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Abstract

This paper describes the Subgradient Marching algorithm to compute the deriva-
tive of the geodesic distance with respect to the metric. The geodesic distance being a
concave function of the metric, this algorithm computes an element of the subgradient
in O(N2 log(N)) operations on a discrete grid of N points. It performs a front propaga-
tion that computes the subgradient of a discrete geodesic distance. Equipped with this
Subgradient Marching, a Riemannian metric can be designed through an optimization
process. We show applications to landscape modeling and to traffic congestion. Both
applications require the maximization of geodesic distances under convex constraints,
and are solved by subgradient descent computed with our Subgradient Marching. We
also show application to the inversion of travel time tomography, where the recovered
metric is the local minimum of a non-convex variational problem involving geodesic
distances.

Keywords: Geodesics, Eikonal equation, subgradient descent, Fast Marching Method,
traffic congestion, travel time tomography.

1 Introduction

1.1 Riemannian Metric Design

The shortest path between a pair of points for a given Riemannian metric defines a curve
that tends to follow areas where the metric is low. It is an object of primary interest in both
pure mathematics and applied fields. For instance, as far as applications are concerned,
such minimal paths are used intensively in computer vision and medical image analysis
to perform segmentation of objects and extraction of tubular vessels [8]. The metric is
designed to be low around the boundary of organs and vessels so that shortest paths follow
these salient features.

In some applications, the Riemannian metric is the object of interest, and should be
computed from a set of constraints or criteria. Some of these constraints might involve the
length of geodesic curves between sets of key points, and these geodesic distances should
be maximized or minimized. As shown in this paper, the maximization of geodesic lengths
leads to convex problems, whereas the minimization of the distance leads to a non-convex
problem. A global (for maximization) or local (for minimization) solution to these metric
design problems can be found using a subgradient descent.
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This paper proposes the first algorithm to compute such a subgradient of the geodesic
distance with respect to the metric. It can thus be used as a building block for an opti-
mization procedure that computes an optimal metric according to criteria on the length
of the geodesic curves.

1.2 Geodesic Distances.

Riemannian metric. An isotropic Riemannian metric ξ on a domain Ω ⊂ Rd defines a
weight ξ(x) that penalizes a curve γ(t) passing through a point x = γ(t) ∈ Ω. The length
of the curve according to ξ is

Lξ(γ) =
∫ T

0
|γ′(t)|ξ(γ(t))dt. (1.1)

This metric ξ defines a geodesic distance dξ(x0, x) that is the minimal length of rectifiable
curves joining two points x0, x ∈ Ω

dξ(x0, x) = min
γ(0)=x0,γ(1)=x

Lξ(γ). (1.2)

The distance map
Uξ(x) = dξ(x0, x) (1.3)

to the starting point x0 is a function of the metric ξ, where we have drop the dependence
with respect to x0 for simplicity. The mapping ξ 7→ Uξ(x) is the one we wish to maximize
or minimize in this paper, where x0 and x are fixed points.

The geodesic curve γ joining x1 to x0 is the solution of an ordinary differential equation
that corresponds to a gradient descent of Uξ

dγ(s)
ds

= −gradγ(s) Uξ and γ(0) = x1, (1.4)

where gradx Uξ ∈ Rd is the usual gradient of the function x 7→ Uξ(x). This should
not be confused with the subgradient with respect to the metric defined in the following
paragraph.

Geodesic subgradient. The design of a metric through the maximization or minimiza-
tion of dξ(x0, x) requires to compute the gradient g = ∇ξUξ(x) of the mapping ξ 7→ Uξ(x).
For any location y ∈ Ω, g(y) tells how much the geodesic distance between x0 and x is
sensitive to variations on ξ(y).

In the continuous framework of (1.1) and (1.2), a small perturbation ξε = ξ+εh defines
a geodesic distance map Uξε(x) between x and x0, that can be differentiated with respect
to ε at ε = 0

d

dε
Uξε(x)

∣∣∣
ε=0

=
∫

γ
h dH1 =

∫ 1

0
h(γ(t))|γ′(t)|dt, (1.5)

where the curve γ is the geodesic from x0 to x according to the metric ξ. If γ is unique, this
shows that ξ 7→ Uξ(x) is differentiable at ξ, and that the gradient g is a measure supported
along the curve γ. In the case where this geodesic is not unique, this quantity may fail
to be differentiable. Yet, the map ξ 7→ Uξ(x) is anyway concave (as an infimum of linear
quantities in ξ) and for each geodesic we get an element of the super-differential through
Equation (1.5). In the sequel we will often refer to subgradients and subdifferentials for
the concave function ξ 7→ Uξ(x) instead of superdifferentials and supergradients, this slight
abuse of terminology should not create confusion however.
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The extraction of geodesics is quite unstable, especially for metrics such that x and x1

are connected by many curves of length close to the minimum distance dξ(x0, x). It is thus
unclear how to discretize in a robust way the gradient of the geodesic distance directly
from the continuous definition (1.5). This paper proposes an alternative method, where g
is defined unambiguously as a subgradient of a discretized geodesic distance. Furthermore,
this discrete subgradient is computed with a fast Subgradient Marching algorithm.

