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Abstract

In this paper, we introduce a notion of barycenter in the Wasser-
stein space which generalizes McCann’s interpolation to the case of
more than two measures. We provide existence, uniqueness, charac-
terizations and regularity of the barycenter, and relate it to the multi-
marginal optimal transport problem considered by Gangbo and Świȩch
in [8]. We also consider some examples and in particular rigorously
solve the gaussian case. We finally discuss convexity of functionals in
the Wasserstein space.
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1 Introduction

In this paper, we consider a nonlinear interpolation between several probabil-
ity measures on R

d. By analogy with the Euclidean case where the barycenter
of points (x1, ..., xp) with barycentric coordinates (λ1, .., λp) is obtained as the
minimizer of x 7→ ∑p

i=1 λi|x − xi|2, we propose the same procedure in the
Wasserstein space by simply replacing the squared euclidean distance with
the squared 2-Wasserstein distance. The notion of barycenter as a minimizer
of an averaged squared distance is not new and has already been investi-
gated in depth by Sturm [14] in the framework of nonpositively curved metric
spaces. It turns out however that the Wasserstein space is not nonpositively
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curved as illustrated by example 7.3.3 in the book of Ambrosio, Gigli and
Savaré [1] and that much less is known on existence, uniqueness and prop-
erties of barycenters outside of the nonpositively curved case (see however
the recent article of Ohta [12] for the case of Alexandrov spaces of curva-
ture bounded from below). The properties of barycenters in the Wasserstein
space (uniqueness issues in particular) therefore deserve in our opinion to be
studied in their own right.

In the case of two probability measures, such an interpolation is already
known as the McCann’s interpolation [11] that led to the concept of displace-
ment convexity that has proved to be a very powerful tool in the theory of
gradient flows in the Wasserstein space as explained in [1]. Our interest in
interpolating between more than two probability measures by minimizing an
averaged sum of squared Wasserstein distances originated from the recent pa-
pers in mathematical economics by Carlier and Ekeland [4], and Chiappori,
McCann and Nesheim [5] who studied matching and hedonic pricing prob-
lems by means of optimal transport techniques. Interestingly, such problems
also arise in a very different applied setting in image processing for which we
refer to the recent paper of Bernot, Delon, Peyré and Rabin [2].

We will therefore study the following minimization problem

inf
ν

p∑

i=1

λiW
2
2 (νi, ν) (1.1)

where the νi’s are probability measures with finite second moments, the λi’s
are positive weights summing to 1, andW 2

2 denotes the squared 2-Wasserstein
distance. We will establish existence and uniqueness (provided one of the νi’s
vanishes on small sets) of the solution to (1.1), and we will naturally refer to it
as the barycenter of the measures νi’s with weights λi’s. We will also provide
characterization and regularity results, and finally discuss some examples.

In section 2, we introduce a dual problem to (1.1) from which optimality
conditions and uniqueness of the barycenter are derived in section 3. Section
4 relates the barycenter problem to the quadratic multi-marginal optimal
transport problem considered by Gangbo and Świȩch in [8]. In Section 5, we
establish an L∞ regularity results for the barycenter. Section 6 is devoted to
some examples. Finally, section 7 discusses various convexity properties of
functionals of measures.
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2 The primal problem and its dual

The space of continuous functions with at most quadratic growth,

Y := (1 + | . |2)Cb(R
d) =

{
f ∈ C(Rd) :

f

1 + | . |2 is bounded
}
,

will be equipped with the norm

‖f‖Y := sup
x∈Rd

|f(x)|
1 + |x|2 .

Let X be the closed subspace of Y given by

X := (1 + | . |2)C0(R
d) =

{
f ∈ C(Rd) : lim

|x|→∞

f(x)

1 + |x|2 = 0
}
.

We denote by M(Rd) the space of bounded Radon measures on R
d, as usual

identified with the dual of C0(R
d) (space of continuous functions that vanish

at infinity) and by M1
+(Rd) the set of Radon probability measures on R

d.
We shall naturally identify the dual of X with

X ′ = {µ ∈ M(Rd) : (1 + |x|2)µ ∈ M(Rd)}.

