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Abstract

We study the differentiability properties of concave functionals de-
fined as integrals of the quantile. These functionals generalize the rank
dependent expected utility and are called rank-linear utilities in deci-
sion theory. Their superdifferential is described as well as the set of
random variables where they are Gâteaux-differentiable. Our results
generalize those obtained for the rank dependent expected utility in
[1].
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1 Introduction

The aim of this paper is to study differentiability properties of some concave
quantile-based integral functionals. Such law-invariant utilities are some-
times called rank-linear utilities (henceforth RLU) and are of the form:

V (X) :=

∫ 1

0
L(t, F−1

X (t))dt

where F−1
X is a version of the quantile of the random variable X and L

satisfies some assumptions of concavity and submodularity ensuring that
V is concave. Those utilities were studied by Green and Jullien [10] who
showed that they are characterized by an axiom of ordinal independence,
weaker than the von Neumann-Morgenstern independence axiom. We also
refer to the papers of Chew and Epstein [5] and Chew and Wakker [6] and
the references therein for the decision-theoretic foundations of those utilities.

The issue of differentiability of an RLU naturally arises in a variety of
problems : efficient risk sharing rules between RLU agents, demand of an
RLU agent for a risky asset, structure of equilibria... Due to the analogy
-up to a minus sign- between RLU functionals and law-invariant convex risk
measures (although RLU do not fulfill the cash invariance property), we
also believe that the results of the present paper may be useful in some
risk-measures problems.

When L(t, x) = f ′(1 − t)U(x), with f a convex distortion satisfying
f(0) = 0, f(1) = 1 and U a concave utility index then V is a rank-dependent
utility (RDU), in the linear case U(x) = x then V is a Yaari utility. In the
case of a Yaari utility, V is the support function of the core of the distortion
of the underlying probability by f , hence differentiablity properties of V are
tightly linked to the geometry of the core. The differentiability properties of
RDU functionals have been studied in [1] using a characterization of the core
of convex distortions of a probability. For a more general L, the previous
approach is not adapted and different arguments have to be developed to
compute the superdifferential of V and the set of random variables where V
is Gâteaux-differentiable.

Some basic definitions and properties are given in section 2. The su-
perdifferential of an RLU is determined in section 3. Some applications are
given in section 4, including the identification of the set where an RLU is
Gâteaux-differentiable. A technical lemma, used in the proof of the repre-
sentation of the superdifferential of an RLU is proved in section 5.

2 Rank linear utilities

We recall that a probability space (Ω,F , P ) is nonatomic if there is no
A ∈ F such that P (A) > 0 and P (B) ∈ {0, P (A)} for every B ∈ F such
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that B ⊂ A. In the sequel, we will always work on a state space (Ω,F , P )
assumed to be nonatomic. We also recall that if (Ω,F , P ) is nonatomic,
there exists a random variable U on (Ω,F , P ) such that the probability law
of U is the uniform law on [0, 1] (this property is actually a characterization).

Let X be a random variable on (Ω,F , P ) and let FX(t) = P (X ≤ t), t ∈
R denote its distribution function. The generalized inverse of FX is defined
by:

F−1
X (t) = inf{z ∈ R : FX(z) > t}, for all t ∈ (0, 1)

We also define the set or random variables with a uniform probability law:

U := {U ∈ L∞(Ω,F , P ) : F−1
U (t) = t, ∀t ∈ [0, 1]} (1)

We will use in the sequel a decomposition result due to Ryff (see [11]):

Proposition 1 Let X ∈ L∞(Ω,F , P ) there exists U ∈ U such that X =
F−1

X ◦ U .

Let us define
UX := {U ∈ U such that X = F−1

X ◦ U}.

Ryff’s result implies that UX 6= ∅. Moreover, if X has no atoms (i.e. FX

is continuous) then UX = {FX ◦ X}. A characterization of UX can be
given using the concept of comonotonicity. Let us first recall the following
definition:

Definition 1 Two random variables X and Y on (Ω,F , P ) are said to be
comonotone if:

(X(ω2) − X(ω1))(Y (ω2) − Y (ω1)) ≥ 0, P ⊗ P a.s. (2)

Similarly X and Y on (Ω,F , P ) are said to be anticomonotone if X and −Y
are comonotone.