Figure 1 shows two examples of subgradient computations. Near a degenerate con-
figuration, we can see that the subgradient g might be located around several minimal
curves.
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Figure 1: On the left, ∇ξU(x1) and some of its iso-levels for ξ = 1. In the middle, a non
constant metric ξ(x) = 1/(1.5 − exp(−||c − x||)), where c is the center of the image. On
the right, an element of the superdifferential of the geodesic with respect to the metric
shown in the middle figure.

Anisotropic metrics. The geodesic distance and its subgradient can be defined for more
complicated Riemannian metric ξ that depends both on the location γ(t) of the curve and
on its local direction γ′(t)/|γ′(t)|. The algorithm presented in this paper extends to this
more general setting, thus allowing to design arbitrary anisotropic Riemannian metric. We
decided however to restrict our attention to the isotropic case, that has many practical
applications.

1.3 Previous Works and Contributions

Geodesic distance computation. The estimation of distance maps Uξ has been in-
tensively studied in numerical analysis and can be approximated on discrete grid of N
with the Fast Marching Method of Sethian [13], and Tsitsiklis [14] in O(N log(N)) opera-
tions. This algorithm has opened the door to many application in computer vision where
the minimal geodesic curves extracts image features, see for instance [13, 8]. Section 2
recalls the basics of the discretization of geodesic distance and Section 2.3 details the front
propagation procedure underlying the Fast Marching method.

Geodesic distance optimization. The optimization of Uξ with respect to ξ is much
less studied. It is however an important problem in some specific fields, such as for
landscape design, traffic congestion and seismic imaging. In these applications, the metric
ξ is optimized to meet certain criteria, or is recovered by optimization from a few geodesic
distance measures.

This paper tackles directly the problem of optimizing quantities involving the distance
function Uξ by computing a subgradient ∇ξUξ(x) of the mapping ξ 7→ Uξ(x) for a given
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point x. The Subgradient Marching algorithm is described in Section 3. It follows the
optimal ordering used by the Fast Marching, making the overall process only O(N2 log(N))
to compute a subgradient of the maps ξ 7→ Uξ(x) for all the grid points x.

This Subgradient Marching computes an exact subgradient of the discrete geodesic
distance, so that it can be used to minimize variational problems involving geodesic dis-
tances. We believe it is important to first discretize the problem of interest and perform
an exact minimization of the discrete problem. As far as geodesic quantities are involved,
discretizing optimality condition of a continuous functional is indeed highly unstable.

Landscape design. Shape design requires the modification of the Riemannian metric
defined by the first fundamental form of the surface. Minimization of geodesic length
distortion is a well studied criterion to perform surface flattening and shape comparison,
see for instance [3].

This paper tackles directly the problem of optimizing a Riemannian metric ξ. The
example of landscape design using a fixed amount of resources is studied in Section 4.1.
The length of geodesics is maximized under local and global constraint on the metric. This
problem has a unique solution that can be found using a subgradient computed with our
Subgradient Marching algorithm.

An application to travel time tomography is shown in Section 4.3. A subgradient
descent allows one to find a local minimum of a variational energy involving geodesic
distances.

Traffic congestion. A continuous generalization of the Wardrop equilibria [15], origi-
nally proposed in [5], involves the maximization of a concave functional depending on the
geodesic distances between landmarks. A subgradient descent approximates this continu-
ous solution and [1] describes an algorithm that makes use of our Subgradient Marching.
Section 4.2 recalls basic facts of this congestion approximation and shows some numerical
examples.

Seismic imaging. Seismic imaging computes an approximation of the underground from
few surfaces measurements [6, 11]. This corresponds to an ill posed inverse problem that
is regularized using smoothness prior information about the ground and simplifying as-
sumption about wave propagation. Discarding multiple reflexions, the first arrival time
of a pressure wave corresponds to the geodesic distance to the source, for a Riemannian
metric ξ that reflects the properties of the underground.

The recovery of ξ from a few measurements dξ(xi, xj) between sources xi and sensors
xj corresponds to travel time tomography. A least square recovery of ξ involve the opti-
mization of the geodesic distance. It has been carried over using for instance adjoint state
methods [6, 11] that involve many computations of the geodesic map Uξ for a varying
metric ξ. Our Subgradient Marching algorithm allows to find a local minimum of the
regularized least square energy using a descent method.

2 Discrete Geodesic Distances

2.1 Discretization

Eikonal Equation Our approach to minimize geodesic distances first defines a discrete
geodesic distance Uξ, solution of a discretized partial differential equation. A discrete
subgradient ∇ξUξ(x) of the map ξ 7→ Uξ(x) is then defined to solve exactly discrete
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Figure 2: Example of the minimal path computation using the Fast Marching algorithm.
On the left: the metric ξ. On the right: The minimal action map U and the minimal path
linking x1 to x0.

variational problems involving geodesic distances. This is a general framework that could
be extended to a larger class of non-linear partial differential equations.

The geodesic map Uξ(x) defined in (1.3) is the unique viscosity solution of the Eikonal
non-linear PDE (see [10]) {

‖∇Uξ(x)‖ = ξ,

Uξ(x0) = 0.
(2.1)

The computation of Uξ(x) thus requires the discretization of (2.1) so that a numerical
scheme captures the viscosity solution of the equation.

