, or EMD barycenters as they might be called in that case,
can be used to produce mean elements that account for feature overlap and similar-
ity. Suppose, for instance, that Ω is the set of all words in all languages. Suppose one
is given a set of documents supported on a language Y ⊂ Ω. Which bag-of-words,
supported in a different language X , could summarize most efficiently such a set?
Such problems appear naturally in cross-lingual document retrieval (Kraaij et al.,
2003) and cross-lingual document categorization (Nastase and Strapparava, 2013).

Wasserstein barycenters could also be used as intermediate centering steps in
Lloyd type clustering algorithms (1982) when comparing databases of histograms.

3.2.4. Best approximation of target measures by uniform measures. Consider a sin-
gle measure with support Y ∈ Ωm and weights b ∈ Σm. One might be interested
in the best approximation in Wasserstein sense of this weighted empirical measure
by an empirical measure in P (Y ) restricted to have weights which are multiples of
1/m. Such approximations are at the core of the key resampling step of particle
filtering methods Doucet et al. (2001). An alternative consists of relaxing the fact
that the approximation has to be in P (Y ) and considering the case where it lies in
Pk(Ω) but is restricted to have identical weights 1/k (Reich, 2013).

4. Computing Wasserstein Barycenters

4.0.5. Notations. For each i ≤ N , let the finite family of points Yi ∈ Ωmi of size
mi > 1 describe the locations of the support of νi. Let bi denote the probability
weights of νi, which is by definition a vector in the simplex Σmi

.
To minimize f , we first review in §4.1 some important results on the convexity

and differentiability of the linear program S(a, b;M) defined in Equation (3). Since
f is a sum of evaluations of S, as exhibited by Equations (3)&(4), the convexity
and the differentiability of f follows from that of S.
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4.1. Convexity and Differentiability of S(a, b;M). A subscripted star ·× ap-
pended to a vector (resp. a matrix) means that its last element (resp. line) has
been removed.

4.1.1. Redundancy in row & column-sum constraints. The transportation polytope
U(a, b) introduced in Equation (2) is defined by n row-sum constraints and m
column-sum constraints. However, one of these n + m constraints is redundant
because both a and b have equal sum. To ensure an independent set of constraints,
we replace equality T T1m−1 = b by (T T )×1m−1 = b× in the definition of U(a, b)
and in the dual below.

4.1.2. Dual transportation problem. Given matrix M ∈ R
n×m, the optimum

S(a, b;M) admits the following dual LP form (Bertsimas and Tsitsiklis, 1997,
§7.6,§7.8)

(5) S(a, b;M) = max
(α,β)∈C(M)

αT a+ βT b× ,

where the polyhedron C(M) ⊂ R
n+m−1 of dual variables is defined as

C(M) = {(α, β), α ∈ R
n, β ∈ R

m−1 | ∀i ≤ n, j ≤ m− 1, αi + βj ≤ mij}.

4.1.3. Relationship between primal and dual optima. Any optimal solution T ⋆ to
the primal problem in Equation (3) obtained with the network simplex yields a
dual optimal solution. For all the n + m − 1 pairs (i, j) which are in the basis of
T ⋆
ij (which correspond to the elements T ⋆

ij > 0 if the solution is not degenerated)
αi+βj = mij holds. Consequently α⋆ and β⋆ can be recovered by inverting a trivial
linear system, which is underdetermined when the primal solution is not unique.
The optimal dual variable α⋆ plays a key role:

Proposition 1. Given b ∈ Σm and M ∈ R
n×m, the map a 7→ S(a, b;M) is a

polyhedral convex function. The optimal dual vector α⋆ is a subgradient of S(a, b;M)
with respect to a.