The set UX may be characterized as follows:

Lemma 1 Let X ∈ L∞(Ω,F , P ), then:

UX = {U ∈ U such that U and X are comonotone} .

Moreover for every U ∈ UX , one has P -a.s. U(ω) ∈ [FX(X(ω)−), FX(X(ω))].

Proof. Since F−1
X is nondecreasing, any element of UX is comonotone with

X. Now assume that U ∈ U is comonotone with X:

(X(ω2) − X(ω1))(U(ω2) − U(ω1)) ≥ 0, P ⊗ P a.s. (3)
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and let us prove that X = F−1
X ◦U . By (3), we obtain that for P -a.e. ω ∈ Ω,

one has:

P ({ω′ ∈ Ω : U(ω′) < U(ω)}) = U(ω) ≤ FX(X(ω))

and
P ({ω′ ∈ Ω : X(ω′) < X(ω)}) = FX(X(ω)−) ≤ U(ω).

Hence U(ω) ∈ [FX(X(ω)−), FX(X(ω))]. If FX is continuous at X(ω), then
U(ω) = FX(X(ω)) and X(ω) = F−1

X (U(ω)). Now if X(ω) = x with FX

discontinuous at x, F−1
X is constant equal to x on [FX(x−), FX(x)] hence

F−1
X (U(ω)) = X(ω) and the proof is complete.

In the remainder of the paper, we shall study differentiability properties
of quantile based-utilities defined by integrals. These utilities generalize the
rank dependent expected utility with a convex continuous distortion and are
of the form:

V (X) :=

∫ 1

0
L(t, F−1

X (t))dt, for all X ∈ L∞(Ω,F , P ). (4)

where F−1
X is a version of the quantile of the random variable X. The previ-

ous class of utilities is sometimes refered to as rank-linear utility (henceforth
RLU) in decision theory (see [10], [5], [6] and the references therein). We
will always assume in the sequel the following properties on L:

• L ∈ C0([0, 1] × R, R),

• L(t, .) is concave nondecreasing for every t ∈ [0, 1],

• L(t, .) is differentiable for every t ∈ [0, 1] and ∂xL(., .) ∈ C0([0, 1]×, R),

• L is submodular i.e for every (t1, t2, x1, x2) ∈ [0, 1]2 × R
2:

t2 ≥ t1, x2 ≥ x1 ⇒ L(t1, x1) + L(t2, x2) ≤ L(t1, x2) + L(t2, x1).

A stronger assumption than submodularity is strict submodularity, de-
fined by: for every (t1, t2, x1, x2) ∈ [0, 1]2 × R

2:

t2 > t1, x2 > x1 ⇒ L(t1, x1) + L(t2, x2) < L(t1, x2) + L(t2, x1). (5)

When L is of class C2, submodularity of L is equivalent to ∂2
txL ≤ 0

and a sufficient condition for strict submodularity of L is ∂2
txL < 0. When

L is of class C1 a sufficient condition for strict submodularity of L is that
∂xL(t, x) is decreasing in t for every x. Classical examples of submodular L’s
are given by functions of the form L(t, x) = f(t)g(x) with f nonincreasing
and g nondecreasing, L(t, x) = f(t + x) with f concave, L(x, y) = g(t − x)

4



with g convex... When L(t, x) = g(t)U(x) with g nonincreasing and U
concave nondecreasing, the corresponding V is an RDU functional with
convex distortion.

The assumption of monotonicity clearly ensures monotonicity of V (in
the sense that X ≥ Y P -a.s implies V (X) ≥ V (Y ))). The assumptions
of concavity and submodularity above (which also appear naturally in [10],
related to risk aversion) ensure that V is a concave functional (which is not
straightforward at first glance), as shown in proposition 2. Actually, more is
true: the assumptions of monotonicity, concavity and submodularity above
are indeed necessary and sufficient for V to be monotone, concave and u.s.c
for the weak ∗ topology of L∞(Ω,F , P ) (see [4] for a proof).