Given two probability measures with finite second moments µ and ν (i.e.
µ and ν in X ′ ∩ M1

+(Rd)), the 2-Wasserstein distance between µ and ν,
W2(µ, ν), is defined as the value of the following Monge-Kantorovich optimal
transportation problem:

W 2
2 (µ, ν) := inf

{∫

Rd×Rd

|x− y|2dγ(x, y), γ ∈ Π(µ, ν)

}
(2.1)

where Π(µ, ν) denotes the set of transport plans between µ and ν i.e. the set
of probability measures on R

d × R
d having µ and ν as marginals.

Given an integer p ≥ 2, p probability measures ν1, ..., νp in X ′ ∩M1
+(Rd)

and p real numbers λ1, ...λp such that λi > 0 and
∑p

i=1 λi = 1, we are
interested in the following problem:

(P) inf
ν∈X′∩M1

+
(Rd)

J(ν) =

p∑

i=1

λi

2
W 2

2 (νi, ν). (2.2)

In analogy with the Euclidean case, a solution of the previous problem will
be called the barycenter of the probabilities νi with weights λi.
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To study existence and uniqueness of the barycenter, we introduce the
dual (this terminology will be justified later on) of (P),

(P∗
0 ) sup

{
F (f1, ..., fp) =

p∑

i=1

∫

Rd

Sλi
fidνi :

p∑

i=1

fi = 0, fi ∈ X

}
(2.3)

where

Sλf(x) := inf
y∈Rd

{
λ

2
|x− y|2 − f(y)

}
, ∀x ∈ R

d, f ∈ X, λ > 0. (2.4)

For i ∈ {1, · · · , p}, we define

Hi(f) := −
∫

Rd

Sλi
f(x)dνi(x).

Note that Sλf defined as above may take the value −∞. It is easy to check
that Hi is convex and l.s.c. on Y . By definition, the Legendre-Fenchel
transform of Hi is

H∗
i (ν) := sup

f∈X

{∫

Rd

fdν −Hi(f)

}

= sup
f∈X

{∫

Rd

fdν +

∫

Rd

Sλi
fdνi

}
, ∀ν ∈ X ′.

Since the supremum in (P∗
0 ) may not be attained, we consider its ”relaxed”

problem

(P∗) sup

{
F (f1, ..., fp) :

p∑

i=1

fi = 0, fi ∈ Y

}
.

Now, let ν ∈ X ′ ∩M1
+(Rd), γi ∈ Π(νi, ν) and (f1, ..., fp) ∈ Xp which sum to

0. Integrating the inequality

Sλi
fi(xi) + fi(y) ≤

λi

2
|xi − y|2

with respect to γi and summing over i, we have after using that
∑p

i=1 fi = 0,

p∑

i=1

∫

Rd

Sλi
fidνi ≤

p∑

i=1

λi

2

∫

Rd×Rd

|xi − y|2dγi(xi, y).

We then deduce that

inf(P) ≥ sup(P∗) ≥ sup(P∗
0 ). (2.5)

To prove the converse inequality, we first establish the following interme-
diate result:
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Lemma 2.1. For every ν ∈ X ′, one has

H∗
i (ν) =

{
λi

2
W 2

2 (νi, ν) if ν ∈ X ′ ∩M1
+(Rd)

+∞ otherwise.

Proof. We first prove that H∗
i (ν) = +∞ whenever ν ∈ X ′\M1

+(Rd). Indeed,
if ν is not nonnegative, there exists f ∈ X, f ≤ 0 such that

∫
Rd fdν > 0.

Then Sλi
(tf) ≥ 0 for every t ≥ 0, and we have

H∗
i (ν) ≥ sup

t≥0
t

∫

Rd

fdν = +∞.

But if ν ∈ X ′ is nonnegative and ν(Rd) 6= 1, say ν(Rd) < 1, using f(x) = −t
with t ≥ 0 in H∗

i (ν), we have

H∗
i (ν) ≥ sup

t≥0
t

(
−
∫

Rd

dν +

∫

Rd

dνi

)
=
(
1 − ν(Rd)

)
sup
t≥0

t = +∞.

We conclude that H∗
i (ν) = +∞ whenever ν ∈ X ′ \M1

+(Rd).

Now let ν ∈ X ′ ∩M1
+(Rd). The well-known Kantorovich duality formula

(see for instance [15]) reads as:

λi

2
W 2

2 (ν, νi) = sup

{∫

Rd

fdν +

∫

Rd

gdνi, f, g ∈ Cb, f(x) + g(y) ≤ λi

2
|x− y|2

}

= sup
f∈X

{∫

Rd

fdν +

∫

Rd

Sλi
fdνi

}
= H∗

i (ν). (2.6)

This ends the proof.