Proof. These results follow from sensitivity analysis in LP’s
(Bertsimas and Tsitsiklis, 1997, §5.2). The dual expression of dM in Equa-
tion (5) shows that S(a, b;M) is bounded and can be computed as a maximum of
linear functions indexed by the finite set of extreme points of C(M) evaluated at
a and is therefore polyhedral convex. When the dual optimal vector is unique, α⋆

is a gradient of S at a, and a subgradient otherwise. �

4.2. Fixed Support: Minimizing f over P (X). Let X ⊂ Ωn. We propose in
this section an algorithm to compute the weights a ∈ Σn of a measure µ supported
by X such that f(µ) is optimal in P (X). When N = 1, the problem is trivially
solved by setting ai =

∑m
j=1 bj∆ij where ∆ij = 1 iff yj is in the ith cell of the

Voronoi partition seeded by X , namely the nearest neighbor of yj in X is xi (ties
randomly attributed).

We assume N > 1. We overload function f in this section by defining it on any
element a ∈ Σn as

(6) f(a) =
1

N

N∑

i=1

W p
p

(
n∑

k=1

akδxk
, νi

)
.
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For i ≤ N , following the notations of Equation (1), let

Mi ∈ R
n×mi , Mi

def
= MXYi

Let α⋆
i be any optimal dual variable corresponding to the computation of

S(a, bi;Mi) as detailed in Equation (5). f being a sum of terms S(a, bi,Mi), we get
the following corollary of Proposition 1.

Corollary 1. f is a polyhedral convex function on P (X) and

ααα
def
=

1

N

N∑

i=1

α⋆
i

is a subgradient of f at a.

This result suggests a projected subgradient descent algorithm, outlined in Al-
gorithm 1, to find the barycenter of measures {νi} when restricting such a search
to P (X). We write PΣd

for a projector onto the probability simplex in a suitable
norm. Note that this projector may include non-trivial constraints, such as spar-
sity constraints, either in explicit (Becker et al., 2013) or regularized (Pilanci et al.,
2012) form.

Algorithm 1 p-Wasserstein Barycenter in P (X)

Inputs: X ∈ Ωn, Yi ∈ Ωmi , bi ∈ Σmi
, i ≤ N ,

p ∈ [1,∞), t0 > 0.
if N = 1 then

a obtained using allocation of each bi to nearest neighbor of Y in X . stop
end if

Initialize a = a0, t = 1
Form all n×mi matrices Mi = MXYi

, see Eq. (1).
while not converged do

for i ∈ {1, . . . , N} do
Compute α⋆

i , the dual optimal variable of S(a, bi,Mi), see Eq. (5)
end for

Subgradient: ααα← 1
N

∑N
i=1 α

⋆
i

a← PΣd

(
a− t0ααα√

t

)
; t← t+ 1

end while

4.3. Free Support: Minimizing f over Pk(R
d). We now consider the more

general case of minimizing f over any probability measure µ supported by at most
k atoms. We require now that Ω = R

d for d ≥ 1, D is the Euclidean distance and
p = 2. We overload again function f to consider for X ∈ (Rd)k, a ∈ Σk,

(7) f(X, a) =
1

N

N∑

i=1

W p
p

(
n∑

k=1

akδxk
, νi

)
.

4.3.1. Ground Metrics MXYi
in the Euclidean Case. When Ω = R

d, the sets X
and Yi, i ≤ N can be respectively represented by a matrix in R

d×n and N matrices
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in R
d×mi. The pairwise squared-Euclidean distances of points in these sets can be

recovered by writing x
def
= diag(XTX) and yi

def
= diag(Y T

i Yi), and observing that

MXYi
= x1T

m + 1ny
T
i − 2XTYi ∈ R

n×mi .

Due to the margin constraints that apply if a matrix T is in the polytope U(a, bi),
we have:

〈T,MXYi
〉 = 〈T,x1T

d + 1T
d yi − 2XTYi 〉

= trT Tx1T
d + trT T1T

d yi − 2〈T,XTYi 〉

= xTa+ yT bi − 2〈T,XTYi 〉.

4.3.2. Properties of f(X, a). Discarding constant terms in yi and bi, we have that
computing minµ∈Pk(Ω) f(µ) is equivalent to solving

(8) min
X∈R

d×k

a∈Σk

xT a+
2

N

N∑

i=1

S(a, bi,−X
TYi)

The objective function on the righthand side of Equation (8) is convex in a. As a
function of X , that objective is the sum of a convex quadratic function of X with a
piecewise linear concave function, since, as noted in (Cuturi and Avis, 2011), each
term

S(a, bi,−X
TYi) = min

T∈U(a,bi)
〈X,−YiT

T 〉

can be seen as the minimum of linear functions indexed by the vertices of the
polytope U(a, bi). As a consequence f(X, a) is only convex with respect to a but
not with respect to X .

