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∗CEREMADE, UMR CNRS 7534, Université Paris IX Dauphine, Pl. de Lattre de
Tassigny, 75775 Paris Cedex 16, carlier@ceremade.dauphine.fr.
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1 Introduction

Minimization problems in the set of convex functions, of the following form:

inf
u∈H1(Ω)
u convex

∫

Ω

g(x, u(x),∇u(x)) dx (1)

arise in several fields of applied mathematics (see [2], [5]). Even for a very
simple and well-behaved g, the convexity constraint raises a number of math-
ematical difficulties. Even the simplest case, that is the projection problem:

inf
u∈H1(Ω)
u convex

∫

Ω

|∇u− q0|
2 (2)

(where q0 ∈ L2(Ω)N is given) has yet to be investigated in detail, in particular
regarding regularity issues. When dealing with this type of minimization
problems on a closed cone (here the cone of convex functions), it is natural to
try to identify the polar cone in order to write an Euler-Lagrange equation.
A first proposal in this direction has been given in [7]; unfortunately the
corresponding equation is difficult to handle in general.

In the present paper we propose a different representation of the polar
cone of the set of convex functions (more precisely: of the polar cone of the
set of gradients of convex functions). It makes use of the set S of measure-
preserving maps (see the precise definition and statements in the next sec-
tion). We prove that every vector field in L2(Ω)N can be decomposed as the
sum of the gradient of a convex function and an element of the closed cone
generated by (S − id) (Section 3). This is to be compared to the well-kown
polar decomposition of Y. Brenier [1], which is a composition instead of a
sum. This result is actually a direct consequence of a result of Y. Brenier (see
[1] and Proposition 2.1). Another way to express the same decomposition is
to make use of the so-called bistochastic measures, a special case of Young
measures (Section 4). Some applications to variational problems of the form
(1) are given in sections 5 (Euler-Lagrange equations) and 6 (regularity).

2 Representation of the polar cone of gradi-

ents of convex functions

In the whole paper, Ω is some bounded open convex subset of R
N , N ≥ 1.

We denote by 〈·, ·〉 the usual scalar product in the Hilbert space L2(Ω)N . We
consider

K := {q ∈ L2(Ω)N : q = ∇u, for some convex function u}.

2



It is a closed convex cone in L2(Ω)N . Its polar cone is defined as usual:

K− := {p ∈ L2(Ω)N : 〈p, q〉 ≤ 0, ∀q ∈ K}.

We make use of the set of measure-preserving maps:

S := {s measurable : Ω → Ω : s]dx = dx}.

Here dx denotes Lebesgue’s measure and s]dx is the measure defined by
∫

Ω

ϕ(x)s]dx =

∫

Ω

ϕ(s(x))dx

for every bounded continuous function ϕ.

Let us start with a characterization of K:

Proposition 2.1 (Brenier) Let q ∈ L2(Ω)N ; then q ∈ K if and only if

〈q, s− id〉 ≤ 0, for all s ∈ S.

The proof is already given in [1], we recall it here briefly for the sake of
completeness.

Proof. Assume first that q ∈ K, q = ∇u with u convex. Let s ∈ S; by
convexity, one has ∇u(x) · (s(x) − x) ≤ u(s(x)) − u(x), hence:

〈∇u, s− id〉 ≤

∫

Ω

u(s(x))dx−

∫

Ω

u(x)dx = 0.

Conversely, assume that q satisfies the inequalities of the Proposition and
let us prove that q ∈ K. Let (x0, x1, . . . , xn = x0) ∈ Ωn+1 be a cycle of
distinct Lebesgue points of q, let ε > 0 be such that the balls B(xi, ε) are
disjoint and included in Ω. Define then the measure preserving map sε by

sε(x) =







x if x ∈ Ω \
n−1
⋃

i=0

B(xi, ε)

x+ (xi+1 − xi) if x ∈ B(xi, ε), i = 0, . . . , n− 1.

We have
〈q, sε − id〉 ≤ 0

by assumption. This yields

n−1
∑

i=0

1

|B(xi, ε)|

∫

B(xi,ε)

q(x) · (xi+1 − xi) dx ≤ 0. (3)
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Letting ε go to zero, we get then

n−1
∑

i=0

q(xi) · (xi+1 − xi) ≤ 0.

