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MONOTONE OPERATORS AND THE
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Abstract. For the problem of minimizing a lower semicontinuous proper convex function f on a
Hilbert space, the proximal point algorithm in exact form generates a sequence {z"}by taking Zk+1 to
be the minimizer of f(z) + (1 /2Ck)I/Z - z k112, where Ck > O. This algorithm is of interest for several
reasons, but especially because of its role in certain computational methods based on duality, such as
the Hestenes-Powell method of multipliers in nonlinear programming. It is investigated here in a more
general form where the requirement for exact minimization at each iteration is weakened, and the
subdifferential af is replaced by an arbitrary maximal monotone operator T. Convergence is estab-
lished under several criteria amenable to implementation. The rate of convergence is shown to be
"typically" linear with an arbitrarily good modulus if Ck stays large enough, in fact superlinear if
Ck -> 00. The case of T = ilf is treated in extra detail. Application is also made to a related case
corresponding to minimax problems.

1. Introduction. Let H be a real Hilbert space with inner product ( .,'). A
multifunction T: H ~ H is said to be a monotone operator if

(1.1) (z - Z', W- w') ~ 0 whenever WE T(z), WiE T(Z'),

It is said to be maximal monotone if, in addition, the graph
(1.2) G(T)={(z, w)EHXHlwE T(z)}

is not properly contained in the graph of any other monotone operator
T:H~H.

Such operators have been studied extensively because of their role in convex
analysis and certain partial differential equations. A fundamental problem is that
of determining an element z such that OE T(z),

For example, if T is the subdifferential af of a lower semicontinuous convex
function / : H ~ (-00, +00], /¢+OO, then Tis maximal monotone (see Minty [15]
or Moreau [18]), and the relation 0 E T(z) means that fez) = min f. The problem is
then one of minimization subject to implicit constraints (the points where fez) =
+00 being effectively forbidden from the competition),

The basic case of variational inequalities corresponds to

(1.3)
{

To(z)+ Nv(z)
T(z)=

o
if ZED,

if zeD,

where D is a nonempty closed convex subset of H, To : D ~ H is single-valued,
monotone and hemicontinuous (i.e. continuous along each line segment in H with
respect to the weak topology), and Nv(z) is the normal cone to D at z:

No(Z)={WEHI(z-u, w)~O, VUED}.
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878 R. TYRRELL ROCKAFELLAR

The maximal monotonicity of such a multifunction T was proved by Rockafellar
[27]. The relation 0 E T(z) reduces to - To(z) E ND(z), or the so-called variational
inequality:
(1.4) ZED and (z-u, To(z»~O forall iED.

If D is a cone, this condition can be written as

ZED, -To(Z)EDO (the polar of D), and (z, To(z»=O,

and the problem of finding such a z is an important instance of the well-known
complementarity problem of mathematical programming.

Another example corresponds to minimax problems. Let H be a product of
Hilbert spaces HI and H2' and let L : H -,> [-00, +00] be such that L(x, y) is
convex in x E HI and concave in y E H2• For each z = (x, y), let Tdz) be the set of
all w = (v, u) such that

L(x', y)-(x', v)+(y, u)~L(x, y)-(x, v)+(y, u)

(l.5) ~L(x, y')-(x, v)+(y', u)

for all x' E HI. y' E H2•

If L is "closed and proper" in a certain general sense, then TL is maximal
monotone; see Rockafellar [24]. The global saddle points of L (with respect to
minimizing in x and maximizing in y) are the elements z = (x, y) such that
OE Tdz).

In this paper, we study a fundamental algorithm for solving 0 E T(z) in the
case of an arbitrary maximal monotone operator T.The algorithm is based on the
fact (see Minty [14]) that for each Z E Hand c > 0 there is a unique U E H such that
z - U E cT(u), or in other words,

ZE(l+Cn(U).

The operator P = (I +cn -I is therefore single-valued from all of H into H. It is
also nonexpansive:

(l.6) IIP(z)- P(z')11~llz - z'll,
and one has P(z) = z if and only if 0 E T(z). P is called the proximal mapping
associated with c'T, following the terminology of Moreau [18] for the case of
T=af.

The proximal point algorithm generates for any starting point ZO a sequence
{z"} in H by the approximate rule

(l.7) Zk+1 = Pk(Zk), where P; = (I + Ck tv'.
Here {cd is some sequence of positive real numbers. In the case of T = at, this
procedure reduces to

(1.8) k+1 . A.. ( )
Z = arg nun w« z ,

z

where
(l.9)

= a



PROXIMAL POINT ALGORITHM 879

(see § 4). For T corresponding to a convex-concave function L, it becomes

(110) (k+l k+l) .. A( ). x , y = arg rntrnrnax k x, Y ,
x.y

where

(1.11)

[

(see § 5).
Results on the convergence of the proximal point algorithm have already

been obtained by Martinet for certain cases where Ck == c. He showed in [12], [13]
that if T is of the form (1.3) with D bounded, and if true equality is taken in (1.7),
then Zk converges in the weak topology to a particular ZOO such that OE T(z'Xl
Similarly if T = at and the level sets

{z E Hlt(z)~a}, a E R,

are all weakly compact, in which event it is also true that t(Zk) ~ t(zX>).= min f.
These results of Martinet are based on a more general theorem concerning

operators V with the property

(1.12) IIV(z)- V(z')112~lIz-z'1I2-1I(I- V)(z)-(I- V)(z')f

This class includes (I +cT)-1 (d. Proposition l(c) below). If V: C ~ C satisfies
(1.12), where C is a nonempty, closed, bounded, convex subset of H, then for any
starting point ZOE C the sequence {Zk} generated by Zk+l = V(Zk) converges
weakly to some fixed point of V. This theorem is a corollary of one of Opial [32]
treating iterates of AI + (1- A) U when U is nonexpansive, 0 <A < 1. In fact, V
satisfies (1.12) if and only if V = !(I + U), where U is nonexpansive. Genel and
Lindenstrauss [33] have recently furnished an example of such a mapping V for
which {Zk} does not converge strongly. However, this V does not appear to be of
the form (I +cT)-1 for c >0 and T maximal monotone.

The question of whether the weak convergence established by Martinet can
be improved to strong convergence thus remains open. The answer is known to be
affirmative if T = at with t quadratic. This follows from a theorem of Krasnoselskii
[10], as has been noted by Kryanev [11]. In the quadratic case, at reduces to a
densely defined, single-valued mapping of the form x ~ A (x) - b, where A is a
nonnegative, closed, self-adjoint linear operator. Then the relation OE T(z) is
equivalent to A(z) = b.