4.3.3. Local Quadratic Approximation of f(X, a). Suppose that, for all i ≤ N , T ⋆
i

is optimal for problem S(a, bi,−XTYi). Updating Equation (8), we get

〈XXT , diag(a) 〉 −
2

N

N∑

i=1

〈T ⋆
i , X

TYi 〉 =

‖X diag(a1/2)−
1

N

N∑

i=1

YiT
⋆T
i diag(a−1/2)‖2 − ‖

1

N

N∑

i=1

YiT
⋆T
i diag(a−1/2)‖2.

Minimizing a local quadratic approximation of f(·, a) around X yields X⋆ =(
1
N

∑N
i=1 YiT

⋆T
i

)
diag(a−1). A natural step to update X is thus to consider a

Newton step, which we assume to be of fixed length θ ∈ [0, 1] in what follows. A
simple interpretation of this update is as follows: each matrix T ⋆T

i diag(a−1) has
n column-vectors in the simplex Σmi

. The suggested update for X is the mean
of all YiT

⋆T
i diag(a−1). Each of these terms is itself a mixture of n vectors in

Yi, namely n barycenters of points enumerated in Yi with weights defined by the
optimal transport T ⋆

i .

4.3.4. Alternating Optimization. As hinted in Section 3.2, since our problem su-
persedes the k-means problem, minimizing f(X, a) cannot to be a convex problem
in the general case. To obtain an approximate solution of f(X, a) we propose in
Algorithm 2 to update alternatively X (with the local quadratic approximation
above) and a (with Algorithm 1).
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Algorithm 2 2-Wasserstein Barycenter in Pk(R
d)

Input: Yi ∈ Ωmi for i ≤ N. θ ∈]0, 1].
initialize X and a
while X and a have not converged do

a← a⋆ found with Algorithm 1.
for i ∈ {1, . . . , N} do
T ⋆
i ← optimal solution of S(a, bi;−XTY )

end for

X ← (1− θ)X + θ
(

1
N

∑N
i=1 YiT

⋆T
i

)
diag(a−1)

end while

4.3.5. Particular Cases of Algorithm 2. As argued in §3.2, minimizing f over
Pk(R

d) in the case where only one N = 1 measure is considered is equivalent to
the k-means problem. One can extend this analogy to Algorithm 2 and show that
it is strictly equivalent to Lloyd’s algorithm when N = 1: computing a⋆ reduces
to the computation of the Voronoi diagram of X and the subsequent allocations of
the weights of ν lying in these cells, while the integration of the Voronoi cells is
equivalent to the computation of barycenters of Y using an optimal T ⋆. As a result
of this analogy, our algorithm also suffers from a dependance on the initial values
of X (Arthur and Vassilvitskii, 2007), which needs to be investigated in the case
where N > 1.

Reich has recently proposed an ensemble transform method grounded on optimal
transport (2013), whose ensemble location updates (2013, Equation 3.8, where the
notation xf corresponds to Y in this paper, and xa to updatedX) can be interpreted
as a single iteration of the loop of Algorithm 2, when N = 1; the weights a are fixed
to be equal to 1k/k; θ = 1. Reich’s derivation of this approach follows a different
route, and is grounded on an asymptotic result of McCann (1995). We consider
Reich’s approach in §6.2, and compare it with our approach which simply suggests
instead to continue (and not stop after one iteration) applying optimal transport
maps to Y to recover better locations.

4.3.6. In Summary. We have proposed two algorithms, one convex (Algorithms 1)
and another that is not (Algorithm 2) to compute Wasserstein barycenters of mea-
sures. These algorithms are relatively simple, yet – to the best of our knowledge –
novel. We suspect these approaches were not considered before because of their pro-
hibitive computational cost: Algorithm 1 builds upon N transportation problems
at each subgradient step. Namely, N network flow problems each of size n×mi with
n+mi − 1 constraints. These become quickly expensive when n and mi are above
a few hundreds. Algorithm 2 incurs an even higher cost, since it involves running
Algorithm 1 at each iteration. We propose alternative computational approaches
in §5.