Upwind Discretization In the following, we describe the computation in 2D and as-
sume that the domain is Ω = [0, 1]2, although the scheme carries over for an arbitrary
domain in any dimension.

We will also drop the dependence on ξ and x0 of the distance map Uξ = U to ease the
notations. The geodesic distance map Uξ is discretized on a grid of N = n× n points, so
that Ui,j for 0 ≤ i, j < n is an approximation of Uξ(ih, jh) where the grid step is h = 1/n.
The metric ξ is also discretized so that ξi,j = ξ(ih, jh).

Classical finite difference schemes do not capture the viscosity solution of (2.1). Upwind
derivative should be used instead

D1Ui,j := max{(Ui,j − Ui−1,j), (Ui,j − Ui+1,j), 0}/h,

D2Ui,j := max{(Ui,j − Ui,j−1), (Ui,j − Ui,j+1), 0}/h.

As proposed by Rouy and Tourin [12], the discrete geodesic distance map U = (Ui,j)i,j is
found as the solution of the following discrete non-linear equation that discretizes (2.1)

DU = ξ where DUi,j =
√

D1U2
i,j + D2U2

i,j . (2.2)

Rouy and Tourin [12] showed that this discrete geodesic distance U converges to Uξ when
h tends to 0.

Figure 2 shows an example of a discrete geodesic distance map U . The metric ξ has a
low value along a black curve, so that the geodesic curves tends to follow this feature. An
example of geodesic curve is shown on the right, that is obtained by a numerical integration
of the ordinary differential equation (1.4).
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2.2 Concavity of the Geodesic Distance

To solve variational problems involving the geodesic distance dξ(x0, x), for x = (ih, jh),
one would like to differentiate with respect to ξ the discrete distance map Uξ

i,j , obtained

by solving (2.2). Actually, this is not always possible, since the mapping ξ 7→ Uξ
i,j is not

necessary smooth. The following proposition proves that Uξ
i,j is a concave function of ξ

and this allows for superdifferentiation (the correspondent of subdifferential for concave
functions instead of convex).

Proposition 2.1. For a given point (i, j), the functional ξ 7→ Uξ
i,j is concave.

Proof. In the following we drop the dependence on (i, j) and note Uξ = Uξ
i,j . Thanks to

the homogeneity, it is sufficient to prove super-additivity. We want to prove the inequality

Uξ1+ξ2 ≥ Uξ1 + Uξ2 .

Thanks to the comparison principle of Lemma 2.2 below, it is sufficient to prove that ξ1 +
ξ2 ≥ D(Uξ1 +Uξ2), where the operator D is defined in (2.2). This is easily done if we notice
that the operator D is convex (as it is a composition of the function (s, t) 7→

√
s2 + t2,

which is convex and increasing in both s and t, and the operator D1 and D2, which are
convex since they are produced as a maximum of linear operators) and 1−homogeneous,
and hence it is subadditive, i.e. it satisfies D(u + v) ≤ Du + Dv.

Lemma 2.2. If ξ ≤ η, then Uξ ≤ Uη.

Proof. Let us suppose at first a strict inequality ξ < η. Take a minimum point for Uη−Uξ

and suppose it is not the fixed point x0. Computing D and using sub-additivity we have

η = DUη ≤ D(Uη − Uξ) + DUξ = D(Uη − Uξ) + ξ,

which gives D(Uη−Uξ) ≥ η−ξ > 0. Yet, at minimum points we should have D(Uη−Uξ) =
0 and this proves that the minimum is realized at x0, which implies Uη − Uξ ≥ 0.

To handle the case ξ ≤ η without a strict inequality, juste replace η by (1 + ε)η and
notice that the application η 7→ Uη is continuous.

2.3 Fast Marching Propagation

The Fast Marching algorithm, introduced by Sethian in [13] and Tsitsiklis in [14], allows
to solve (2.2) in O(N log(N)) operations using an optimal ordering of the grid points. This
greatly reduces the numerical complexity with respect to iterative methods, because grid
points are only visited once.

We recall the basic ideas underlying this algorithm, because our Subgradient Marching
computation of ∇ξUξ(x) makes use of the same ordering process.

The values of U may be regarded as the arrival times of wavefronts propagating from
the source point x0 with velocity 1/ξ. The central idea behind the Fast Marching method
is to visit grid points in an order consistent with the way wavefronts propagates.

In the course of the algorithm, the state of a grid point (i, j) passes successively from
Far (no estimate of Ui,j is available) to Trial (an estimate of Ui,j is available, but it might
not be the solution of (2.1)) to Known (the value of Ui,j is fixed and solves (2.1)). The
set of Trial points forms an interface between Known points (initially the point x0 alone)
and the Far points. The Fast Marching algorithm progressively propagates this front of
Trial points so that all grid points are visited, see Fig. 3.
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(a) Neighborhood N (i, j)

Known Trial

Far 

(b) Points states during the propagation

Figure 3: Fast Marching propagation on a regular grid.

At each iteration of the algorithm, a point (i, j) is tagged as Known so that Ui,j

is the solution of (2.1). The value of U at the neighboring points (i′, j′) ∈ N (i, j) =
{(i + 1, j), (i− 1, j), (i, j + 1), (i, j − 1)} such that (i′, j′) is not yet Known are updated by
solving (2.2), using only the values of U that are Known.