Strong convergence of the algorithm in its exact form with Zk+l = Pdzk) is
also assured if Ck is bounded away from zero and T is strongly monotone (with
modulus a > 0), i.e., in place of (1.1) one has

(1.13) (z-z', w-w')~allz-z'1I2 whenever WE T(z), W'E T(z').

Indeed, the latter condition means that T' = T - al is monotone, and hence the
mapping P~ = (I +c~T'Y' 1 is nonexpansive for any c~> 0; taking c~=

Ck(l +acd-1 one has

P~[(1- aCk(1 +acd-1)1 + Ck(1 + aCkr-1 Tr1 = [(1 +acd-1(I + CkT)r1

or
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so that the nonexpansiveness of P~yields

(1.14) IIPdz)- Pdz')I1~(1 +ack)-lllz - z"] for all z, Z' E H.

In particular, this implies Pk has a unique fixed point, which must then be the
unique point ZOO satisfying OE T(zoo). One has

(1.15) IIzk+l_zoolI=IIPdzk)_Pdzoo)II~(1+acd-Illzk_zooll for all . k,

so if Ck ~ C >0 for all k sufficiently large the sequence {z k} converges to the
solution ZOO of the problem, not only strongly, but at least as fast as the linear rate
with coefficient (1 +ac)-I < 1. If Ck -+ 00, the convergence is superlinear:

. Ilzk+l- zooll
lim II k· 0011= O.k ...•oo Z - Z

Unfortunately, the assumption that T is strongly monotone excludes some of
the most important applications, such as to typical problems of convex program-
ming, and it is important therefore to study convergence under weaker assump-
tions. Of course, from a practical point of view it is also essential to replace the
equation Zk+1 = Pdzk) by a looser relation which is computationally implernenta-
ble for a wide variety of problems.

Two general criteria for the approximate calculation of Pdzk) are treated
here:

(A)

(B) \

It is shown (Proposition 3) that these are implied respectively by

(A')
00
L Ek <00,

k~O

and

(B')

where

(1.16) Sk(Z) = T(z)+ck"\z - Zk).

(Note that these conditions are certainly satisfied if Zk+1 = Pk(Zk).)
We prove under very mild assumptions (Theorem 1) that (A) (or (A'»

guarantees (for any starting point z") weak convergence of {Zk} to a particular
solution ZOO to 0 E T(z), even though there may be more than one solution. (In
general, the set of all such points z forms a closed convex set in H, denoted by
11(0).) The results of Martinet are thereby extended to a much larger class of
problems, and with only Zk+1 =Pdzk).

When (B) (or (B'» is also satisfied and the multifunction II happens to be
"Lipschitz continuous at 0", we are able to show (Theorem 2) that the con-

?tn
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vergence is at least at a linear rate, where the modulus can be brought arbitrarily
close to zero by taking ci. large enough. If c; ~ 00, one has superlinear con-
vergence.

In other words, the same convergence properties noted above for the case of
strong monotonicity are established under far weaker assumptions. A criterion for
the convergence of the algorithm in a finite number of iterations is also furnished
(Theorem 3).

The assumption of Lipschitz continuity of T" I at 0 turns out to be very natural
in applications to convex programming. It is fulfilled, for instance, under certain
standard second-order conditions characterizing a "nice" optimal solution. Such
applications, having many ramifications, will be discussed elsewhere [31].

There are actually three distinct types of applications of the proximal point
algorithm in convex programming: (i) to T = af, where f is the essential objective
function in the problem, (ii) to T= -ag, where g is the concave objective function
in the dual problem, and (iii) to the monotone operator TL corresponding to the
convex-concave Lagrangian function. •

The second type of application corresponds to the "method of multipliers" of
Hestenes [8] and Powell [21]. The relationship with the proximal point algorithm
in this case has already been used by Rockafellar [29]. The third type of
application yields a new form of the method of multipliers that seems superior, at
\east in some respects. Although the details will not be treated here, we mention
these applications because of their role in motivating the present work.

Some implications of the theorems in this paper for the general cases of T = af
or T corresponding to a convex-concave function L are nevertheless discussed in
§ 4.

Aside from the obvious case of strong monotonicity, or special results for the
method of multipliers in convex programming (for a survey, see Bertsekas [5]),
there are no rate-of-convergence results relating to the proximal point algorithm
prior to those developed here.

For discussion of other methods for solving 0 E T(z) in the case of a maximal
monotone operator, we refer to Auslender [2] and Bakushinskii and Polyak [3].

2. Convergence of the general algorithm. Henceforth T is always maximal
monotone. In addition to Pk = (I +Ckn -1, we shall make use of the mapping

(2.1)

Thus

(2.2)

PROPOSITION 1.
(a) z = Pdz) + Odz) and C;IOk(Z) E T(Pk(z» for all z.
(b) (Pdz)-Pk(z'), Odz)-Ok(z'»~Oforallz,z'.
(c) IIPdz)- Pk(z')1I2+IIOdz) - Od/)1I2 ~lIz - z'W for all z, z',
Proof. Part (a) is immediate from the definitions, while (b) is a consequence of

(a) and the monotonicity of T. Part (c) follows from (a) and (b) by expanding

IIz - Z,//2 = II[Pdz)- Pdz')]+[Odz) - Odz')]/r

---==~~~~-------'-=----
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Part (c) of Proposition 1 states that property (1.12) holds for Pk and Ok. If
Ck == C > 0, the mappings Pk all reduce to a single V to which the Martinet's
corollary of Opial's theorem (recalled in § 1 after (1.12» can be applied with
respect to any nonempty closed bounded convex set C such that V( C) c c. Of
course, if V is known to have at least one fixed point in H, then for arbitrary ZOE H
one can take C to be the closed ball of radius Ilzo- ill and center i; where i is any
fixed point.

In this way one obtains an immediate generalization of Martinet's results for
the case of T = af or variational inequalities. If there exists at least one z satisfying
OE T(z), then the proximal point algorithm in exact form (Zk+l = Pdzk» with Ck == C

converges weakly from any starting point ZOto a particular ZOO satisfying"OE T(zoo).
This should be compared with the still more general Theorem 1 below.