3 The superdifferential of an RLU

3.1 Preliminary results

In the sequel, we will denote by E, expectation with respect to P . Under
the previous assumptions of concavity and submodularity, V defined by (4)
admits a particular concave representation, as the next result shows:

Proposition 2 Under the general assumptions of the paper, for every X ∈
L∞(Ω,F , P ), one has:

V (X) = inf
U∈U

E(L(U,X)) (6)

Moreover, defining:

VX := {U ∈ U : V (X) = E(L(U,X))}

one has UX ⊂ VX . In particular, V is concave and the infimum in (6) is a
minimum. Finally, under the additional assumption (5), one has UX = VX .

Proof. By definition of V and UX , we have for every U ∈ UX :

E(L(U,X)) = E(L(U,F−1
X ◦ U)) =

∫ 1

0
L(t, F−1

X (t))dt = V (X).

Now for every U ∈ U , the submodular Hardy-Littlewood inequality (see for
instance [2]) implies:

V (X) ≤ E(L(U,X)) (7)

which implies the representation (6) and UX ⊂ VX . When (5) is satisfied,
inequality (7) is strict unless U and X are comonotone (see for instance [2])
hence U ∈ UX by lemma 1. We then have UX = VX in this case.
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Let X ∈ L∞(Ω,F , P ), the superdifferential of V at X is by definition:

∂V (X) := {µ ∈ (L∞)
′

: V (Y ) − V (X) ≤ 〈µ, Y − X〉 , ∀ Y ∈ L∞}.

Since V is finite and concave, general convex analysis results (see [7]) imply
that V is continuous (for the strong topology of L∞) hence everywhere
superdiffentiable which by definition means ∂V (X) 6= ∅. Moreover since V
is monotone, ∂V (X) is a subset of:

(L∞)
′

+ := {µ ∈ (L∞)
′

: 〈µ, Y 〉 ≥ 0, ∀ Y ∈ L∞, Y ≥ 0}.

In other words, ∂V (X) consists of finitely additive nonnegative measures
on (Ω,F , P ). More is true: due to the special form (6), ∂V (X) is in fact
included in L1(Ω,F , P ):

Lemma 2 For all X ∈ L∞(Ω,F , P ), ∂V (X) is a closed convex subset of
L1(Ω,F , P ).

Proof. Since the convex set ∂V (X) is weak ∗ closed in (L∞)′, it is enough
to show that ∂V (X) ⊂ L1(Ω,F , P ). Let µ ∈ ∂V (X), A ∈ F and UA ∈
UX−1A

we then have:

E(L(UA, X − 1A)) − E(L(UA, X)) ≤ V (X − 1A) − V (X) ≤ −µ(A).

By our assumptions on L, there exists c > 0 such that L(u, x−1)−L(u, x) ≥
−c for all (u, x) ∈ [0, 1] × [−‖X‖L∞ , ‖X‖L∞ ] which yields:

V (X−1A)−V (X) =

∫

A

[L(UA(ω), X(ω)−1)−L(UA(ω), X(ω))]dP (ω) ≥ −cP (A).

We then obtain 0 ≤ µ(A) ≤ cP (A), which implies that µ is a σ-additive
nonnegative measure absolutely continuous with respect to P , in other words
µ ∈ L1(Ω,F , P ).