We then easily deduce the following duality result:

Proposition 2.2.

inf(P) = sup(P∗
0 ) = sup(P∗).

Proof. Thanks to lemma 2.1, we have on the one hand

inf(P) = inf
X′

p∑

i=1

H∗
i = −

(
p∑

i=1

H∗
i

)∗

(0).

Defining H as the inf-convolution of H1,..., Hp,

H(f) =

(
p

�
i=1

Hi

)
(f) := inf

{
p∑

i=1

Hi(fi) : fi ∈ X,

p∑

i=1

fi = f

}
, ∀f ∈ X,
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we have on the other hand

sup(P∗
0 ) = −H(0).

It is a well-known fact of convex analysis (which can be checked by a straight-
forward computation) that

H∗ =

(
p

�
i=1

Hi

)∗

=

p∑

i=1

H∗
i .

Then
inf(P) = −H∗∗(0) ≥ −H(0) = sup(P∗

0 ).

Hence, using (2.5), the desired result amounts to prove that H(0) = H∗∗(0).
And since H is convex, it is enough (see [7], propositions 3.3 and 4.1) to
show that H has a continuous affine minorant and is l.s.c. at 0 for the norm
topology of X (i.e. the topology induced by that of Y ).To prove that, we
rewrite Hi as

Hi(fi) =

∫

Rd

sup
y∈Rd

{
fi(y) −

λi

2
|x− y|2

}
dνi(x),

which yields in particular

Hi(fi) ≥ fi(0) − λi

2

∫

Rd

|x|2dνi(x)

so that

H(f) ≥ f(0) −
p∑

i=1

λi

2

∫

Rd

|x|2dνi(x) > −∞, ∀f ∈ X

which gives a continuous affine minorant for H . Now, let f ∈ Y be such that
4‖f‖Y ≤ pmin{λ1, ..., λp}. Choosing fi = f/p in H(f), we have

H(f) ≤
p∑

i=1

Hi

(
f

p

)
≤

p∑

i=1

∫

Rd

sup
y∈Rd

{
λi

4
(1 + |y|2) − λi

2
|x− y|2

}
dνi(x)

=

p∑

i=1

∫

Rd

(
λi

4
+
λi

2
|x|2
)
dνi(x)

=
1

4
+

p∑

i=1

λi

2

∫

Rd

|x|2dνi(x).

Note that we have used in the above computations that f(y) ≤ pλi

4
(1 + |y|2)

and
∑p

i=1 λi = 1. We thus proved that the convex function H never takes
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the value −∞ and is bounded from above in a neighbourhood of 0 in Y .
By a standard convex analysis result (see [7], proposition 2.5), it is therefore
continuous at 0. Hence, H(0) = H∗∗(0) and the result follows.

The next proposition gives existence of an optimizer to the primal problem
(P) and its dual (P∗).

Proposition 2.3. Both problems (P) and (P∗) have solutions.

Proof. Let νn be a minimizing sequence of (P). It is easy (for instance,
by using (2.6)) to check that

∫
Rd |x|2dνn(x) is bounded; hence νn is tight.

It then follows from Prokhorov’s Theorem (see [6]) that a (non relabeled)
subsequence converges narrowly to some ν ∈ M1

+(Rd), and it is easy to check
that ν ∈ X ′. Using (2.6), we then immediately get J(ν) ≤ lim inf J(νn) =
inf(P), which shows that (P) has a minimizer.

Proving the existence of a solution to (P∗) requires some preliminaries.
First we show that in (P∗), one can choose the fi such that (Sλi

◦ Sλi
) fi = fi

for all i = 1, · · · , p − 1. Indeed, if (f1, ..., fp) is admissible for (P∗), then
setting gi := Sλi

fi, hi := Sλi
gi for all i, it is easy to check that fi ≤ hi,

hi ∈ X and Sλi
fi = Sλi

hi. Now, define (f̃1, ..., f̃p−1) := (h1, ..., hp−1) and

f̃p := −∑p−1
i=1 f̃i. Since fi ≤ f̃i for i = 1, ..., p− 1, then f̃p ≤ −∑p−1

i=1 fi = fp

. For i = 1, ..., p − 1, we then have Sλi
f̃i = Sλi

fi, and since Sλp
is order-

reversing, then Sλp
f̃p ≥ Sλp

fp which shows that F (f̃1, ..., f̃p) ≥ F (f1, ...., fp).
This proves that in (P∗), one may assume that fi = Sλi

gi with gi = Sλi
fi for

i = 1, ..., p− 1. The relation fi = Sλi
gi can equivalently be written as

λi

2
|y|2 − fi(y) = sup

x∈Rd

{
λix · y −

λi

2
|x|2 + gi(x)