In connection with the existence of solutions to the problem we want to solve,
it is worth mentioning the following result (Rockafellar [25, Prop. 2]; this is a
generalization of Theorem 2.2 of Browder [7]).

PROPOSITION2 (see [25]). Suppose that for some i E Hand p ~ 0 one has

(2.3) (z-i,w)~O forall z,w with wET(z),llz-ill~p.

Then there exists at least one z satisfying 0 E T(z). (This condition is not only
sufficient for existence, but necessary.)

The condition in Proposition 2 holds trivially for example, if the effective
domain

(2.4) Dt'T) = {z E HIT(z) ~ 0}

is a bounded set. A convenient, weaker condition, Which is also sufficient for
existence when T = af, is the weak compactness of the fevel sets {z E Hlf(z) ~ 13},
13 E R.

The relationship between the criteria (A) and (B) on the one hand and (A')
and (B/) on the other is laid out by the next of our preliminary results.

PROPOSITION3. The estimate

IIZk+1 - Pk(zk)1I ~ Ck dist(O, SdZk+1»
holds, where Sk is given by (1.16). Thus (A') implies (A), and (B/) implies (B).

Proof. For any WE Sk(Zk+l) we have

CkW+ Zk E (I +Ck n(zk+I),

and hence,

Zk+l = (I +Ckn-1(CkW + z ") = PdCkW + z ").

Then by virtue of the nonexpansiveness of Pk

IIZk+1 - Pk(zk)1I = IIPdckW + Zk)_ PdZk)II~Ckllwll.

Thus

as claimed.

7f7
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THEOREM 1. Let {Zk} be any sequence generated by the proximal point
al~orithm under criterion (A) (or (N» with {cd bounded away from zero. Suppose
{z } is bounded; this holds under the preceding assumption if and only if there exists
at least one solution to 0 E T(z). .

Then {Zk} converges in the weak topology to a point ZCO satisfying OE T(zCO),
and .

(2.5)

Proof. First we verify the asserted sufficient condition for the boundedness of
{Zk}. The necessity of the condition will follow from the last part of the theorem.

Suppose that i is a point satisfying 0 E T(Z). We have

(2.6) Ilzk+l- ill- Ek ~IIPdzk)- ill = IIPk(zk) - Pdi)II~lIzk - ill,
and this furnishes the bound

I-I

IIzl-ill~"zo-ill+ I Ek~llzo-ill+Q" forall l.
k~O

Thus {Zk} must be bounded.
For the rest of the proof, we assume that {z "} is any bounded sequence

satisfying (A). Let s > 0 be such that

(2.7) IIzkll~s and Ek<S forall k.

Then {z"} has at least one weak cluster point z'", IIzocil~s.
Our next goal is to demonstrate that 0 E T(z CO), but for this purpose it is

helpful to show first that the argument can be reduced to the case where it is
already known that T" I(0) ~ 0. Consider the multifunction T defined by

T(z) = T(z)+ah(z) for all z E H,
where

{
0 if IIzll~ 2s,

h(z) =
+00 if IIzll>2s,

and consequently

{

{a}
ah(z) = ~ZIA ~O}

if IIzll<2s,
if [z] = 2s,
if [z]'> 2s.

Observe that ah is a maximal monotone operator, because h is a lower sernicon-
tinuous proper convex function; its effective domain is

D(ah) = {z Ilizil~2s}.

Furthermore,

.•. (2.8) T(z)= T(z) if IIzll<2s .
Since IIPdzk)II<2s for all k by (2.7) and condition (A), while

Ckl(Zk - Pk(Zk» E T(Pdzk»

.b•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• --~'
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by Proposition l(a), we have

(2.9) Pk(zk)ED(T)nintD(ah) for all k,

(2.10) Pk(Zk)E{I+CkT)-I(Zk) for all k.

Inasmuch as D(n n int D(ah) ~ 0 by (2.9), we know that T, as the sum of the
maximal monotone operators T and ah, is itself maximal monotone (Rockafellar
[27, Thm. 1]). Hence P~ = (I +CkT)-l is actually single-valued, and (2.10) implies

Pdzk) = p~(Zk) for all large k.

Thus the sequence {Zk} can be regarded equally well as arising from the proximal
point algorithm for T'. The advantage in this is that the effective domain D(T') is
bounded, so that (T)-I(O) ~ 0 by Proposition 2. Since T'(zOO) = T(zOO) by (2.8),
we could replace T by T without loss of generality in verifying that OE T(zOO).

We are therefore justified in assuming, from now on, the existence of a
certain i such that OE T(Z). Applying Proposition l(c) to z = Zk and z' = i, we
get

(2.11)

Hence,

IIQk(Zk)1I2 _IIZk - ill2 +llzk+l- iW ~IIZk+' - ill2 -IIPdzk)- il12

= (Zk+1 - Pk(Zk), (Zk+1 - i) +(Pk(Zk) - i»

~llzk+l_ Pdzk)II(llzk+l- ill+llzk - ill),
and consequently,

(2.12)

At the same time we have

which because of I:=o Ck < 00 implies the existence of

(2.13) lim [z " - ill = IL < 00.
k~oo

We can therefore take the limit on both sides of (2.12), obtaining (2.5), because

IIOk(zk)11=1I(Zk - Zk+I)+(Zk+l- Pk(Zk»"~"Zk+l- zkll- Ck.

It follows that

(2.14)

the numbers Ck being bounded away from zero.
Observe next that Proposition l(a) entails

(2.15)

2
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Since ZOO is a weak cluster point of {Zk} and Ilzk+1- Pdzk)11 ~ 0, it is also a weak
cluster point of {Pk (z k)}. Then (2.14) and (2.15) yield

O~(z-zoo,w) forall z,w satisfying wET(z).

This implies, in view of the maximality of T, that 0 E T(z <X').
The next step is to show that there cannot be more than one weak cluster

point of {z k}. Suppose there were two: z7" T':- z';'. Then 0 E T(z';") for i = J, 2, as just
seen, so that each z:: can play the role of i in (2.13), and we get the existence of the
limits

(2.16)

Writing.. [z " - z';'112 = IIZk - z7"112+ 2(z" - z7", z7" - z';') +llz7" - z';'112
,

we see that the limit of (z k - z 7", z ~ - z ;') must also exist and

2 Iim (Zk_Z~, z~-z~)=JLi-JLi-lIz7"-z';'f
k-cc

But this limit cannot be different from 0, because z";' is a weak cluster point {z "}.
Therefore

JL~- JLi= Ilz~ - dl2 >O.