In other words the set A := {(x, q(x)), x Lebesgue point of q} is cyclically
monotone, so that from Rockafellar [9] there exists a convex function u such
that A ⊂ ∂u; in particular q = ∇u almost everywhere.

As a consequence of Proposition 2.1 one may characterize the polar cone
of K:

Corollary 2.1 The polar cone K− is the closure (in L2) of the convex cone
generated by (S − id)

K− = cone(S − id).

Proof. Proposition 2.1 can be stated as:

K = (S − id)− = (cone(S − id))−.

Taking the polar cones of those two closed convex cones gives the desired
result.

One may ask what is the difference between the two cones cone(S − id)
and R+ co(S − id). Indeed, the latter is much easier to charaterize, as we
shall see in the next sections. It has also some interesting properties:

Proposition 2.2 Let p ∈ R+ co(S − id), p 6= 0, so that p = λ(τ − id) with
λ > 0 and τ ∈ coS \ {id}. Then, for any convex function u ∈ H1(Ω), one
has

∫

Ω

u(τ(x)) dx ≤

∫

Ω

u(x) dx. (4)

Additionnally, for any convex function u ∈ H1(Ω) such that 〈p,∇u〉 = 0, one
has:

∫

Ω

u(τ(x)) dx =

∫

Ω

u(x) dx (5)

u(τ(x)) − u(x) = ∇u(x) · (τ(x) − x) a.e. x ∈ Ω. (6)

Notice that (6) means that the convex function u is actually affine on the
segment [x, τ(x)]. In particular, p ∈ R+ co(S − id) and 〈p,∇u〉 = 0 for some
strictly convex u implies p = 0.
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Let us postpone the proof for a while and continue the discussion on the
links between cone(S − id) and R+ co(S − id). One has obviously

R+ co(S − id) ⊂ cone(S − id) = R+ co(S − id), (7)

but it turns out that R+ co(S − id) is not closed and therefore there is no
equality in the inclusion above. Indeed, consider the set

ker div := {p ∈ (L2(Ω))N : 〈p,∇v〉 = 0, ∀v ∈ H1(Ω)}.

(That is, divergence-free vector fields and whose normal component at the
boundary vanishes, whenever regular.)

Corollary 2.2 One has

ker div ⊂ cone(S − id)

ker div ∩ R+ co(S − id) = {0}.

In particular, R+ co(S − id) is not closed.

Proof of Proposition 2.2 and Corollary 2.2.
Since τ ∈ coS, there exists some sequence of the form

∑n
i=1 α

n
i s

n
i with

sn
i ∈ S, αn

i ≥ 0,
∑

i α
n
i = 1, converging in L2 and almost everywhere to τ .

For any u ∈ H1(Ω) convex, we have u
(
∑

i α
n
i s

n
i (x)

)

≤
∑

i α
n
i u(s

n
i (x)), for

almost every x ∈ Ω. Hence

∫

Ω

[

u
(

n
∑

i=1

αn
i s

n
i (x)

)

− u(x)

]

dx ≤

n
∑

i=1

αn
i

∫

Ω

(u(sn
i (x)) − u(x)) dx = 0,

taking into account that each sn
i is measure preserving. In the limit we get

(4) by Fatou’s Lemma.
If we assume 〈p,∇u〉 = 0, then we get:

∫

Ω

[

u(τ(x)) − u(x) −∇u(x) · (τ(x) − x)
]

dx ≤ 0.

Since u is convex, the integrand is nonnegative. Hence we obtain (5–6).
It is clear that ker div ⊂ cone(S − id), since from the very definitions

p ∈ ker div and q ∈ K implies 〈p, q〉 = 0.
Now assume p ∈ ker div ∩ R+ co(S − id), p 6= 0. Then 〈p,∇u〉 = 0 for

all u, so (6) holds also for any u convex. Since this equation means that u is
affine on the segment [x, τ(x)], there is clearly a contradiction whenever u is
strictly convex.
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The non-closedeness of R+ co(S− id) makes difficult the manipulation of
cone(S − id) in general. One has to notice the following, however:

Proposition 2.3 Let p ∈ cone(S − id). Then either p ∈ R+ co(S − id), or,
for any sequences (λn) ⊂ R+, (τn) ⊂ coS such that λn(τn − id) → p strongly
in L2(Ω)N , one has λn → +∞ and τn → id.