}

which implies that λi

2
|.|2 − fi is convex for i = 1, ..., p−1. Finally, we remark

that, since the functional F and the constraint of (P∗) are invariant, when
one adds constants that sum to 0 to the fi’s, there is no loss of generality in
assuming fi(0) = 0 for all i.

Now let fn := (fn
1 , .., f

n
p ) be a maximizing sequence for (P∗) which, as

explained before, can be chosen such that fn(0) = 0 and fn
i = Sλi

gn
i for

i = 1, ..., p − 1 with gn
i := Sλi

fn
i for i = 1, ..., p. In particular, λi

2
|.|2 − fn

i is
convex for i = 1, ..., p − 1 and every n. Using the fact that fn

i (0) = 0 and
gn

i := Sλi
fn

i we then have

gn
i (x) ≤ λi

2
|x|2. (2.7)
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Since fn is a maximizing sequence for (P∗), there exists a constant C1 such
that

p∑

i=1

∫

Rd

gn
i (x)dνi(x) ≥ C1, ∀n. (2.8)

Then (2.7) and (2.8) imply that for all j = 1, · · · , p,
∫

Rd

gn
j (x)dνj(x) ≥ C1 −

∑

i6=j

∫

Rd

gn
i (x)dνi(x)

≥ C1 −
∑

i6=j

λi

2

∫

Rd

|x|2dνi(x). (2.9)

And since the νi have finite second moments, we deduce from (2.7) and
(2.9) that the integrals

∫
Rd g

n
i (x)dνi(x) are bounded. Now integrating the

inequality fn
i (y) ≤ λi|x− y|2/2 − gn

i (x) with respect to νi(x) and using the
bound on

∫
Rd g

n
i (x)dνi(x), we see that there exists a constant C2 such that

fn
i (y) ≤ C2(1 + |y|2), ∀i, ∀n, ∀y ∈ R

d. (2.10)

Applying the above inequality to fn
p and recalling that fn

p = −∑p−1
i=1 f

n
i , we

also have
p−1∑

i=1

fn
i (y) ≥ −C2(1 + |y|2), ∀n, ∀y ∈ R

d.

Then we deduce by using again (2.10) that

fn
i (y) ≥ −C2(1 + |y|2) −

∑

j 6=i

fn
j (y) ≥ −pC2(1 + |y|2), ∀i, ∀n, ∀y ∈ R

d.

The subsequent inequality combined with (2.10) show that fn
i is bounded

in Y for every i. Since λi

2
|.|2 − fn

i is convex for every n and i = 1, ..., p− 1,
passing to a subsequence if necessary, we may assume that fn converges
uniformly on compact subsets to some f = (f1, ...fp) with each fi ∈ Y
(indeed, if a sequence of convex functions is bounded on the ball B2r of
center 0 and radius r then it is equi-Lipschitz on the ball Br and one can
therefore invoke Ascoli-Arzelà’s theorem together with a diagonal extraction
argument). Finally, the fact that f solves (P∗) follows from Fatou’s Lemma,
the positivity of λi

2
|.|2 − gn

i and the inequality

lim sup
n

gn
i (x) ≤ inf

y∈Rd

{
lim sup

n

(λi

2
|x− y|2 − fn

i (y)
)}

= inf
y∈Rd

{
λi

2
|x− y|2 − fi(y)

}
= Sλi

fi(x).

8



3 Characterization of barycenters

With the results of the previous section at hand, namely,

min(P) = max(P∗),

our aim now is to further exploit this duality to characterize the barycenters
i.e. the solution of (P).