The decision of moving the state of a point from Trial to Known is made by selecting
the Trial point with minimum value of U . It can be shown that updating the value of U
by solving (2.2) can only increase the value of U(i′,j′) for a trial point (i′, j′), so that the
values of Known points are ensured to solve (2.1). A heap data structure allows one to
locate this minimum point in at most log(N) operations, so that the overall complexity
of the algorithm is O(N log(N)) operations. This is similar to Dijkstra’s algorithm for
computing shortest paths on graphs [9].

Table 1 Fast Marching algorithm for solving (2.1).
Initialization: Set Ux0 = 0 and for all (i, j) 6= x0,Ui,j = +∞.

Tag all (i, j) 6= x0 as Far. Tag x0 as Trial.
While the set of Trial points is not empty, repeat:

1. Find (i, j) the Trial point with minimum value of Ui,j .

2. Tag (i, j) as Known.

3. For all (i′, j′) ∈ N (i, j) that are Trial or Far, do:
– Tag (i′, j′) as Trial.
– Update the value of Ui′,j′ = u, by solving (2.2).

2.4 Update of the Geodesic Distance Map

Each step of the Fast Marching requires the resolution of (2.2) to update the value of
u = Ui,j for a small set of points (i, j). One thus needs to compute the solution u of

max{(u− Ui−1,j), (u− Ui+1,j), 0}2 + max{(u− Ui,j−1), (u− Ui,j+1), 0} = (hξi,j)2. (2.3)

This computation deserves special attention because our Subgradient Marching requires
to compute the derivative of the obtained distance u.
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This resolution (2.3) can be decomposed by considering independently each of the four
triangles, that are composed, for any combination of signs (a, b) = (±1,±1), of the three
points {(i, j), (i + a, j), (i, j + b)}.

Depending on whether the neighboring point are Known or not, three possibilities can
occur.

� In the case where Ui+a,j 6= +∞ and Ui,j+b 6= +∞, Equation (2.3), restricted to such
a triangle, defines a solution ua,b which is the maximum real solution of the quadratic
equation

(ua,b − Ui+a,j)2 + (ua,b − Ui,j+b)2 = (hξi,j)2, (2.4)

where by convention, ua,b = ∞ if either Ui+a,j = +∞ or Ui,j+b = +∞.

� In the case where Ui+a,j 6= +∞ and Ui,j+b = +∞, then one defines

ua,b = Ui+a,j + hξi,j . (2.5)

� In the case where Ui+a,j = +∞ and Ui,j+b 6= +∞, then one defines

ua,b = Ui,j+b + hξi,j . (2.6)

The solution u of (2.3) is then obtained as

u = min
a=±1,b=±1

ua,b. (2.7)

3 Subgradient Marching Algorithm

3.1 Dependency Graph

A point (i′, j′) = (i + a?, j) or (i′, j′) = (i, j + b?) is a parent of (i, j) if Ui′,j′ 6= +∞
and u = ua?,b? where u is defined in (2.7). In the case where two different values of signs
(a, b) 6= (a′, b′) satisfy u = ua,b = ua′,b′ , one of the two sets of neighbors is chosen arbitrarily
(say, w.r.t. to an order convention on the points of the grid, which is fixed a priori and is
used in case of ex-aequo in the first phase of the FM algorithm as well).

When a point (i, j) is tagged as Known by the algorithm, its value Ui,j solves the
discrete Eikonal equation (2.2), so that this values only depends on the value of its parent
nodes, that are necessarily Known.

The Fast Marching algorithm described in Section 2.3 computes, during the propaga-
tion, a parent relationship (i, j) → (i + a?, j) and/or (i, j) → (i, j + b?), since each point
excepted x0 has exactly one or two parents. This defines a directed graph structure with-
out cycle, that stores the dependencies induced by the resolution of the discrete Eikonal
equation. Figure 4 shows an example of such a graph of dependencies for the metric ξ = 1,
together with the sub-graph of the dependencies of a single point x1.

3.2 Recursive Subdifferentiation

Proposition 2.1 proved that for a fixed point (i, j) and a fixed source x0 the functional
ξ 7→ Uξ

i,j is concave. For a metric ξ > 0, one can thus consider an element ∇ξUi,j of the
subdifferential of this functional.

The values of Ui,j at a point (i, j) depend only on the values of its parents (i + a?, j)
and/or (i, j + b?) through quadratic or linear equations (2.4), (2.5) or (2.6). The sub-
differential ∇ξUi,j thus also depends on the subdifferentials ∇ξUi+a?,j and ∇ξUi,j+b? .

One has to consider several cases, depending on the number of parents of (i, j).
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Figure 4: Graphs of dependencies of the Fast Marching computations. Left: uniform
metric, right: varying metric.

� For the special case (i, j) = x0, the value of Ui,j is zero and does not depend on ξ.
Thus, ∇ξUi,j = 0, the null vector.