However, the same argument works with z~; and z~' reversed, so that also
JL~- JL~> O. This is a contradiction which establishes the uniqueness of z x.

(The uniqueness argument just given closely follows the one of Martinet [12].
and it was also suggested to the author by H. Brczis.)

Counterexample. The convergence of {z k} in Theorem 1 may fail if instead of
L':~oEk <00 one has only Ek -+ 0, even when H is one-dimensional. This can be
seen for any maximal monotone Tsuch that the set rl(O) = {ziO ET(z)}, which is
known always to be convex, contains more than one clement. Then T- 1(0)
contains a nonconvergcnt sequence {Zk} with

Ilzk+1 - zkll -+ 0

but
00

L Ilzk+1- z "] = 00.
k=O

We have P; (z k) = Z k and therefore a counterexample with Ek = [z k+ I - Z k II. In
particular, all this holds for T= at if the convex function t attains its minimum
nonuniquely.

3. Rate of convergence. We shall say that r:' is Lipschitz continuous at 0
(with modulus a ~O) if there is a unique solution i to OE T(z) (i.e. T 1(0) = {i}),
and for some 7' > 0 we have

(3.1) IIz-ill~allwll whenever Z E T" J(w) and IIwll~7'.
THEOREM 2. Let {z "} be any sequence generated by the proximal point

algorithm using criterion (B) (or (B'» with {c.} nondecreasing (c, i CT ~ (0).
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Assume that {Zk} is bounded (cf Theorem 1) and that 11 is Lipschitz continuous
at 0 with modulus a; let

/( 2 2)1/2
J.Lk = ~ a +c k < 1.

Then {z k} converges strongly to i, the unique solution to 0 E T( z). Moreover, there is
an index f such that

(3.2)

where

(3.3)

(3.4) (h ~ J.Loo (where J.Loo=O if Coo= (0).

Proof. The sequence {Zk}, being bounded, also satisfies criterion (A) for
Ek = c5kllzk+l- z "], so the conclusions of Theorem 1 are in force. We have

IIOdzk)11= [z" - Pk(zk)II~llzk - zk+lll+llzk+l_ Pk(Zk)ll,
so that

\

lie;; 1Ok (zk)II ~ c;;l(1 + c5dllzk+1- zkll for all k,

where [z" - zk+III ~ 0 (Theorem 1). Choose k so that

(3.5) c;;I(1+c5k)llzk+l-zkll<r forall k~k.
Then lie;;1Odzk)II~ r for k ~ k. But Pdzk) E 11(C;;IOk(Zk» by Proposition 1(a).
The Lipschitz condition (3.1) can therefore be invoked for w = c;;IOdzk) and
z = Pk(Zk) if k is sufficiently large:

(3.6) IIPk(Zk)- ill~al/c;;IOk(zk)11 for all k ~ k.
We next apply (2.2) and Proposition 1(c) to z = i and z' = Zk to obtain

IIi - Pk(zk)112+II0k(zk)II2~IIi - zkW,

which via (3.6) yields
IIP;(Zk) - ill2 ~[(a/ Ck)2/(1 + (a/ ck)2)]IIzk - i112,

or in other words

(3.7)

But
IIzk+l- ill~llzk+l- Pdzk)II+I/Pdzk)- z],

where under (B) we have

IIzk+ 1_ Pk(zk)II ~ c5kllzk
+ 1- z"] ~ c5kI/Zk

+ 1- il/+ c5kl/Zk- il/.

Therefore by (3.7),

I/zk+l-zlI~c5kl/zk+l-ill+J.Ldlzk-ill+c5kl/zk-ili if k~k.
This inequality produces the one in (3.2) if f~k is taken so that (3.3) holds, as is
possible since 1> J.Lk !J.Looand 8k ~ O.

Remark 1. The proof shows that the estimates in Theorem 2 are valid for any
f such that (3.3) holds and, for some k ~ k, also (3.5) holds. To cite a simple
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specific case, let us suppose that

8k ~~ for all k,

and, as can easily be estimated explicitly for instance if the effective domain' D( n
is bounded, that for a certain d >0,

IIzk+l_zkll~d forall k.

It may then be seen that the estimates in Theorem 2 are valid if k is such that

ck~2max{a,d/T} forall k~k.

Remark 2. If we replace the condition on 8k in (Bj-by the assumption that (A)
is satisfied and

(3.8) 8k ~ 8oo<~(1-JLoo),

then all the conclusions of Theorem 2 hold, except that

(h ~ 800 = (JLoo+ 800) / (1- 8(0) < 1.

Since

JLoo= a/(a2+c~)1/2,

the inequality (3.8) holds in particular if 800 <~and Ck i 00.

The next two results help illuminate the Lipschitz condition in Theorem 2.
We shall say that a multifunction S : H ~ H is differentiable at a point w if

S( w) consists of a single element z and there is a continuous linear transformation
A : H ~ H such that, for some 8> 0,

Q)1"'S(w+w)-z-Awco(llwlj)B when Ilwll~8,'
where B is the closed unit ball and

tJ(lIwlMlwllto as IIwllto.
We then write A = VS( w). This coincides with the usual notion of differentiability
(in the sense of Frechet), if S is single-valued on a neighborhood of w.

PROPOSITION 4. The condition of Lipschitz continuity in Theorem 2 is satisfied
- if T" I is differentiable at O. In particular, it is satisfied if there is a z such that

o E T(Z) and Tis single-valued and continuously differentiable in a neighborhood of
i; with VT(Z) invertible (i.e. having all of Has its range).

Proof. If T-1 is differentiable at 0 and A = VT-1(0), there is a unique z
satisfying 0 E T(Z), and we have

rl(w)-z-Awco(llwlj)B when Ilwll~8.
" Thus there exist ao ~ 0 and e > 0 such that

Ilz-z-Awll~aollwll whenever zET-1(w), Ilwll~£·
It follows that

IIz-zll~aollwll+IIAII'llwll whenever WE T(z), Ilwll~£·
Thus (3.1) holds for a = ao + IIAII.The second assertion then follows from the first
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by way of the implicit function theorem [9]: under these assumptions 1 I is
single-valued and continuously differentiable on a neighborhood of O.