5. Fast & Smooth Optimization

To circumvent the major computational roadblock posed by the repeated com-
putation of optimal transports, we propose to use Cuturi’s approach (2013) and
smooth all of the transportation problems encountered in Algorithms 1 and 2.
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5.1. Smoothed Transportation Problems Sλ. Consider the entropy h(T ) of a
n×m transport variable T , which is by definition in Σn×m:

h(T )
def
= −

n,m∑

i,j=1

tij log(tij).

Cuturi (2013) has recently proposed to consider, for λ > 0, a regularized trans-
portation problem Sλ as

Sλ(a, b;M) = min
T∈U(a,b)

〈X,M 〉 −
1

λ
h(T ).

5.1.1. Dual Optimal Variables of Sλ. Cuturi uses an entropic regularization to de-
fine a novel family of distances – Sinkhorn distances – which, as argued by the
author, have favorable properties over classic transportation distances. In that
sense, Cuturi focuses exclusively on the value of the optimum of Sλ, and its in-
terest as a novel distance by itself. Our focus in this work is different, since we
are not interested in the objective, but instead on the optimal transport as well as
the optimal dual variables of Sλ. As shown below, the optimal dual variables can
be used to recover a gradient for weights a in Algorithm 1, while an approximate
optimal transport can be used to update locations X in Algorithm 2.

5.1.2. Smoothing of non-smooth objective. Smoothing S, the non-smooth support
function of the polytope U(a, b), by a strongly convex term, minus the entropy,
can also be interpreted as a form of Nesterov smoothing (2005). Compared to
other regularizers however, such as the quadratic norm 〈T, T 〉 of T , far more is
gained computationally by using its entropy h(T ): the unique solution of Sλ has a
factorized form (Wilson, 1969), a property derived from the maximum entropy prin-
ciple (Darroch and Ratcliff, 1972) and described in detail by Erlander and Stewart
(1990, §3,4):

Lemma 1 (Wilson (1969)). Given M ∈ R
n×m, a ∈ Σn, b ∈ Σm, the unique optimal

solution T ♯ ∈ U(a, b) to Sλ(a, b,M) admits the factorization

T ♯ = diag(u)e−λM diag(v),

where u ∈ R
n
+, v ∈ R

m
+ .

This fact can be obtained by the method of Lagrangian multipliers, as shown
in the proof of Proposition 2 below. These factors u and v can be recovered using
Sinkhorn’s algorithm:

Lemma 2 (Sinkhorn (1967)). For any positive matrix A in R
n×m
+ and positive

probability vectors a ∈ Σn and b ∈ Σm, there exist positive vectors u and v, unique
up to scalar multiplication, such that diag(u)Adiag(v) ∈ U(a, b). Such a pair (u, v)
can be recovered as a fixed point of the Sinkhorn map

gAab(u, v) ∈ R
n
+ × R

m
+ 7→ (Av−1./b, ATu−1./a).

Sinkhorn’s algorithm consists in applying the Sinkhorn map gAab iteratively to
any pair of arbitrary initial vectors until convergence. The convergence of the algo-
rithm is linear when using Hilbert’s projective metric between these scaling factors
(Franklin and Lorenz, 1989, §3). Although we highlight this algorithm because of
its simplicity, as can be seen in the outline of Algorithm 3, other algorithms exist
(Knight and Ruiz, 2012) which are known to be more reliable numerically – yet not
necessarily faster – when the regularization term λ is large (Knight, 2008).
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5.2. Convexity and Differentiability of Sλ. This section echoes the earlier
claims made for S in §4.1

Proposition 2. For fixed b and M , Sλ(a, b;M) is a strongly convex function
of a with parameter 1/λ. Let (u, v) be any vectors of R

n
+ × R

m
+ such that

diag(u)e−λM diag(v) ∈ U(a, b). The gradient of Sλ(a, b;M) with respect to a is
equal to

∇Sλ =
1

λ
(log(vmu) + 1n) .