Proof. Since p ∈ cone(S − id), the closure of R+ co(S − id), it can be
written as the limit of a sequence (pn) such that pn = λn(τn − id), with
λn ∈ R+, τn ∈ coS.

If λn does not converge to +∞, then we may extract a subsequence and
assume that it converges to some limit λ ∈ R+. If λ = 0, then pn → 0 since
coS is bounded: so p = 0 ∈ R+ co(S − id). If λ > 0, then τn = id + λ−1

n pn

converges to τ = id + λ−1p, and τ ∈ co(S) since this is a closed set. Now
p = λ(τ − id) ∈ R+ co(S − id).

If λn → +∞ on the other hand, one get τn − id = λ−1
n p + o(1) → 0 as

n→ ∞.

Remark 1. We have seen that R+ co(S − id) is dense in K− and that
R+ co(S − id) is not closed in L2, a natural question at this point is then :
how big is K−\R+ co(S−id)? To partially answer this question, let us remark
that R+ co(S− id) ⊂ L∞ and that K− contains many non bounded elements:
for instance all the (not necessarily bounded) vector fields in ker div , but also
∇v for every v ∈ H1

0 (Ω) with v ≥ 0, since
∫

∇v · ∇u = −〈∆u, v〉.
One can also construct non bounded elements of K− as follows: let f ≥ 0

be a scalar function in L2 \ L∞. Denoting by Sf the set of maps σ : Ω → Ω
preserving the measure f(x) dx, one actually has (σ − id)f ∈ L2 and ∈ K−

for every σ ∈ Sf . For instance if Ω is the ball and f is further assumed to be
radial then (R− id)f ∈ K− for every rotation R.

Remark 2. In view of corollary 2.2, it is also natural to wonder whether one
has K− = ker div + R+ co(S − id)? The previous identity is equivalent to
ker div +R+ co(S−id) being closed in L2. Again, the answer is unfortunately
negative as the following counter-example shows. Assume that Ω is the unit
ball of R

2 and define v(x) := (1 − |x|)2/3, we already know that ∇v ∈ K−.
Now, if ∇v admitted a decomposition of the form ∇v = p + λ(τ − id) with
(p, λ, τ) ∈ ker div × R+ × co(S) then for every φ ∈ W 1,1(Ω) the quantity
∫

Ω
∇v.∇φ would be finite. Taking for instance φ(x) := (1− |x|)1/4 yields the

desired contradiction.

Remark 3. One should finally notice that, even for a p ∈ R+ co(S− id), the
writing p = λ(τ − id) is not unique. This is obvious if p = 0, where one can
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choose λ = 0 and any τ , or τ = id and any λ. But it is also true if p 6= 0.
Indeed, for any given τ ∈ coS \ {id}, let us consider Iτ := {r ≥ 0; τr :=
rτ + (1 − r)id ∈ coS}. Since coS is closed, convex, and bounded, Iτ is an
interval of the form [0, R], with R ≥ 1. Now we have p = λ(τ−id) = λ

r
(τr−id)

for any r in this interval.

3 Decomposition of vector fields

Given q0 ∈ L2(Ω)N we consider the problem (2), which may also be stated
as follows: given q0 ∈ L2(Ω)N , solve

inf
q∈K

‖q − q0‖
2

L2 . (8)

There exists a unique solution q = ∇u of this projection problem. Moreover
the characterization of this solution is given by:

Theorem 3.1 Let q0 ∈ L2(Ω)N . Then there exist a unique (up to a constant)
u ∈ H1, convex, a unique p ∈ K− = cone(S − id), such that:

q0 = ∇u+ p (9)
〈

∇u, p
〉

= 0. (10)