� If (i, j) has two parents, differentiating (2.4) with respect to ξ leads to

α(∇ξUi,j −∇ξUi+a?,j) + β(∇ξUi,j −∇ξUi,j+b?) = h2ξi,j

where α = Ui,j − Ui+a?,j ∈ R and β = Ui,j − Ui,j+b? ∈ R. Since ξ > 0, one has
α + β > 0. The sub-gradient at the point (i, j) is thus the vector ∇ξUi,j defined as

∇ξUi,j =
1

α + β
(hξi,jδi,j + α∇ξUi+a?,j + β∇ξUi,j+b?) , (3.1)

where δi,j is the Dirac vector such that δi,j(i′, j′) = 1 if (i, j) = (i′, j′) and δi,j(i′, j′) =
0 otherwise.

� If only (i + a?, j) is a parent of (i, j), differentiating (2.5) with respect to ξ leads to

∇ξUi,j = ∇ξUi+a?,j + hδi,j . (3.2)

� If only (i, j + b?) is a parent of (i, j), differentiating (2.6) with respect to ξ leads to

∇ξUi,j = ∇ξUi,j+b? + hδi,j . (3.3)

Applying these rules during the Fast Marching propagation allows one to compute the
value of the subgradient ∇ξUi,j at all grid points (i, j). The corresponding Subgradient
Marching algorithm is detailed in Table 2.
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Table 2 Subgradient Marching algorithm.
Initialization: Set Ux0 = 0 and for all (i, j) 6= x0,Ui,j = +∞.

Set ∇ξUx0 = 0 the null vector. Tag all (i, j) 6= x0 as Far. Tag x0 as Trial.
While the set of Trial points is not empty, repeat:

1. Find (i, j) the Trial point with minimum value of Ui,j .

2. Tag (i, j) as Known.

3. For all (i′, j′) ∈ N (i, j) that are Trial or Far, do:
– Tag (i′, j′) as Trial.
– Update the value of Ui′,j′ , using either (2.4), (2.5) or (2.6).
– Update the value of ∇ξUi′,j′ , using either (3.1), (3.2) or (3.3).

The following theorem ensures the validity of the Subgradient Marching algorithm.

Theorem 3.1. For ξ > 0, a given starting point x0 and a given (i, j), the vector ∇ξUi,j

computed with Subgradient Marching belongs to the subdifferential set of the functional
ξ 7→ Uξ

i,j.

Proof. Consider the set of metrics ξ ∈ (R+)N which give distinct values to the action map
at every point, i.e. such that Ui,j 6= Ui′,j′ for (i, j) 6= (i′, j′). In this case the expression of
Ui,j is given by the recursive algebraic formula (3.1), (3.2) or (3.3) involving the values of
the parents. Each parent (both in the case of one parent and in the case of two parents) is
defined with no ambiguity and the same tree of parental dependence would stay valid even
if ξ was changed by small perturbations. It means that there exists a neighborhood of ξ
such that for all other metrics ξ̃ in such a neighborhood all the parental relations between
points are the same. Hence, for ξ̃ in this neighborhood the value of U ξ̃

i,j is given by the
same algebraic and recursive expression. The vector ∇ξUi,j is exactly the differential of
this expression.

Now we suppose that ξ is such that there are possible ex-aequo entries in the vector
u(i, j) = Uξ

i,j . One can slightly perturb this function by a sequence of function un satisfying
the same strict inequalities satisfied by u (i.e., u(i, j) < u(i′, j′) ⇒ un(i, j) < un(i′, j′))
and replacing equalities by inequalities according to the order convention <̃ on the points
of the grid: this means

u(i, j) = u(i′, j′), (i, j)<̃(i′, j′) ⇒ un(i, j) < un(i′, j′).

This is possible by small perturbations, so that un(i, j) → u(i, j) for each (i, j). Moreover
in this way the parental relation is left unchanged for ξn and for ξ. Then define ξn by
ξn = Dun according to (2.2). Obviously we have ξn → ξ.

Moreover, for every (i, j) and every n the vectors∇ξUξn

i,j belongs to the superdifferential

of the map ξ 7→ Uξ
i,j (since the function is concave and this vector is the gradient). Since

the graph of the superdifferential is closed, the limit of this sequence of vectors must belong
to the superdifferential at ξ. This limit actually exists and is given by ∇ξUξ

i,j , because of
the continuity of the formulas that we used to compute all of these vectors. This is possible
because the approximation ξn was chosen in order not to change the parental relations.

Each vector ∇ξUi,j stores at most N non-zero coefficients, so that the overall compu-
tation takes O(N2 log(N)) operations and has a space complexity of O(N2).

10



Figure 1 shows two examples of subgradients ∇ξUi,j computed with the Subgradient
Marching algorithm. For the metric ξ = 1, the subgradient is concentrated closely along
the geodesic, which is a straight line. The second example shows a configuration for which
the subgradient is located around two geodesic curves.

4 Applications

This section describes some applications of the Subgradient Marching algorithm.

4.1 Landscape Design

The design of a landscape in a domain Ω ⊂ Rd corresponds to the optimization of a
metric ξ(x) that describes locally the difficulty of passing through some point x ∈ Ω. The
criterion to optimize should take into accounts the geodesic distance dξ(xs, xt) between
landmark points {xs}p−1

k=0 as well as additional constraint on ξ.