PROPOSITION 5. Suppose 11 is Lipschitz continuous globally, i.e. 11 is
everywhere single-valued and satisfies

,
w,w,

where a ~ 0; this is true in particular if T is strongly monotone with modulus
a > O( a = a -I). Then the explicit assumption that {z k} is bounded is superfluous for
the conclusions of Theorem 2, and the estimate (3.2) is valid for any k large enough
that (3.3) holds.

Proof The proof of Theorem 2 works in this case with k = O. If T is strongly
monotone, we have (1.13) for some a> O. Then the operator T = T - al is
monotone and hence P= (I +a -IT)-I is nonexpansive. But T= aP-\ so

II(w)=P(a-Iw) for all w,

and in particular from the nonexpansiveness of P:

(3.9) IIT-I(w)-T-I(w')II~a-lllw-w'lI for all w,w'.

Finally, we describe a very special but noteworthy case where the algorithm
can converge in finitely many iterations. This result was suggested by one of
Bertsekas [4] for the method of multipliers in convex programming.

THEOREM 3. Let [z "} be any sequence generated by the proximal point
algorithm under any of the criteria (A), (A'), (B) or (B') with {c.} bounded away
from zero. Suppose that {Zk} is bounded (cf the conditions in Theorem 1) and there
exists i such that 0 E int T(Z). Then

(3.10) zoo=i=Pk(Zk) forall k sufficiently large.

Hence under (A) (or (A'» one has

IIzk - ill ~ ek for all k sufficiently large,

while under (B) (or (B'» with Ck t Coo ~ ex) one has the estimates (3.2) and (3.5) for

Ok= Ok/(l- Ok) ~ O.

Thus in particular, the proximal point algorithm in its exact form (i.e. with
Zk+1 = Pdzk» gives convergence to i in a finite number of iterations from any

. . 0starting point z .
Proof We demonstrate first that 11 is single-valued and constant on a

neighborhood of 0:

(3.11)

Let e >0 be chosen so that IIwll< e implies WE int T(Z). Taking any z, WE T(z),
and w' with IIwll< e, we have

O~(z-i, w-w')

by the monotonicity of T. Therefore

sup(z-z, w')~(z-z, w) whenever WE T(z), IIw'lI<e,
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so that
cllz - ill ~ IIz - ill'lIwll whenever WE T(z).

Thus if z ~ i we have IIwll~ e for all WE T(z). Stated another way, if I!wI!< e and
z E T-1(w), then z = i; which is the same assertion as (3.11).

Our hypothesis subsumes that of Theorem I, and hence we know as in
Theorem 1 that lickl Qdzk)I! ~ O. However, Pdzk) E rl(ckIQdzk» by Proposi-
tion l(a). Therefore (3.11) implies (3.10), and everything else in Theorem 3
follows immediately, the Lipschitz condition in Theorem 2 being fulfilled with
a=O.

4. Application to minimization. Let f :H ~ (-00, +00] be a lower semicon-
tinuous convex function which is not identically +00. Then, as noted in the
introduction, the multifunction T = af is maximal monotone, where

(4.1)
wEaf(z)¢:>f(z')~f(z)+<z'-z, w) forall z'

¢:>zEargmin(f-(-, w».
Since in particular

o E af(z)¢:> z E arg min f,

the proximal point algorithm for T= af is a method for minimizing f. We collect
here some facts relevant to this special case.

Recall that a function cf>: H ~ (-00, +00] is said to be strongly convex (with
modulus a) if a> 0 and

cf>«I- A)z + Az') ~ (1- A)cf>(z) + Acf>(z')- ~aA (1- A)llz - z'I12

(4.2)
for all z, z' if 0 <A < 1.

THEOREM 4. Let T = af. Then Sk = acf>kin criteria (A') and (B'), where cf>k
is the function defined by (1.9), and cf>kis lower semicontinuous and strongly convex
with modulus 1/Ck. Furthermore, if {z k} is any sequence generated by the proximal
point algorithm under the hypothesis of Theorem 1 with criterion (A'), then z k ~ ZOO

weakly, where f(zoo) = min f and

(4.3) f(Zk+l) - f(zoo) ~ C klllzk+1 - zooll(ck+llzk+1 - z kll) ~ O.

Proof. The strong convexity of cf>follows directly from formula (1.9). Sub-
differentiating both sides of this formula, we also get

acf>k(z)=af(z)+c;l(z-zk)=Sdz) forall z.

(For the relevant rule of subdifferentiation, see Moreau [17] or Rockafellar [22,
Thm. 3].) To establish (4.3), let wk denote the unique element of acf>dzk+l)
nearest the origin. (This exists, because acf>k(zk+l) is a closed convex set which,
since (A') is supposed to hold, is nonempty.) Then

wk _C;;-J(Zk+l_ Zk)E T(Zk+J) = af(zk+l),

where

(4.4)
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Let ZOObe the weak limit of {Zk} (Theorem 1). Then OEaf(zOO), and the defining
inequality for subgradients yields

f( "") (00 k+l k -l( k+l k» f( 00) . fz + z -z ,w =c« Z -z ~ z =mm,

so that

f{zk+l) _ f{zOO) ~ [z k+l_ zOOII(llwkll + Ck11Izk+l- zkll>.

Applying (4.4) and (2.5), we reach the desiredconclusion (4.3).
Remark 3. The quantity dist(O, a<Pk(zk+l» occurring in criteria (A') and (B')

for T= af is generally convenient as a measure of how near Zk+l is-to being a
minimizer of <Pk. Exact minimization corresponds, of course, to
dist CO,a<Pk{zk+l» = O. Many methods that might be used for minimizing <Pk
depend on the calculation of gradients or subgradients, and one can use the
estimate

dist (0, a<Pk{zk+l» ~lluli for any u E a<Pk{zk+I).

This is not the place to describe all of the possible structures of a<Pk
corresponding to minimization problems of different types, but we nevertheless
mention an important case. Suppose f is of the form

{
fo(Z) if ZED,

fez) =
+00 if ZE D,

where D is a nonempty closed convex set and fo is a function which is convex on D
and differentiable on a neighborhood of D. Then minimizing f on H is equivalent
to minimizing fo on D, while minimizing <Pkon H is equivalent to minimizing

<p~{z) = fo(z)+!allz - zkl12
on D. Furthermore,

I

a<Pk(Z) = V<p~(z) +ND(z),

where ND(z) is the normal cone to D at z, and hence dist (0, a<pdzk+1» is the
norm of the projection of _V<p~{Zk+l) on the tangent cone to D at Zk+l (where
Zk+l ED).