Here q = ∇u solves (8), while p solves the dual problem (projection on K−).
Moreover, if p 6= 0 ( i.e. q0 /∈ K), then either

p = lim
n
λn(τn − id) where λn ∈ R+ → +∞, τn ∈ co(S) → id, (11)

or p = λ(τ − id) with λ > 0, τ ∈ coS and

∫

Ω

u(τ(x)) dx =

∫

Ω

u(x) dx (12)

u(τ(x)) − u(x) = ∇u(x) · (τ(x) − x) a.e. x ∈ Ω. (13)

Proof.
The minimization problem (8) can also be written as:

inf
q∈L2(Ω)N

sup
p∈K−

L(p, q) (14)

where L(p, q) := 1
2
‖q − q0‖

2 + 〈p, q〉.
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It is well-known that L admits a unique saddle point (q, p) = (∇u, p) in
K ×K− (see for instance [6]) where q = ∇u is the solution of (14) and p is
the solution of the dual problem:

sup
p∈K−

inf
q∈L2(Ω)N

L(p, q). (15)

Since

inf
q∈L2(Ω)N

L(p, q) = −
1

2
‖p− q0‖

2 +
1

2
‖q0‖

2,

the solution of (15), that is p, is the projection of q0 on K− = cone(S − id),
i.e. the solution to

inf
p∈cone(S−id)

‖p− q0‖
2. (16)

The saddle-point (q, p) is characterized by (9–10) since K, K− are polar
cones.

Conversely if (9-10) hold with u convex and p ∈ K− then ∇u (respec-
tively p) is the projection of q0 onto K (respectively onto K−).

If p 6= 0, we deduce the remaining properties from Proposition 2.2 and
Proposition 2.3.

If, in the previous satetement, p = λ(τ−id) with λ > 0 and τ ∈ coS\{id},
then u is affine between x and τ(x) for almost every x; in particular if x is
such that (x, u(x)) does not belong to a face of dimension ≥ 1 of the epigraph
of u, then p(x) = 0. When p ∈ cone(S − id) \ R+ co(S − id) (a situation
that, as already noted, may unfortunately occur), we don’t have a tractable
representation of p so that we don’t have such a nice property as (13).

4 Bistochastic measures

In this section, we investigate a little bit further what elements of coS look
like (the closure is still taken in L2). This can conveniently be done in terms
of bistochastic measures.

4.1 Bistochastic measures and coS

Let a sequence of elements of coS of the form τn :=
∑kn

i=1 α
n
i s

n
i (αn

i ≥ 0,
∑

i α
n
i = 1) converge in L2 to some limit τ . For each n and each x ∈ Ω one

may define the probability measure

µn
x :=

kn
∑

i=1

αn
i δsn

i
(x)
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so that for every x one has

τn(x) =

∫

Ω

y dµn
x(y). (17)

One may also define the nonnegative Radon measure γn on Ω × Ω by

∫

Ω

∫

Ω

f(x, y) dγn(x, y) :=

∫

Ω

(
∫

Ω

f(x, y) dµn
x(y)

)

dx, ∀f ∈ C0
0(Ω × Ω).

Since each sn
i is volume-preserving, one has for every continuous bounded

function f on Ω :

∫

Ω

∫

Ω

f(x) dγn(x, y) =

∫

Ω

∫

Ω

f(y) dγn(x, y) =

∫

Ω

f.

This expresses that the two projections (marginals) of γn equal Lebesgue
measure on Ω; hence γn is a so-called bistochastic measure. Note that bis-
tochastic measures are special cases of Young measures [11]. It is standard
then to prove that the limit τ can also be represented by the measure given by
the weak∗ limit γ of (γn) (or some subsequence if necessary). More precisely,
γ is also a bistochastic measure which therefore admits a disintegration given
by a measurable family of probability measures {µx}x∈Ω:

∫

Ω

∫

Ω

f(x, y)dγ(x, y) :=

∫

Ω

(
∫

Ω

f(x, y) dµx(y)

)

dx, ∀f ∈ C0
0(Ω × Ω),

and

τ(x) =

∫

Ω

y dµx(y), a.e. x ∈ Ω. (18)