Proof. Minus the entropy is strongly convex with parameter 1 on U(a, b). As
a result the map T → 〈T,M 〉 − 1

λh(T ) is strongly convex with parameter
1/λ. The strong convexity of Sλ(a, b;M) with parameter 1/λ with respect to
a follows from (Fiacco and Kyparisis, 1986, Prop.2.11). Slater’s weak conditions
(Boyd and Vandenberghe, 2004, §5.2.3) hold since T is only constrained by equal-
ity and affine (non-negativity) constraints. As a result strong duality applies. Let
L be the Lagrangian of Sλ with respect to (T, α, β), where α ∈ R

n is the vector of
dual variables for row-sums while β ∈ R

m−1 is the vector of m − 1 dual variables
for column-sums.

L =
∑

ij

tijmij +
1

λ
tij log tij + αT (T1n − a) + βT ((T T )×1m−1 − b×).

First order conditions imply that, for optimal primal T ⋆ and dual variables α⋆, β⋆,

∀i ≤ n, j ≤ m, t⋆ij = e−
1

2
−λα⋆

i e−λmije−
1

2
−λβ⋆

j ,

where we have set β⋆
m

def
= 0. Let (u, v) be any fixed point of the Sinkhorn map

ge−λMab. The dual variables (α⋆, β⋆) can be recovered from any solution (u, v) by
noting that (u, v) must be rescaled to (ρu, v/ρ) so that vm/ρ = e−1/2. Consequently
we obtain that

α⋆ = −
1

λ
(log(vmu) + 1n) .

Using results from local sensitivity analysis (Boyd and Vandenberghe, 2004, §5.6.3)
we recover that the gradient of Sλ with respect to a is −α⋆. �

The computation of the gradient of Sλ is summarized in Algorithm 3, with a one-
line iteration of Sinkhorn’s fixed point map introduced in (Cuturi, 2013), to which
we also refer to for a quantification of the speedups that result from computing Sλ

instead of solving S exactly.

5.3. Implementation of the Gradient of Sλ. The computation of the gradient
of f(X, a) (defined in Equation (7)) with respect to a can be naively carried out by
computing the N gradients for Sλ(a, bi,MXYi

). This computation can also be par-
allelized if one considers a single matrix MXY where Y = ∪iYi and the optimization
is carried out with sparse histograms. When the size of ∩iYi is comparable to that
of ∪iYi this can result in large speedups.

5.3.1. In summary: we have shown that the optimal solution to S can be approx-
imated by the solution to a smoothed problem Sλ. These solutions can be used
as such, to replace optimal transports by smooth optimal transports as in Algo-
rithm 2, or to recover smoothed optimal dual variables to be used in Algorithm 1.
Algorithm 3 can be warm-started with the scaling factor z computed at a previous
iteration.
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Algorithm 3 Computation of Sλ’s optimal solution T ♯ and gradient ∇ w.r.t a

Input M,λ, a, b
K = exp(−λM);

K̃ = diag(a−1)K % use bsxfun(@rdivide,K,a)
Set z =ones(n,1)/n;
while z changes do

z = K̃*(b.*(KTz−1)−1)

end while

ρ = K(:,m)
T z−1/an;

∇ = 1
λ (1N − log(ρz));

T ♯ = diag(l)K diag(m)
% use bsxfun(@times,m, (bsxfun(@times,K, l))′);

Figure 2. (top-row) For each digit, 15 out of the ≈ 5.000 scaled
and translated images considered for each barycenter. (bottom
rows) Barycenters after t = 1, 10, 60 gradient steps. For t = 60,
images are cropped to show only the 30× 30 central pixels.

6. Applications

We review two applications of Algorithms 1 and 2 which can only only work in
these settings due to the speed-ups we gain from Algorithm 3.