3.2 Main result

In view of formula (6), we see that computing ∂V (X) amounts to comput-
ing the superdifferential of a lower envelope. General envelope theorems (see
[12]) cover the case where the infimum is taken with respect to a parame-
ter in a compact set. In the present problem (where the parameter space
is U), getting some sort of compactness requires to combine carefully a.s.
convergence and convergence in law arguments, technical details are defered
to section 5. Leaving apart this compactness issue, the following result may
be viewed as classical and so are the main lines of its proof.
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Theorem 1 Let X ∈ L∞(Ω,F , P ) then:

∂V (X) := co{∂xL(U,X), U ∈ VX}

where co denotes closed convex hull operation for the L1(Ω,F , P ) topology.
Under the additional condition (5), we then have:

∂V (X) := co{∂xL(U,X), U ∈ UX}

Proof. Define
B := co{∂xL(U,X), U ∈ VX}

If U ∈ VX and Y ∈ L∞(Ω,F , P ), by concavity of L(u, .) we have:

V (Y ) − V (X) ≤ E(L(U, Y ) − L(U,X)) ≤ E(∂xL(U,X)(Y − X)

hence ∂xL(U,X) ∈ ∂V (X). Since ∂V (X) is convex and closed in L1, we
then have B ⊂ ∂V (X).

Given C a closed convex of L1(Ω,F , P ), we define the support function
of C by:

σC(Y ) := inf
Z∈C

E(Y Z), ∀ Y ∈ L∞(Ω,F , P ).

Since both B and ∂V (X) are convex and closed in L1, a standard separation
argument implies that σ∂V (X) = σB implies B = ∂V (X). We already know
that σ∂V (X) ≤ σB. To show the converse inequality, we remark that by a
standard convex analysis result (see [7]), for all Y ∈ L∞(Ω,F , P ), one has:

σ∂V (X)(Y ) = D+V (X;Y ) := lim
t→0+

1

t
[V (X + tY ) − V (X)] (8)

For a given Y ∈ L∞(Ω,F , P ) and t > 0, let Ut ∈ UX+tY and let θt be the
joint probability law of (Ut, X+tY, Y ). There exists a sequence tn decreasing
to 0 such that θn := θtn weakly ∗ converges to some probability measure
θ supported on [0, 1] × [−‖X‖L∞ , ‖X‖L∞ ] × [−‖Y ‖L∞ , ‖Y ‖L∞ ]. We claim
that there exists U ∈ VX such that the joint probability law of (U,X, Y ) is
θ. The proof of this claim is rather long and will be given separately. Let
us admit this result and proceed to the end of the proof. By concavity and
since ∂xL(U,X) ∈ B, we get:

σ∂V (X)(Y ) =limn
1

tn
[V (X + tnY ) − V (X)]

≥lim infn
1

tn
E(L(Utn , X + tnY ) − L(Utn , X))

≥lim infn E(∂xL(Utn , X + tnY )Y )

=

∫

[0,1]×R2

∂xL(u, x, y)ydθ(u, x, y)

=E(∂xL(U,X)Y ) ≥ σB(Y ).
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this proves that ∂V (X) = B. Finally, when (5) is satisfied, it follows from
proposition 2 that VX = UX , we thus obtain the desired representation of
∂V (X).

In the previous proof, we have used the following technical result that is
proved in section 5:

Lemma 3 Using the same notations as in the previous proof, there exists
U ∈ VX such that the joint probability law of (U,X, Y ) is θ.

4 Applications

4.1 Comonotonicity and single-valuedness

Under the assumption (5), we may first deduce from theorem 1 that elements
of ∂V (X) are anticomonotone with X:

Proposition 3 In addition to the general assumptions of the paper, assume
that L satisfies (5) and let X ∈ L∞(Ω,F , P ), then every element of ∂V (X)
is anticomonotone with X.

Proof. Let us first remark that the set of L1(Ω,F , P ) random variables
that are comonotone with X is convex and closed for the L1 topology.
Thanks to theorem 1 and lemma 1, it is therefore enough to prove that
∂xL(U,X) is anticomonotone with X for every U ∈ UX . If U ∈ UX ,
X = F−1

X ◦U and ∂xL(U,X) = ∂xL(U,F−1
X ◦U). Hence, if we prove that the

function t 7→ φ(t) := ∂xL(t, γ(t)) is nonincreasing on [0, 1] for every nonde-
creasing γ, the desired result will follow. Assume first that L is of class C 2

and γ is differentiable, we then have:

φ′(t) = ∂2
txL(t, γ(t)) + ∂2

xxL(t, γ(t))γ ′(t) ≤ 0

so that φ is nondecreasing. In the general case, we can approximate (by
convolution for instance) L and γ by smooth functions Ln and γn satisfying
∂2

txLn ≤ 0, ∂2
xxLn ≤ 0 and γ′

n ≥ 0. The desired result then follows from
letting n go to +∞.