Note finally for further use that since γ is bistochastic, one has for every
continuous bounded function f on Ω:

∫

Ω

(
∫

Ω

f(y) dµx(y)

)

dx =

∫

Ω

f(x)dx. (19)

It is also interesting to notice that

∀v convex,

∫

Ω

v(τ(x)) dx ≤

∫

Ω

v(x) dx. (20)

This comes from (18) and Jensen’s inequality. We see in (5) that u saturates
the inequality (20) with respect to τ .
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4.2 The decomposition with bistochastic measures

Let us see now how to use bistochastic measures for the projection prob-
lem (8). As already noticed ∇u is the projection of q0 onto K if and only if
q0 can be decomposed as in (9–10).

We are interested in the nontrivial case q0 /∈ K, denoting by p the projec-
tion of q0 on K−, we then have p 6= 0. Let us assume that p ∈ R+ co(S − id)

(which, unfortunately, is not the case for any q0 ∈ L2(Ω)N ) then p = λ(τ−id)
with λ > 0 and τ ∈ coS. In this case, (12–13) hold.

Using bistochastic measures we see that there exists a measurable family
{µx}x∈Ω of probability measures on Ω, satisfying (19) and such that (18) hold
(where τ now is given by Theorem 3.1). Using (19), (5) and (18), we get

∫

Ω

(
∫

Ω

u(y) dµx(y)

)

dx =

∫

Ω

u =

∫

Ω

u(τ(x))dx =

∫

Ω

u

(
∫

Ω

y dµx(y)

)

dx.

Since u is convex this implies that for a.e. x ∈ Ω:

u

(
∫

Ω

y dµx(y)

)

= u(τ(x)) =

∫

Ω

u(y) dµx(y).

This means that u is essentially affine on Supp(µx). In particular if u is
differentiable at x then Supp(µx) ⊂ ∂u∗(∇u(x)), or equivalently:

u(y) = u(x) + ∇u(x) · (y − x), µx-a.e. y ∈ Ω. (21)

Remark 4. At least formally, one may characterize u, the solution of (2), in
terms of balayages, a well-known notion in potential theory and probabilities
(see Meyer [8]). Indeed if K is a convex compact subset of R

n, the polar cone
of convex functions for the duality between C0(K,R) functions and Radon
measures in K (a duality that is not adapted to our variational problem) can
be represented using Cartier-Fell-Meyer Theorem [4]. This theorem states
that if a signed measure with Jordan decomposition λ − µ is in the polar
cone of C0(K,R) convex functions (so that λ and µ have the same mass
and the same moment), then there exists a measurable family {νx}x∈K of
probability measures on K such that the barycenter of νx is x for all x and
for every f ∈ C0(K,R):

∫

K

f(x) dµ(x) =

∫

K

(
∫

K

f(y) dνx(y)

)

dλ(x). (22)

If u ∈ C0(K,R) is convex and
∫

K
u dµ =

∫

K
udλ then it is easy to see that u

is affine on Supp(νx). Let us also note that if we specify K := Ω, then there
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is no reason for the measures λ and µ above to vanish on ∂Ω. Formally one
would like to use this representation to characterize u, solution of (2), by:

∫

Ω

〈∇u− q0,∇v〉 =

∫

Ω

v d(µ− λ), ∀v ∈ H1,

∫

Ω

ud(µ− λ) = 0 (23)

where λ and µ satisfy (22). We refer to Rochet and Choné [5] for the use
of balayages in variational problems subject to a convexity constraint. Even
though what one formally obtains with balayages and our representation
using bistochastic measures look similar, one has to take the divergence of
our representation to obtain Rochet and Choné’s one. In other words, there
is no obvious link with the kernel {µx} we obtain and the kernel {νx} formally
obtained from Cartier-Fell-Meyer Theorem.