In particular, if D = H, i.e., f itself is differentiable on all of H, we have

dist CO,s, (z k+l» = IIV <Pk(z k+I)11

in (N) and (B').
It remains now to show how the various conditions in the hypotheses of

Theorems 2 and 3 are realized in the case of T = ar.
Let r be the lower semicontinuousconvex function conjugate to [. Thusar = 11for T= ar. (For the theory of conjugate functions, see [19], [30].)
PROPOSITION 6. The following conditions are equivalent for T = af:
(a) T is strongly monotone with modulus a,
(b) f is strongly convex with modulus a,
(c) whenever w E af(z), one has for all z' E H:

fez') ~f(z)+(z' - z, w)+!allz' - zf
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Proof. (b)::::}(a). Suppose WE T(z) and W'E T(z'), and let O<A < 1. Then

f(O - A)z + Az ') ~f(z) +([(1- A)z + Az']- z, w)

=f(z)+A(z'-z, w),

and hence by (4.2) for f:

-Af(z)+Af(z')-~aA(1-A)lIz-zf~A(z'-z, w),

or equivalently,

(z - z ', w) ~1a(I - A)lIz - z'1/2+ f(z) - fez').

By symmetry it is also true that

(z'-z, w')~ia(l-A)llz'-zlf+f(z')-f(z),

and in adding these two inequalities we obtain

(z - z ', w - w') ~ a(1- A)llz'- zf

This holds for arbitrary A E (0, 1), so it must also hold for A = 0, which is the
assertion of (a).

(a)::::}(c). As observed in the proof of Proposition 5, the strong monotonicity
implies that r' is single-valued and satisfies the global Lipschitz condition (3.9).
But T- I = af*. In particular, therefore, af* is single-valued and continuous
everywhere, from which it follows that r is differentiable everywhere and Vf*
reduces to the gradient mapping of f* (see AsplundjRockafellar [1, p. 461]). For
any wand w', we have

IIVf*(w+t(w'-w»-Vf*(w)II~(tja)llw'-wll for 1>0,

so that

(VI*(w+t(w'-w», w'-w)~(Vf*(w), w'-w)+(tja)lIw'-wIl2 for t>O.

From this we obtain

f*(w')-f*(w)= (V!*(w+t(w'-w», w'-w)dtJo
~(VI*(w), w' - w)+ 2~ Ilw' - wf

Fixing arbitrary z and w with WE af(z), we have z = Vr:w) and f(z) + 1*( w) =

(z, w). Then for any z ',

fez') = I**(z ') = SLIp {(z', w') - r: w')}
w'EH'

I
"'

~:~d(z ', w')- /*( w) --(V/*( w), w' - w) - 2~ 1111"- w112}

= sup {f(z)+(Z'-z, w,) __ l Ilw'-wIl2}
w'EH 2a

=f(z)+(z'-z, w)+~allz'-zf
Thus (c) holds.
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(c)~(b). Let G = {(Z, w)lw E af(z)}, and for each (z, W)E G define the func-
tions gz.",and hz.", by

gz.",(z') = f(z)+(z'- z, w) +!allz'- z1l2,
hz.",(z') = f(z) +(z ' - z, w).

Then f ~ gz. '" ~ hz.w- It is a known fact, however, that

f(z') = sup hz.", (z') for all z'
(z.",)eG

(Brensted/Rockafellar [6, Thm. 2]). Hence

f(z') = sup gz.w(z').
(z.w)eG

Each function gz.", is strongly convex with modulus a, and therefore f has this
same property. This completes the proof of Proposition 6.

PROPOSITION 7. The following conditions are equivalent for T = af and i E H.
(a) T-1 isLipschitz continuous at 0, and i is the unique solution to OE T(z).
(b) i is the unique minimizing point for f, and

. . f(z)- f(i)
hm inf II _112 > O.z-+I Z - Z

(c) i is the unique element of ar(O), and

lim sup [<r(u) - r(O) -(I, u»/lIuIl2] < 00.
U"'O

Proof. (a)~(c). Since 11= ar, we have

(4.5) IIz- ill;aallwll whenever Z E ar(w) and IIwll;a e.

This implies the boundedness of the set

(4.6) U ar(w),
11"'11;:;;,

which contains i; in other words, ar is locally bounded at 0, which is a point of the
effective domain

(4.7) D(ar) = {wlar(z) ~ 0}.

But ar is a maximal monotone operator, so this property necessitates OE
int D(ar) (see Rockafellar [25, Thm. 1]). Since

(4.8) D(ar)cdomr = {wl/*(w)<oo}

it follows that r is finite on a neighborhood of O. This implies in turn that r is
continuous on a neighborhood of 0 [23, Cor. 7c] and hence that for all u in some
neighborhood of 0, say for lIull;a 8(0 < 8.,;; e) we have ar(u) nonempty weakly
compact and

(4.9) r'(w; u) = max{(z, u)lz Ear(W)} for all u E H,

where
r'(w; u)=lim~(w+Au)-r(w)]/A.

AlO
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(Moreau, [17]). Moreover (4.5) and (4.9) give the estimate

(4.10) f*'(w; u)~(Z, u)+allwll'lluli if IIwll~8.
Observe next that if Ilull~ 8 and C(t) = f*(tu), then Cis a finite continuous convex
function on [0, 1J, and hence

C(I) = C(O)+ ( C~(t) dt,Jo
where C~ is the right derivative of ? [26, Cor. 24.2.1]. This formula says that

f*(u)=f*(O)+ (f*'(tu; uv dt,Jo
and hence by (4.10),

(4.11) f*(u)~f*(0)+(Z,u)+tall/.l112 if Illlll~8.
Therefore (c) is valid.

(c) => (b). Under (c), we have (4.11) for some a> 0 and 8> O. Let

{

I 2
2a5

~(s) =
+00

if Isl~8,
if 151>8.

Then (4.1 I) can be expressed as

(4.12) f*(u) - f*(0) - (Z, u) ~ ~(lIull) for all u E H,

where ~(IIuli) is convex in u. Taking conjugates on both sides, we obtain

f(i+v)+f*(O)~e(lIvll) forall vEH,

where

(4.13)
{

I-I 2 'f II "2 a r I r ~ au,
e(r)= 81r!-! a82 if Irl ~ ab.