Let (f1, ..., fp) be a solution of (P∗). It follows from the previous duality
relation that there exists ν ∈ X ′ ∩M1

+(Rd) solution of (P∗) such that

p∑

i=1

λi

2
W 2

2 (νi, ν) =

p∑

i=1

∫

Rd

Sλi
fidνi =

p∑

i=1

∫

Rd

Sλi
fidνi +

p∑

i=1

∫

Rd

fidν. (3.1)

And since λiW
2
2 (νi, ν)/2 ≥

∫
Rd Sλi

fidνi +
∫

Rd fidν because of (2.6), then (3.1)
is equivalent to

λi

2
W 2

2 (νi, ν) =

∫

Rd

Sλi
fidνi +

∫

Rd

fidν, ∀i ∈ {1, ..., p}. (3.2)

Now, let γi ∈ Π(νi, ν) be an optimal transportation plan between νi and ν
(i.e. γi ∈ Π(νi, ν) and W 2

2 (νi, ν) =
∫

Rd×Rd |x− y|2dγi(x, y)). We deduce from
(3.2) and γi ∈ Π(νi, ν) that

λi

2
W 2

2 (νi, ν) =
λi

2

∫

Rd×Rd

|x− y|2dγi(x, y) =

∫

Rd

Sλi
fidνi +

∫

Rd

fidν

=

∫

Rd×Rd

(
Sλi

fi(x) + fi(y)
)
dγi(x, y).

But since by definition of Sλi
fi(x),

λi

2
|x− y|2 ≥ Sλi

fi(x) + fi(y), we get:

λi

2
|x− y|2 = Sλi

fi(x) + fi(y), γi-a.e. (3.3)

We have already noticed that Sλi

(
Sλi

fi

)
≥ fi. So (3.3) implies that for

γi-a.e.(x, y), one has fi(y) = λi

2
|x − y|2 − Sλi

f(x) ≥ Sλi

(
Sλi

fi

)
(y), so that

fi = Sλi

(
Sλi

fi

)
ν-a.e.. Therefore using the constraint

∑p
i=1 fi = 0 of (P∗),

we have
p∑

i=1

Sλi

(
Sλi

fi

)
≥ 0,

p∑

i=1

Sλi

(
Sλi

fi

)
= 0 ν-a.e. (3.4)
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Now, we consider the convex function φi defined by

λiφi(x) :=
λi

2
|x|2 − Sλi

fi(x), (3.5)

and we denote by ∂φi the graph of its subdifferential, i.e.

∂φi :=
{
(x, y) ∈ R

d × R
d : φi(x) + φ∗

i (y) = x · y
}
,

where φ∗
i denotes the conjugate of φi, i.e.

λiφ
∗
i (y) :=

λi

2
|y|2 − Sλi

(
Sλi

fi

)
(y).

Combining (3.3) and (3.4), we have that the support of γi is included in ∂φi,
and

p∑

i=1

λiφ
∗
i (y) ≤

|y|2
2

, ∀y ∈ R
d, with equality ν-a.e. (3.6)

Moreover, it is easy to check that φi solves

inf

{∫

Rd

φ(x)dνi(x) +

∫

Rd

φ∗(y)dν(y) : φ convex l.s.c.

}
. (3.7)

The previous conditions are of course very related to classical results from
optimal transportation theory. To be more precise, let us first recall some
definitions.

Definition 3.1. Let µ ∈ X ′∩M1
+(Rd) and σ be a Borel map R

d → R
d. The

push-forward of µ through σ is the measure denoted σ♯µ defined by
∫

Rd

f(y)d
(
σ♯µ
)
(y) =

∫

Rd

f(σ(x))dµ(x), ∀f ∈ Cb(R
d).

Definition 3.2. A probability measure µ ∈ X ′ ∩M1
+(Rd) is said to vanish

on small sets if and only if µ(A) = 0 for every Borel set A of R
d, having

Hausdorff dimension less than or equal to d− 1.

Let us now recall the following classical results from optimal transporta-
tion theory which initially are due to Brenier and later generalized by Mc-
Cann (see [3], [10] or [15]):

Proposition 3.3. Let µ and ν be in X ′∩M1
+(Rd), and γ ∈ Π(µ, ν). Then γ

is an optimal transportation plan between µ and ν if and only if the support
of γ is included in ∂φ for some convex l.s.c. function φ; in this case φ solves

inf

{∫

Rd

φ(x)dµ(x) +

∫

Rd

φ∗(y)dν(y) : φ convex l.s.c.

}
. (3.8)
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If in addition µ vanishes on small sets, then there is a unique optimal trans-
portation plan γ which is of the form γ = (id,∇φ)♯µ with φ convex. Unique-
ness also holds in the sense that if ∇ψ♯µ = ∇φ♯µ = ν and ψ is convex, then
∇ψ = ∇φ µ-almost everywhere.