Constrained distance maximization. A natural condition, originally investigated in
[4], is that the landmarks should be maximally distant one from each others, according to
the metric ξ. This corresponds to the maximization of

E(ξ) =
∑
s,t

ws,tdξ(xs, xt), (4.1)

where ws,t ≥ 0 are weights describing the interaction between the landmarks. This crite-
rion models agents located at the points {xs}s and that are free to modify the landscape
to defend themselves optimally from the other agents.

The optimization of E should be done under additional constraints on the set of ad-
missible metrics, to avoid degenerate solutions. We consider here a local constraint

∀i, j, 0 < ξ
i,j
≤ ξi,j ≤ ξi,j , (4.2)

that accounts for the maximal concentration of material allowed. We also consider a global
constraint

1
|Ω|

∑
(i,j)∈Ω

ξi,j ≤ λ, (4.3)

where |Ω| is the number of grid points in Ω, that accounts for the total amount of ground
material available. The constant λ satisfies necessarily

1
|Ω|

∑
(i,j)∈Ω

ξ
i,j
≤ λ ≤ 1

|Ω|
∑

(i,j)∈Ω

ξi,j .

We note that the maximization of E under the pointwise constraint (4.2) alone would
be saturated everywhere ξi,j = ξi,j .

Taking into account that the constraint (4.3) is obviously saturated, the landscape
design problem is written as

ξ? = argmax
ξ∈C

E(ξ) where C = {ξ ; ξ
i,j
≤ ξi,j ≤ ξi,j ,

1
|Ω|

∑
(i,j)∈Ω

ξi,j = λ}, (4.4)

and we note that this maximum might be non-unique. A continuous formulation of the
problem (4.4) is studied in [4] that proves existence of optimal solutions.
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Projected subgradient descent. The problem (4.4) is the maximization of a non-
smooth concave functional under convex constraints. It can be solved using a subgradient
ascent, given an initial metric ξ(0),

ξ(k+1) = ΠC(ξ(k) + ρk∇ξ(k) E), (4.5)

where ρk > 0 is a sequence of gradient step size and ΠC is the orthogonal projection on
the set of constraints C.

A subgradient of E is obtained by combining a subgradient of the distance map Uξ
s (x) =

dξ(xs, x) to each landmark xs

∇ξE =
∑
s,t

ws,t∇ξUξ
s (xt). (4.6)

Each subgradient vector ∇ξUξ
s (xt) is computed by the subgradient descent algorithm,

Table 2, starting the front propagation from the point xs.
Thanks to the following proposition, the projection ΠC is easily computed. A simple

dichotomy is used to find the value of α that satisfies (4.8)

Proposition 4.1. For ξ ≤ λ ≤ ξ, one has

ΠC(ξ) = Pξ
ξ (ξ + α), where Pξ

ξ (ξ)i,j = max(min(ξi,j , ξi,j), ξi,j
) (4.7)

where α ∈ R is such that
1
|Ω|

∑
(i,j)∈Ω

ΠC(ξ + α)i,j = λ. (4.8)

Proof. The projected metric Π(ξ) satisfies

ΠC(ξ) = min
ξ̃∈C

∥∥∥ξ̃ − ξ
∥∥∥2

. (4.9)

For a given Lagrange multiplier α ∈ R, this corresponds to minimize

min
ξ≤ξ̃≤ξ

‖ξ̃ − ξ‖2 − 2α
∑

(i,j)∈Ω

ξ̃i,j .

By developing the square terms, one sees that this amounts to project ξ + α on the set of
constraints ξ ≤ ξ̃ ≤ ξ. This is obtained by truncation with the operator Pξ

ξ , as written in
(4.7).

Since the function
α 7→

∑
(i,j)∈Ω

Pξ
ξ (ξ + α)i,j

is an increasing continuous function, there exists α ∈ R satisfying conditions (4.8).

The following theorem ensures the convergence of the projected gradient descent.

Theorem 4.2. For ρk = 1/k, the sequence (ξ(k))k converges to a maximizer ξ? of (4.4).

Proof. As stated for instance in [2], the convergence of a subgradient descent is ensured if∑
k

ρk = +∞ and
∑

k

ρ2
k < +∞.

and if the sequence (∇ξ(k)E)k stay bounded. Since for each landmarks (xs, xt), the map-
ping ξ 7→ Uξ

s (xt) is concave and 1-homogeneous, it is Lipschitz continuous and hence its
subgradients are bounded.
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Numerical examples. We first consider p = 2 agents located at two points x0, x1 in
the corners of a square domain, as shows in Figure 5. The constraints are set to ξ = 0.1,
ξ = 1 and λ = 0.2 |Ω|. The domain Ω is sampled on a square grid of 100 × 100 points.
Since the landmarks are close to the boundary of Ω, hills appear between each xi and the
boundary. This phenomena is explained by the fact that is less costly to build these short
hills and it makes a bypass behind the defender more difficult.
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Figure 5: 2D and 3D display of the optimal metric ξ?.

Figure 6, top, shows the decay of the error between the iterates ξ(k) and the opti-
mal metric ξ?. Figure 6, bottom, shows the increase of the energy, which is not strictly
monotonic because of the non-smooth nature of the problem to maximize.
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Figure 6: Left: decrease of the error log10(‖ξ(k) − ξ?‖/‖ξ?‖), right: increase of the energy
E(ξ(k)).