But

(4.14)

since i E af*(O). Therefore

feZ) + f*(0) = (Z, 0),

(4.15) f(z) - f(i) ~ e(llz - ill) for all z E H,

and in particular

Thus (b) holds.
(b) => (c). The hypothesis means that for a certain a> 0 and 8> 0 we have

(4.16) fez) - f(i) ~~alliz - ill2 whenever IIz - ill~ 2a8.

We shall show first that this implies (4.15). Of course, since ~(5) ~ ~as' for all S E R
we have (taking conjugates on both sides) that e(r)~!aJ-r2 for all rER, and
hence the inequality in (4.15) follows from the one in (4.16) if IIz-ill~2a8.
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and the inequality in (4.18) becomes

~a-II/z - i/f~//z - il/·I/wl/.

Thus (4.18) gives us

I/z-ill~2a"wl/ whenever IIw"~8/2 and wE T(z), .

and (a) is verified.
Remark 4. The proof of Proposition 7 shows that the infimum a of the

numbers a ~ 0 such that the Lipschitz condition in Theorem 2 holds (for T = af)
satisfies ib -1 ~ ii ~ b-I , where •

b 1
· . f f(z) - f(i)

= un In -/2z-z I/z - z/ [I
' r(u)-r(O)-(i, U>]-I
1l~:~P lIull~

(i being the unique minimizing point for f; 0-1 = 00 and 00--
1 = 0).

PROPOSITION 8. Suppose that H is finite-dimensional and f is polyhedral
convex ii.e. the epigraph off is a polyhedral convex set). Iff attains its minimum at a
unique point z, then 0 E int dfU), so that Theorem 3 is applicable to T = af.
However, even if f does not attain its minimum at a unique point but merely is
bounded below, the proximal point algorithm with exact minimization of 4Jkat each
step (and with Ck hounded away from zero) will converge to some minimizer off in a
finite number of iterations.

Proof. The conjugate r is also polyhedral [26, p. 173]. If i is the unique
minimizer of f, it is the sole element of ar(O). Then r is differentiable at 0 [26, p.
242], hence actually affine in an open neighborhood W of 0 by polyhedral
convexity, implying i = yori w) for all WE W. Thus wE c1fU) for all WE W.

More generally, if f is merely a polyhedral convex function which is bounded
below, we still have [*(0) = -inf f finite and attained [26, p. 268]. By Theorem 1,
the proximal point algorithm with Ck bounded away from zero generates from any
starting point ZO a sequence {Zk} such that Qk(Zk) ~ O. We must show that in the
case of exact minimization (Ek = 0 in (A'» finite convergence is still obtained.

There is no loss of generality in supposing for convenience in the rest of the
proof that min f = 0, so that reO) = O. Let

M = ar(O) = {zlf(z) = min f}

and

{
0 if z EM,

h(z)=
+00 if z~M.

Then M is a polyhedral convex set, so that h is a polyhedral convex function. The
conjugate h* is then polyhedral too, and we have

h*(w) = ri». w) = lim [f*(Aw)- [*'(O)]/A
,qn

[26, p. 216], since the polyhedral property of t: implies that of [*(0; . ). It is clear
from the latter formula that h* coincides with r in some open neighborhood of O.
Moreover c~IOdzk) lies in this neighborhood for all k sufficiently large, since
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Odzk) ~ 0 and Ck is bounded away from O.Thus

ah*(c;IOk(zk» = ar(c;IOdzk» for all large k.

Since ar= 11 for T=af, we can conclude from Proposition l(a) that

C;I Odzk) E (ah*)-\Pdzk» = ah(Pk(zk»

for all k sufficiently large. This tells us that ultimately the algorithm acts on {zk}
just as if the multifunction T = of were replaced by T = ah, or equivalentll if f
were replaced by h. But in that event Pk(Zk) is just the point of M nearest to z .

Thus, as soon as we reach the stage where C;I Ok(Zk) lies in the neighborhood
where r coincides with h* = r/(O; .) we have Zk+1 = Pk(Zk) E M. Since M con-
sists of the fixed points of the mappings Pi, the sequence {Zk} is constant
thereafter.

Remark 5. In the case of Proposition 8, quadratic programming algorithms
can be employed, at least in principle, to calculate the exact minimum of cf>k at
each iteration. Then the exact form of the proximal point algorithm is reasonable,
and according to Theorem 3 it will yield the unique minimizer i of f in a finite
number of iterations. We shall show elsewhere [31] that this result, when applied
to the dual of a linear programming problem, yields a fact proved by Polyak and
Tretyakov [20]: when the "method of multipliers" is used on a linear program-
ming problem with exact minimization of the augmented Lagrangian at each
iteration, one has convergence to an optimal solution in a finite number of
iterations.

5. Application to calculating saddle points. Let L(x, y) be a convex-concave
function on the Hilbert space HI x H2 which is closed and proper in the sense of
[24], [28], and let hbe the maximal monotone operator corresponding to L, as
defined in the introduction. Then

(0, 0) E TL(x, y) ¢:> (x, y) = arg minimax L.

The proximal point algorithm for T = TL is thus capable of computing saddle
points of L, and some of the results in the preceding section have analogues for this
case.

Let us say that a function A: HI x H2 ~ [-00, +00] is strongly convex-
concave (with modulus a) if A(x, y) is strongly convex in x and strongly concave in
y, both with modulus a.

THEOREM 5. Let T= Tv Then one has Sk = TlI.kin criteria (A') and (B/),
where Ak is the function defined by (1.11), and Ak is closed, proper and strongly
convex-concave with modulus 1/ci. Furthermore, if {z" = (x", v» is any sequence
generated by the proximal point algorithm under the hypothesis of Theorem 1 with
criterion (A/), then (x", /) ~ (x'", yOO) weakly, where (XOO, yoo) is a saddle point of
Land

(5.1) lim L(xk
, /) = L(xOO

, yOO) = minimax L.
k~oo

Proof. This is mostly an easy extension of the argument for T = af in Theorem
4, but the justification of (5.1) is trickier and deserves some attention. Since
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(XOO, yOO) is a saddle point, we have

(5.2) u»::', XCC) ~L(xCC, yOO)~L(xOC, yk+l) for all k.

Let wk
= (u", Uk) denote the element of Sk(Xk, /) nearest the origin. Thus

(vk
, Uk) ~ (0,0) strongly and

(5.3) ( k -ie k+1 k) k -I( k+1 k» T (k+l k+l)V-Ck X -x ,U-Ck Y -y E LX ,y .