Definition 3.4. Let µ and ν be in X ′ ∩ M1
+(Rd) such that µ vanishes on

small sets. Then the Brenier map transporting µ to ν is the unique (up to
µ-a.e. equivalence) map of the form ∇φ with φ convex such that ν = ∇φ♯µ.

Note that although Brenier’s map ∇φ is uniquely defined µ-a.e., the po-
tential φ is not (for instance, it is easy to build counter-examples if the
support of µ is disconnected).

Thanks to the duality between (P) and (P∗) and the extremality relations
between these variational problems, we then deduce the following uniqueness
result and characterization of the barycenter:

Proposition 3.5. Assume that there is an index i ∈ {1, ...p} such that νi

vanishes on small sets. Then (P) admits a unique solution ν which is given
by ν = ∇φi♯νi where φi is the convex potential defined by (3.5).

Proof. Let ν solve (P), let (φj)j=1,...,p be the convex potentials defined by
(3.5) (these potentials do not depend on ν but only on a solution to the dual
problem (P∗)) and let γi ∈ Π(νi, ν) be an optimal transport plan between νi

and ν. Thanks to (3.3)-(3.4), we know that the support of γi is included in
the graph of ∂φi. Since νi vanishes on small sets, φi is differentiable νi-almost
everywhere so that γi = (id,∇φi)♯νi which implies that ν = ∇φi♯νi and this
determines ν uniquely.

This enables us to define unambiguously barycenters as follows:

Definition 3.6. Given (ν1, ..., νp) in X ′∩M1
+(Rd) one of which vanishes on

small sets, and given positive reals (λ1, ..., λp) that sum to 1, the barycenter
of (ν1, ..., νp) with weights (λ1, ..., λp) is the unique solution of (P). It will be
denoted by (bar(νi, λi)i=1,...,p).

Remark 3.7. If all the νi’s vanish on small sets, defining φi by (3.5) (with
(f1, ..., fp) an arbitrary solution of (P∗)) we see that ν = ∇φi♯νi for every i.
The condition that ∇φi♯νi does not depend on i then appears as an optimality
condition for (P∗).

The following proposition further characterizes the barycenter.

Proposition 3.8. Assume that νi vanishes on small sets for every i = 1, .., p,
and let ν ∈ X ′ ∩M1

+(Rd). Then the following conditions are equivalent:

11



1. ν solves (P).

2. ν = ∇φi♯νi for every i, where φi is defined by (3.5).

3. There exist convex potentials ψi such that ∇ψi is Brenier’s map trans-
porting νi to ν, and a constant C such that

p∑

i=1

λiψ
∗
i (y) ≤ C +

|y|2
2

, ∀y ∈ R
d, with equality ν-a.e. (3.9)

Proof. The equivalence between 1. and 2. follows from proposition 3.5. Next
we prove that 1. is equivalent to 3. Indeed, if 1. holds, then it is enough
to take ψi = φi where φi is defined by (3.5); then (3.9) directly follows from
(3.6). Finally, if 3. is satisfied (with C = 0, say), then (3.9) together with
the Kantorovich duality formula gives

p∑

i=1

λi

2
W 2

2 (νi, ν) =

p∑

i=1

λi

∫

Rd

( |x|2
2

− ψi(x)
)
dνi(x).

Now let µ ∈ X ′ ∩M1
+(Rd). Using the inequality x · y ≤ ψi(x) + ψ∗

i (y), i.e.

λi
|x|2
2

− λiψi(x) + λi
|y|2
2

− λiψ
∗
i (y) ≤

λi

2
|x− y|2,

we have after integration

λi

2
W 2

2 (νi, µ) ≥ λi

∫

Rd

( |x|2
2

− ψi(x)
)
dνi(x) + λi

∫

Rd

( |y|2
2

− ψ∗
i (y)

)
dµ(y).

Summing these inequalities over i, and using (3.9), we get

p∑

i=1

λi

2
W 2

2 (νi, µ) ≥
p∑

i=1

λi

∫

Rd

( |x|2
2

− ψi(x)
)
dνi(x) +

∫

Rd

( |y|2
2

−
p∑

i=1

λiψ
∗
i (y)

)
dµ(y)

≥
p∑

i=1

λi

∫

Rd

( |x|2
2

− ψi(x)
)
dνi(x) =

p∑

i=1

λi

2
W 2

2 (νi, ν)

which proves that ν solves (P).