Figure 7, left and middle, shows the influence of the total mass parameter λ. Decreasing
the value of λ causes the optimal metric ξ? to be more concentrated around the landmark
positions on elongated regions. Decreasing the value of ξ toward 0 causes these regions on
become circular, see Figure 7, right. One can note that the Gradient Marching algorithm
is able to compute a subgradient of E as soon as ξ > 0, but the convergence tends to
become slower when ξ approaches 0.

One can indeed prove that if ξ
i,j

= 0 and ξi,j = c, in a continuous setting, the unique
optimal metric ξ? is given by ξi,j = c for (i, j) in two balls around x0 and x1 and ξi,j = 0
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Figure 7: Dependence on parameters λ and ξ of the optimal metric ξ. In all examples
ξ = 1.

elsewhere, if λ is small enough so that the two balls fit inside Ω.
Figure 8, left, shows an example of spatially varying constraints. To prevent the agent

located in x1 to modify the metric, we enforce

∀(i, j) ∈ Ω1, ξ
i,j

= ξi,j = 0.1,

where Ω1 is a region surrounding x1, whereas outside Ω1 we set

∀(i, j) /∈ Ω1, ξ
i,j

= 0.1, ξi,j = 1.

The metric is thus only optimized in Ω \ Ω1, as shown on Figure 5, left.
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Figure 8: Left: spatially vayring constraint ξi,j with P = 2 landmarks, right: constant
constraint with P = 8 landmarks.

Figure 8, right, shows an example of optimal metric ξ? computed with P = 8 land-
marks. The weights between the landmarks are set to ws,t = 1 and ξ

i,j
= 0.1, ξi,j = 6.
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Figure 9 shows the iterations of the algorithm for a domain Ω with a hole.

k = 100 k = 300 k = 500

Figure 9: Iterations ξ(k) computed for a domain Ω with a hole and with P = 5 landmarks.

Extension of the model. It is possible to modify the energy E defined in (4.1) to mix
differently the distances between the points {xs}s. One can for instance maximize

Emin(ξ) =
∑

s

min
t6=s

dξ(xs, xt).

This functional is a minimum of concave functions, and hence Emin is a concave function.
The maximization of the energy Emin forces each landmark to be maximally distant from
its closest neighbors.

k = 100 k = 300 k = 500

Figure 10: Iteration ξ(k) computed during the subgradient descent. The dashed line
corresponds to the connexion s → t(s) of nearest neighbors points.

The subgradient of Emin is computed as

∇ξE =
∑

s

∇ξUξ
s (xt(s)).
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where, for each landmark xs, xt(s) is the closest landmark according to the metric ξ

t(s) = argmin
t6=s

dξ(xs, xt).

A projected gradient descent similar to (4.5) converges to a maximum of Emin.
Figure 10, left and center, shows how the metric ξ(k) evolves during the iterations of

a projected gradient descent. The graph connecting each xs to its nearest neighbor xt(s)

is overlaid. The points xs are clustered on two sides of the domain, so that during the
first iterations, the graph connects points on each side of the domain. At convergence,
the metric is optimized so that points located in two different sides of the domain are also
relatively close one from each other. This is why the graph also connects points located
on two different sides.

4.2 Traffic Congestion Equilibria

The simulation of a static traffic congestion is the computation of a Riemannian metric ξ?

so that agents travel along geodesics between sources {xs}p−1
s=0 and targets {yt}q−1

t=0 .
This metric ξ? is an equilibrium when iterating between choosing geodesic paths for

the agents, and updating the metric to penalize areas where many agents are travelling.
Originally formulated on a graph, this Wardrop equilibrium is extended to a continuous
setting as the solution of a variational problem involving geodesic distances, see [5]. A
discretization of this continuous formulation reads

ξ? = argmax
ξ≥0

Ec(ξ) =
∑
s,t

γs,tdξ(xs, yt)−
∑

(i,j)∈Ω

H∗(ξi,j) (4.10)

where γs,t is the strength of the traffic between source s and target t, and H∗(x) = x3/3.
See [1] for more details about this variational formulation and how H∗ relates the metric
ξ and the traffic intensity.

The variational problem (4.10) can be solved efficiently with Subgradient Marching
descent

ξ(k+1) = max(0, ξ(k) + ρkδk),

where ρk = 1/k are decreasing gradient step size and the subgradient Ec is

δk = −H∗′(ξ(k)) +
∑
s,t

γs,t∇ξ(k)Us(yt), (4.11)

where H∗′ is applied to each component ξ
(k)
i,j of ξ(k). The subgradient ∇ξ(k)Us(xt) at ξ(k) of

the mapping ξ 7→ dξ(xs, yt) is computed with the Subgradient Marching algorithm, Table
2, starting the front propagation at the point xs.

Numerical example. Figure 11 shows an example of congested metric with a complex
domain Ω and multiple sources and targets. In a symmetric configuration of two sources
S1 and S2, and two targets T1 and T2; we consider a river where there is no traffic and a
bridge linking the two sides of the river. We chose the traffic weights such that γ1,1+γ1,2 =
2(γ2,1 + γ2,2) and γ2,2

γ2,1
= γ1,1

γ1,2
= 2. The traffic intensity going out from S1 is twice S2’s.