The latter relation gives us

L( 00 k+I»L( k+l k+I)+( 00_ k+1 k_ -ie k+l_ k»)x , y = x , y x x , V Ck X x,

ue:', yOO);;:;;L(Xk+l, /+I)_(yOO_/+t, Uk-C~l(/+I-/».

Combining these inequalities with (5.2), we obtain
--(yOO_ yk+l, Uk _ Ck1(/+1 _/» ~L(xOO, yOO) - u»::', /+1)

~(XOO - Xk+l, vk -C~\Xk+I_X"»,

where the outer expressions converge to 0 by virtue of the limits already
mentioned and assertion (2.5) of Theorem 1.

The analogue of Proposition 6 is valid for T = Tu but the other results in § 4
do not have obvious extensions to the minimax context. For Proposition 7, this is
seen from the example of L(x, y) = xy on R x R, which has Tdx, y) = (y, -x) and
therefore 17..1 globally Lipschitz continuous with modulus 1.

REFERENCES

[1] E. ASPLUND. AND R, T. ROCKAFEl.LAR, Gradients of convex functions, Trans. Arncr. Math.
Soc., 139 (1969), pp. 443-467.

[2] A. AUSLENDER, Problemes de Minimax via ['Analyse Convexe et les lnegalites Variationelles:
Theone et algorithmes, Lecture Notes in Econ. and Math. Systems, 77, Springer-Verlag,
1972.

[3] A. B. BAKUSHINSKII AND B. T. POLYAK, On the solution of variational inequalities, to appear.
[4J D. P. BERTSEKAS, Necessary and sufficient conditions for a penalty method to be exact, Math.

Programming, to appear.
[5J --, Multiplier methods: a survey, Automatica-J. IFAC., March (1976).
[6] A. BR0NSTED AND R. T. ROCKAFELLAR, On the subdifferentiabitity of convex functions, Proc.

Amer. Math. Soc., 16 (1965), pp. 605-611.
[7] F. E. BROWDER, Multivalued monotone nonlinear mappings and duality mappings in Banach

spaces, Trans. Amer. Math. Soc., 118 (1965), pp. 338-351.
[8] M. R. HESTENES, Multiplier and gradient methods, J. Optimization Theory and Appl., 4 (1969),

pp. 303-320.
[9] L. v. KANTOROVICH AND G. P. AKILOV, Functional Analysis in Normed Spaces, (1950);

English transl., Macmillan, New York, 1964.
[10] M. A. KRASNOSELSKII, Solution of equations involving adjoint operators by successive approxi-

mations, Uspekhi Mat. Nauk, 15 (1960), no. 3 (93), pp. 161-165.
[J IJ A. Y. KK Y ANEV, The solution of incorrectly posed problems by methods oj successice approxima-

tions. Dokl. Ak ad. Nauk SSSR, 210 (1973), pp. 20-22 ~ Soviet Math. Dok!., 14 (1973), pro
673-676.

[J 2] B. MARTINET, Regularisation d'inequations uariationelles par approximations successioes, Rev.
Francaise Inf. Rech. Oper., (1970), pp. 154-159.

[13] --, Determination approchtfe d'un point fixe d'une application pseudo-contractante, C.R.
Acad. Sci. Paris. 274 (1972), pro 163-165.



898 R. TYRRELL ROCKAFELLAR

[14] G. 1. MINi'Y, Monotone (nonlinear) operators in Hilbert space, Duke Math. 1., 29 (1962), pp.
341-346.

[15] --, On the monotonicity of the gradient of a convex function, Pacific 1. Math., 14 (1964), pp.
243-247.

[16] 1. J. MOREAU, Fonctionelles sous-differentiables, C.R Acad. Sci. Paris, 257 (1963), pp.
4117-4119.

[17] ---, Sur la fonction polaire d 'une fonction semi -continue superieurement, C.R. Acad. Sci. Paris,
258 (1964), pp. 1128-1131.

[18] ---, Proximite et dualite dans un espace Hilbertien, Bull. Soc. Math. France, 93 (l965), pp.
273-299.

[19] --, Fonctionelles Convexes, lecture notes, Seminaire "Equations aux derivees partielles",
College de France, Paris, 1966~7.

[20] B. T. POLYAK AND N. V. TRETYAKOV, On an iterative method of linear programming and its
economic interpretation, Ekon. Mal. Met., 8 (1972), pp. 740-751.

[21] M. 1. D. POWELL, A method for nonlinear optimization in minimization problems, Optimization,
R Fletcher, ed., Academic Press, New York, 1969, pp. 283-298.

[22] R T. ROCKAFELLAR, Extension of Fenchel's duality theorem, Duke Math. 1., 33 (1966), pp,
81-89.

[23] --, Level sets and continuity of conjugate convex functions, Trans. Amer. M~th. Soc., 123
(1966), pp. 46~3.

[24] ---, Monotone operators associated with saddle functions and minimax problems, Nonlinear
Functional Analysis, Part 1, F. E. Browder, ed., Symposia in Pure Math., vol. 18, Amer.
Math. Soc., Providence, RI., 1970, pp. 397-407.

[25] ---, Local boundedness of nonlinear monotone operators, Michigan Math. J., 16 (1969), pp.
397-407.

[26] ---, Convex Analysis, Princeton University Press, Princeton, N.J., 1970.
[27] ---, On the maximality of sums of nonlinear monotone operators.Trans. Amer. Math. Soc. 149

(1970), pp. 75-88.
[28] ---, Saddle functions and convex analysis, Differential Games and Related Topics, H. W.

Kuhn and G. P. Szego, eds., North-Holland, Amsterdam, 1971, pp. 109-12R.
[29] ---, the multiplier method of Hestenes and Powell applied to convex programming, J.

Optimization Theory and Appl., 12 (1973), pp. 555-562.
[30] ---, Conjugate Duality and Optimization, Regional Conference Series in Applied Mathema-

tics No. 16, Society for Industrial and Applied Mathematics, Philadelphia, 1974.
[31] ---, Augmented Lagrangians and applications of the proximal point algorithm in convex

programming, Math. of Operations Research, 1976, to appear.
[32] Z. OPIAL, Weak convergence of the successive approximations for nonexpansive mappings in

Banach spaces, Bull. Amer. Math. Soc., 73 (1967), pp. 591-597.
[33] A GENEL AND L. LINDENSTRAUSS, An example concerning fixed points, Israel J. Math., 20

(1975).