5 Euler-Lagrange Equations

We may use now Proposition 2.1 to derive the Euler-Lagrange equation of
problems of the form (1). In the following, we assume that g is differentiable
with respect to u and its third argument q and satisfies some suitable growth
conditions. Since we consider a minimization problem in H1, we can add
constant functions to the solutions; we deduce that any solution u of (1)
satisfies:

∫

Ω

∂g

∂u
(x, u,∇u) dx = 0. (24)

This implies in particular that there exists a solution ψ to the Laplace equa-
tion with homogeneous Neumann boundary condition:











∆ψ =
∂g

∂u
(x, u,∇u) in Ω,

∂ψ

∂n
= 0 on ∂Ω.

(25)

The variational inequalities associated to (1) can be written as:
∫

Ω

(

∂g

∂q
(x, u,∇u) −∇ψ

)

· ∇(v − u) dx ≥ 0, for all convex v ∈ H1(Ω),

or equivalently

∇ψ −
∂g

∂q
(x, u,∇u) ∈ cone(S − id),

∫

Ω

(

∇ψ −
∂g

∂q
(x, u,∇u)

)

· ∇udx = 0.
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This yields:
∂g

∂q
(x, u,∇u) = ∇ψ − p (26)

for some p ∈ cone(S − id) with
〈

p,∇u
〉

= 0. This implies in particular:

∂g

∂u
(x, u,∇u) − div

(∂g

∂q
(x, u,∇u) + p

)

= 0. (27)

In the special case where p is of the form p = λ(τ − id) with λ > 0 and
τ ∈ coS \ {id} (again, this is not always true and almost impossible to check
a priori), then for almost every x such that (x, u(x)) does not belong to a
face of dimension ≥ 1 of the epigraph of u, then p(x) = 0. In this case, we
get the following alternative (or complementary slackness condition) for the
solutions of (1): for a.e. x ∈ Ω,

• either there is a line segment in the graph of u containing (x, u(x)),

• or
∂g

∂q
(x, u,∇u) = ∇ψ.

6 Regularity

In this final section, given q0 ∈ L2(Ω)N , we consider the projection problem
(2). We recall that its solution u is characterized by the conditions

q0 = ∇u+ p with p ∈ cone(S − id),
〈

∇u, p
〉

= 0.

Proposition 6.1 Let us assume that p ∈ R+ co(S − id).

1. if q0 is continuous at x0 ∈ Ω then u is differentiable at x0,

2. if q0 ∈ C0(Ω,RN) then u ∈ C1(Ω,R) and if q0 ∈ C0,α(Ω,RN) for some
α ∈ (0, 1) then u ∈ C1,α(Ω,R).

Proof. If p = 0, there is nothing to prove, by assumption we therefore
have p = λ(τ − id) with λ > 0 and τ ∈ coS \ {id}. Using the representation
(18) of elements of coS as moments of bistochastic measures, we deduce that
there exists a measurable family of probability measures {µx}x∈Ω such that:

τ(x) =

∫

Ω

y dµx(y), a.e. x ∈ Ω. (28)
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1. Assume by contradiction that q0 is continuous at x0 ∈ Ω and ∂u(x0)
is not reduced to a point. With no loss of generality we may assume that
u(x0) = 0 and that 0 belongs to the relative interior of ∂u(x0). By a standard
convex analysis argument, there exist k ≤ N + 1, (α1, · · · , αk) ∈ (0, 1)k such
that

∑k
ı=1 αi = 1, sequences (xi

n)n ∈ ΩN, for i = 1, · · · , k such that u is
differentiable at every xi

n, q0(x
i
n) = ∇u(xi

n)+λ(τ(xi
n)−xi

n), the measure µxi
n

is well-defined at xi
n and:

lim
n
xi

n = x0, lim
n

∇u(xi
n) = γi 6= 0, i = 1, · · · , k, and

k
∑

ı=1

αiγi = 0

We then have:

q0(x
i
n) = ∇u(xi

n) + λ

(
∫

Ω

ydµxi
n
(y) − xi

n

)

(29)

hence:

k
∑

i=1

αiγi · q0(x
i
n) =

k
∑

i=1

αiγi · ∇u(x
i
n) + λ

k
∑

i=1

αi

(
∫

Ω

y · γidµxi
n
(y) − γi · x

i
n

)

(30)
Using the fact that q0 is continuous at x0 and passing to the limit yields:

0 > −
k

∑

i=1

αi|γi|
2 = λ lim

n

k
∑

i=1

αi

(
∫

Ω

y · γidµxi
n
(y)

)

(31)

Moreover, Supp(µxi
n
) ⊂ ∂u∗(∇u(xi

n)) so that for µxi
n
-a.e. y one has:

u(y) = u(xi
n) + ∇u(xi

n) · (y − xi
n) (32)

which can also be written as

γi · y = u(y) + εi
n(y) (33)

with εi
n(y) = ∇u(xi

n) · xi
n − u(xi

n) + (γi −∇u(xi
n)) · y which tends to 0 as n

tends to ∞. Using (33), and the fact that u ≥ u(x0) = 0 we get:

lim
n

∫

Ω

y · γidµxi
n
(y) ≥ 0 for all i = 1, · · · , k

and the latter contradicts (31).

2. The previous argument actually proves that ∇u is continuous on Ω
provided q0 is. This implies that τ is continuous on Ω too and

q0(x) = ∇u(x) + λ(τ(x) − x), ∀x ∈ Ω. (34)

13



In addition, since u is affine between x and τ(x), we also have:

∇u(x) = ∇u(τ(x)), ∀x ∈ Ω. (35)

Let (x, y) ∈ Ω × Ω, using (34), one gets

|∇u(x) −∇u(y)|2 + λ(τ(x) − τ(y)) · (∇u(x) −∇u(y))

= (q0(x) − q0(y) + λ(x− y)) · (∇u(x) −∇u(y)). (36)

Using (35) yields

(τ(x)− τ(y)) · (∇u(x)−∇u(y)) = (τ(x)− τ(y)) · (∇u(τ(x))−∇u(τ(y)) ≥ 0.

With (36), we thus obtain:

|∇u(x) −∇u(y)| ≤ |q0(x) − q0(y)| + λ|x− y|

If q0 ∈ C0,α(Ω,RN) for some α ∈ (0, 1), the previous inequality implies that
u ∈ C1,α(Ω,R) and the proof is complete.

Theorem 6.1 states two kinds of regularity results that are of quite differ-
ent nature: the first assertion states a pointwise regularity result while the
second states a global regularity result. Both statements are obtained under
the assumption that p ∈ R+ co(S − id). This assumption is not satisfactory,
since it is not always satisfied and at least very difficult to check. Concerning
the global regularity result, we have not been able to remove it although we
believe that the result remains true for a general p ∈ cone(S − id). Let us
mention however that the proof above carries over when p is of the form

(σ − id)f with f ∈ C0(Ω,R+) and σ in the closed convex hull of Sf defined
in Remark 1 (but again this is a special case). We refer the reader to [3] for
other C1 regularity results obtained with totally different arguments.

The pointwise regularity part is more surprising (from the point of elliptic
regularity theory for instance), and it does not hold in general (i.e. when p /∈
R+ co(S− id)) as the next counter-example shows. Let Ω := (−3, 3)×(−1, 1)
and define for all x = (x1, x2) ∈ Ω:

u0(x) :=











max(|x1 + 2|, |x2|) − 1 if max(|x1 + 2|, |x2|) ≤ 1

max(|x1 − 2|, |x2|) − 1 if max(|x1 − 2|, |x2|) ≤ 1

0 otherwise.

14



Define q0 := ∇u0 and u as the largest convex minorant of u0. We then have
q0 = ∇u+∇(u0−u). Since u0−u ≥ 0 and u0 = u on ∂Ω, ∇(u0−u) ∈ K− (see
Remark 1 ). On the other hand, it is easy to check that

∫

Ω
∇u·∇(u0−u) = 0.

This proves that ∇u is the projection of q0 := ∇u0 on K. Let us remark now
that u is singular on the segment [(−2, 0), (2, 0)] whereas q0 is continuous
on this segment except at the points (−2, 0), (−1, 0), (1, 0) and (2, 0). This
proves that the pointwise regularity statement is not true without additional
assumption on the multiplier p.

Acknowledgements: The authors thank Yann Brenier for bringing to
their attention Proposition 2.1 and for stimulating discussions.
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