One can note the two hollows on each side of the river appearing because of the inter-sides
and intra-sides crossed traffics.
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(a) 3D view of ξ?

 

 

−2

−1.5

−1

−0.5

0

0.5

(b) Flat view of log(ξ?)

Figure 11: Two sources and two targets, with a river and a bridge on a symmetric config-
uration and an asymmetric traffic weights.

4.3 Travel Time Tomography

An simple model of seismic data acquisition assumes that geodesic distances are collected
between sources xs and sensors yt

∀s = 0, . . . , p− 1, ∀t = 0, . . . , q − 1, ds,t = dξ0(xs, yt),

where ξ0 is an unknown Riemannian metric that reflects the properties of the underground.

Geodesic tomography inversion. Recovering an approximation ξ? of ξ0 from the
measures ds,t is an ill posed inverse problem. Such an approximation can be obtained by
minimizing a functional that computes a tradeoff between fitting the geodesic measure-
ments and imposing smoothness of the metric. Assuming a uniform smoothness of the
metric leads to a Sobolev regularization

min
ξ∈C

Etom(ξ) =
∑
s,t

(dξ(xs, xt)− ds,t)2 +
µ

2

∑
(i,j)∈Ω

‖gradi,jξ‖2 (4.12)

where the operator grad is a finite difference discretization of the 2D gradient

gradi,jξ = (ξi+1,j − ξi,j , ξi,j+1 − ξi,j),

with Neumann condition on the boundary ∂Ω of the domain. The parameter µ controls the
strength of the regularization and should be adapted to the number pq of measurements
and the smoothness of ξ0. The condition ξ ∈ C allows one to incorporate additional
constraints to enhance the quality of the recovery.

In the following, we use the local and global constraints C defined in (4.4), where

ξ = min
(i,j)∈Ω

ξ0
i,j , ξ = max

(i,j)∈Ω
ξ0
i,j , and λ =

1
|Ω|

∑
(i,j)∈Ω

ξ0
i,j .
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Subgradient descent recovery. The minimization problem (4.12) is non-convex, but
a local minimizer ξ? can be computed using a projected gradient descent. Starting from
an initial metric ξ(0), the iteration reads

ξ(k+1) = ΠC(ξ(k) − ρk(δk − µ∆ξ(k))) (4.13)

where ρk = 1/k is a sequence of decreasing step sizes, ΠC is the orthogonal projection on
C computed as detailed in Theorem 4.1, ∆ = −grad∗ ◦ grad is the Laplacian, and

δk =
∑
s,t

(dξ(xs, xt)− ds,t)∇ξ(k)Us(yt).

The subgradient ∇ξ(k)Us(yt) at ξ = ξ(k) of the mapping ξ 7→ dξ(xs, yt) is computed with
the Subgradient Marching algorithm, Table 2, starting the propagation from the point xs.

The subgradient descent (4.13) converges to a local minimum ξ? of the problem (4.12).
This solution ξ? is close to the metric ξ0 to recover if ξ0 is smooth enough, if the contrast ξ/ξ
is not too large, if the number of measurements pq is large enough and if the initialization
ξ(0) is not too far from ξ0.

Numerical examples. Figure 12 shows two examples of smooth metrics ξ0 recovered
from travel time tomography measurements. In each case, we set ξ/ξ = 1.3 and we use

ξ
(0)
i,j = λ as an initial flat metric.

ξ0 ξ?

Figure 12: Examples of travel time tomography recovery.
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Figure 13: Decay of the energy and the error for the first example shown in Figure 12.

For the first example, we use p = q = 100 points distributed evenly on the boundary
of a square Ω, discretized at N = 150 × 150 points, and set xi = yi so that sensor and
sources are the same. For the second example, we use p = 50 source distributed evenly
on the boundary of a complicated domain Ω, and q = 150 sensors distributed randomly
within the domain. We enforce the smoothness of the solution by setting a large enough
regularization parameter µ = 0.1. Figure 13 shows the decay of the energy Etom and the
error

∥∥ξ(k) − ξ?
∥∥.

The recovery error
∥∥ξ0 − ξ?

∥∥ /
∥∥ξ0

∥∥ is 2.5× 10−2 for the first example and 7× 10−3 for
the second example. Both examples shows that for moderately complicated tomography
problems (smooth medium and low contrast), a good approximation can be obtained by
Subgradient Marching descent. These synthetic examples are however quite simple, and a
detailed analysis of the method and the properties of the minimizer ξ? is desirable.

Conclusion

We have presented a new Subgradient Marching algorithm to compute the derivative of
a discrete geodesic distance with respect to the metric. Up to our knowledge, this is
the first time that a consistent numerical tool has been introduced to solve variational
problems that take into account geodesic distances between points. Three representative
applications illustrate the practical use of Subgradient Marching. Lanscape design and
traffic congestion lead to the maximization of a concave functional, and can be solved
efficiently with a projected gradient descent. Recovery of geodesic inverse problems such
as travel time tomography is obtained by computing a local minimizer of a non-convex
problem.
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