A second qualitative consequence of theorem 1, is that all the elements
of ∂V (X) coincide on the set of ω’s satisfying P (X = X(ω)) = 0:

Proposition 4 In addition to the general assumptions of the paper, assume
that L satisfies (5) and let X ∈ L∞(Ω,F , P ). Defining:

Ωr := {ω ∈ Ω : FX is continuous at X(ω)}
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then for any Z ∈ ∂V (X) one has:

Z(ω) = ∂xL(FX(X(ω)), X(ω)) for P -a.e. ω ∈ Ωr.

Proof. The claim immediately follows from theorem 1 and the fact that
for every U ∈ UX one has U = FX ◦ X P -a.s. on Ωr by lemma 1.

4.2 Gâteaux differentiability

Let us recall that V is Gâteaux-differentiable at X ∈ L∞(Ω,F , P ), if the
map:

Y ∈ L∞(Ω,F , P ) 7→ D+V (X;Y ) := lim
t→0+

1

t
[V (X + tY ) − V (X)]

defines a continuous linear form on L∞(Ω,F , P ), simply denoted V ′(X). It
follows from (8) that V is Gâteaux-differentiable at X ∈ L∞(Ω,F , P ), if and
only if ∂V (X) consists of a single element. In this case ∂V (X) = {V ′(X)}.
Under the following assumption (stronger than (5)):

t 7→ ∂xL(t, x) is decreasing on [0, 1], for all x ∈ R. (9)

the set where V is Gâteaux-differentiable is characterized by the following:

Proposition 5 In addition to the general assumptions of the paper, assume
that L satisfies (9) and let X ∈ L∞(Ω,F , P ), V is Gâteaux-differentiable at
X if and only if FX is continuous, in this case, one has:

∂V (X) = {V ′(X)} = {∂xL(FX ◦ X,X)}.

Proof. If FX is continuous then VX = UX = {FX ◦ X}. The Gâteaux-
differentiability result then follows from theorem 1. To prove the ”only if
part” assume that FX is discontinuous at x i.e. P (X = x) > 0 and let
us prove that ∂V (X) contains two different elements. Let U ∈ UX , since
U1{X=x} has no atom on {X = x} and the space ({X = x},F ∩ {X =
x}, P/P ({X = x})) is non atomic, there exists a uniform random variable
W on that space and F increasing such that U1{X=x} = F ◦W . Define then

Ũ := U1{X 6=x} + F (1 − W )1{X=x}.

On the one hand, by construction Ũ ∈ U and V (X) = E(L(U,X)) =
E(L(Ũ ,X) hence Ũ ∈ UX . On the other hand, from theorem 1, both
∂xL(U,X) and ∂xL(Ũ ,X) belong to ∂V (X). Finally, by injectivity of F
and assumption (9), one has:

P ({∂xL(Ũ ,X) 6= ∂xL(U,X)}) = P ({Ũ 6= U}) = P ({X = x}) > 0

which proves that V is not Gâteaux-differentiable at X.
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5 Proof of lemma 3

It remains to prove the following:

Lemma 4 Using the same notations as in the proof of theorem 1, there
exists U ∈ VX such that the joint probability law of (U,X, Y ) is θ.

Proof.

Step1: preliminary remarks

Let us recall that θ is a compactly supported probability measure on
R

3 whose first marginal (on the variable u say) is the Lebesgue measure on
[0, 1] and whose marginal on the last two variables (x, y) is P(X,Y ), the joint
probability law of the pair (X,Y ). In the sequel, we shall denote by θx,y

the conditional probability law of the first component u given x and y. To
be more precise, these conditional probabilities are characterized by the fact
that, for all Borel subsets A, B, C of R we have:

θ(A × B × C) :=

∫

B×C

θx,y(A)dP(X,Y )(x, y).