6.1. Mean of Histograms. Wasserstein means for 10 digits are reported in Fig-
ure 2. We use the 50.000 first images of the MNIST database, which provide
approximately 5.000 images for each digit. Each image (20 × 20 pixels) is scaled
randomly, uniformly between half-size and double-size, and translated randomly
within the 50× 50 = 2.500 grid, with a bias towards corners. We display interme-
diate barycenter solutions, for t = 1, 10, 60 gradient iterations. The algorithm is
initialized with the uniform measure in Σ2500 and we use a naive gradient descent
setup with exponentiated gradient updates (Beck and Teboulle, 2003) and a step
size t0 = 10. λ is set to 60/median(M). Using a Quadro K5000 GPU with close
to 1500 cores, the computation of a single barycenter takes about 2 hours to reach
100 iterations. Since we always use warm starts to run Algorithm (3), the first
iterations are typically more computationally intensive than those carried out near
the end.
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N = 30 N = 50 N = 70 N = 100 N = 150 N = 250 N = 500

Multinomial 64.4 ± 144 31 ± 60.5 21.2± 26.9 15.6±16.9 11.1±12.6 7.33±8.57 3.76±4.27

Reich 40.1±56.6 29.9±21.6 26.3± 16.2 24.2±13.4 22.2±10.2 20.8±7.53 20 ± 5.27

Systematic 35.2±66.4 22.3±31.5 17 ± 19.4 12.3±14.4 8.42±9.31 5.48±6.63 2.78±3.26

Algorithm 2 31.7±53.8 20.1±21.1 16 ± 16.9 11.9±13.1 8.42±9.27 5.4 ± 6.14 2.88±3.34

Table 1. Mean square errors and standard deviations for a vary-
ing number of particles over 10.000 simulations

6.2. Filtering. Consider the non-linear dynamic model

X1,t =
X1,t−1

2
+

25X1,t−1

1 +X2
1,t−1

+ 8 cos (1.2t) + V1,t,

X2,t = 0.99X2,t−1 + V2,t, Yt = X2
1,t/20 +X2,t +Wt

where X1,1 ∼ N (0, 1) , X2,1 ∼ N (0, 1) , V1,t
i.i.d.
∼ N (0, 1) , V2,t

i.i.d.
∼ N (0, 1) ,

Wt
i.i.d.
∼ N (0, 2). We use particle filtering so as to estimate the analytically in-

tractable multimodal posterior distributions p (xt| yt) where xt := (x1,t, x2,t)
T
,

yt := (y1, ..., yt). At the core of these methods is the resampling step: given an
approximation p̂ (xt| yt) =

∑n
i=1 w

i
tδxi

t
of p (xt| yt), resampling provides a new ap-

proximation p̃ (xt| yt) = n−1
∑n

i=1 n
i
tδxi

t
where ni

t ∈ N,
∑n

i=1 n
i
t = n. Standard

resampling are such that
{
ni
t

}
depends of

{
wi

t

}
but not of

{
xi
t

}
. This is clearly an

undesirable feature. Consider a bimodal distribution with few samples in a mode
and numerous samples in the other. Given two particles with similar weights, one
in the “small” mode and one the “big” mode, we would like our resampling scheme
to distinguish those particles and preserve the particle in the small mode.

We compare the performance of multinomial and systematic resampling against
that of Reich’s algorithm and Algorithm 2, with a fixed to 1N/N . For both ap-
proaches we used smoothed transports as outlined in Algorithm 3, and not the
true transport, whose cost would be prohibitive in these settings. We measure per-
formance in terms of the mean and standard deviation – over 10.000 runs of the
particle filter – of the mean square error

10∑

t=1

‖Ên

(
Xt| y

t
)
− E

(
Xt| y

t
)
‖2

where y10 is a fixed realization of the observations. Here Ên (Xt| y
t) is the particle

filter estimate with n samples and E (Xt| yt) the “ground-truth” estimated using
a very large number of particles. We set λ adaptively to the inverse of the second
decile of all elements in M and threshold entries such that λM > 200. We set
θ = 0.5. These results agree with Reich’s claim that optimal transport resampling
is specially useful when the number of particles is small, both in terms of mean
error and especially of variance. They also suggest that the repeated updates of
locations in Algorithm 2, compared to the single step advocated by Reich, seem to
yield better results.
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