For notational simplicity, we set (Un, Xn) := (Utn , X + tnY ). By defi-
nition of UX , for each n, Xn = F−1

Xn
◦ Un, this can also be written in the

form:
Un ∈ ∂gn(Xn) = ∂gn(X + tnY ) (10)

For some convex function gn, that we can assume to be 1-Lipschitz on R

and to satisfy gn(0) = 0. By Ascoli’s Theorem, taking if necessary some
(not relabeled) subsequence, we may assume that gn converges uniformly on
compact sets to some convex function g. Let S be the set where g fails to
be differentiable, we may write S = {xi}i∈I with I at most countable. Let
us also define:

Ωi := {X = xi} ∀ i ∈ I, and Ωr := {X /∈ S}.

Step 2: convergence on Ωr

Let ω ∈ Ωr, we claim that Un(ω) converges to g′(X(ω)). Indeed, Un(ω)
takes values of [0, 1] and if u ∈ [0, 1] is a cluster point of the sequence
Un(ω), using the fact that Xn converges uniformly to X, we easily obtain
u ∈ ∂g(X(ω)) and since ω ∈ Ωr we deduce that u = g′(X(ω)). This implies
that g′(X(ω)) is the unique cluster point of the sequence Un(ω), hence Un(ω)
converges to g′(X(ω)).

Step 3: behavior on Ωi

If ω ∈ Ωi, (10) takes the form Un(ω) ∈ ∂gn(xi + tnY (ω)) which can be
rewritten as:

Un(ω) ∈ ∂hn,i(Y (ω)) with hn,i(y) :=
1

tn
(gn(xi + tny) − gn(xi)). (11)
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Noting that (hn,i)n is a family of 1-Lipschitz convex functions, arguing as
in step 1, we may assume (after an extraction depending on i) that hn,i

converges uniformly on compact subsets to some convex function hi. By a
diagonal extraction argument, we may also assume that hn,i converges to
some hi for every i ∈ I. Let Si := {yij}j∈Ji

be the set where hi fails to be
differentiable, and:

Ωij := {X = xi, Y = yij} ∀ j ∈ Ji, and Ωr,i := Ωi ∩ {Y /∈ Si}.

By the same arguments as in step 1, Un converges to h′
i(Y ) on Ωr,i.

Step 4: the case of Ωij

From the previous steps, the only case where we have no information
on the convergence of Un(ω) is when ω ∈ Ωij with i ∈ I, j ∈ Ji such that
P (Ωij) > 0. In that case, let us remark that (Ωij ,F ∩Ωij, P/P (Ωij)) is non
atomic hence there exists a random variable Uij on that space whose prob-
ability law is qij , where by definition qij := θxi,yij denotes the conditional
probability of θ given x = xi and y = yij.

Step 5: construction of U

Let us define:

U := 1Ωrg
′(X) +

∑

i∈I

1Ωr,i
h′

i(Y ) +
∑

i∈I

∑

j∈Ji :P (Ωij)>0

1Ωij
Uij (12)

and let us prove that the probability law of (U,X, Y ) is θ. Let H ∈
C0(R3, R), we have:

∫

R3

Hdθ = lim
n

E(H(Un, Xn, Y )) =

∫

Ωr

H(g′(X(ω)), X(ω), Y (ω))dP (ω)

+
∑

i∈I

∫

Ωr,i

H(h′
i(Y (ω)), X(ω), Y (ω))dP (ω)

+
∑

i∈I

∑

j∈Ji

P (Ωij)

∫ 1

0
H(u, xi, yij)dqij(u)

=E(H(U,X, Y ))

Step 6: end of the proof

It remains to prove that U ∈ VX . The fact that U ∈ U follows from the
fact that the first marginal of θ is uniform on [0, 1]. Finally V (Xn) converges
to V (X) so that:

V (X) = lim
n

E(L(Un, Xn) = E(L(U,X))

which proves U ∈ VX .
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