Remark 3.9. If ν and the potentials ψi satisfy the third statement of the
previous proposition, then the support of ν-almost every point is included
in the contact set where the convex function ϕ :=

∑p
i=1 λiψ

∗
i agrees with its

quadratic majorant C + |.|2

2
. Since these two functions are continuous, this

12



implies that the support of ν, Supp(ν) is actually included in this contact
set. Now let us remark that at such a contact point x, we have

p∑

i=1

λi∂ψ
∗
i (x) = {

p∑

i=1

λiqi, qi ∈ ∂ψ∗
i (x)} ⊂ ∂ϕ(x) ⊂ {x}

so that each potential ψ∗
i is differentiable at x. The potentials ψ∗

i are therefore
differentiable on Supp(ν) and satisfy on this set the relation

p∑

i=1

λi∇ψ∗
i = id . (3.10)

We also remark that if (3.10) holds everywhere for Brenier’s maps ∇ψi trans-
porting νi to ν, then ν is optimal for (P).

4 Multi-marginal formulation

Our aim in this section is to prove that (P) is equivalent to a linear program-
ming problem of multi-marginal optimal transportation type similar to the
one solved by Gangbo and Świȩch in [8].

For every x := (x1, ..., xp) ∈ (Rd)p, we define

T (x) :=

p∑

i=1

λixi. (4.1)

Of course the Euclidean barycenter T (x) is characterized by the property

p∑

i=1

λi|xi − T (x)|2 = inf
y∈Rd

{
p∑

i=1

λi|xi − y|2
}
. (4.2)

Let us now introduce the multi-marginal optimal transportation problem

inf

{∫

(Rd)p

( p∑

i=1

λi

2
|xi − T (x)|2

)
dγ(x1, ...xp), γ ∈ Π(ν1, ..., νp)

}
(4.3)

where Π(ν1, ..., νp) is the set of probability measures on (Rd)p having ν1, ..., νp

as marginals. Developing the squares in (4.3), it is easy to see that (4.3) is
equivalent to

(Q) sup

{∫

(Rd)p

( ∑

1≤i<j≤p

λiλjxi · xj

)
dγ(x1, ...xp), γ ∈ Π(ν1, ..., νp)

}
. (4.4)

13



The previous multi-marginal problem (Q) has been solved by Gangbo and
Świȩch in [8]. As usual, a key tool is the dual problem

(Q∗) inf

{
p∑

i=1

∫

Rd

gidνi,

p∑

i=1

gi(xi) ≥
∑

1≤i<j≤p

λiλjxi · xj , ∀x ∈ (Rd)p

}
.

(4.5)
As the classical optimal transportation problem with quadratic cost is solved
by Brenier, (Q) and (Q∗) have a very special structure that we next discuss
heuristically. Firstly, in (Q∗), one can restrict to potentials that satisfy

gi(xi) = sup
(xj)j 6=i

{1

2

∑

1≤k 6=j≤p

λkλjxk · xj −
∑

j 6=i

gj(xj)
}

(4.6)

which, in particular, implies the convexity of the potentials gi’s. Secondly,
the duality relation between (Q) and (Q∗) expresses that, γ solves (Q) and
(g1, ..., gp) solves (Q∗) if and only if

p∑

i=1

gi(xi) =
1

2

∑

1≤i6=j≤p

λiλjxi · xj , γ-a.e.. (4.7)

Finally, if, in addition the potentials gi’s are differentiable γ-a.e., then one
can deduce from (4.6) and (4.7) that for γ-a.e. x = (x1, ..., xd), one has

∇gi(xi) = λi

∑

j 6=i

λjxj

which can be rewritten as

∇
(λi

2
| . |2 +

gi

λi

)
(xi) =

p∑

j=1

λjxj = ∇
(λ1

2
| . |2 +

g1

λ1

)
(x1)

or in a more explicit way

xi = ∇
(λi

2
| . |2 +

gi

λi

)∗
◦ ∇
(λ1

2
| . |2 +

g1

λ1

)
(x1).

This (formally) yields that the optimal γ is in fact supported by the graph
of a map of the form x1 → (x1,∇u∗2(∇u1(x1)), ...,∇u∗p(∇u1(x1))) for some
potentials ui such that ui−λi| . |2/2 is convex. The previous discussion being
informal, we refer to the paper of Gangbo and Świȩch [8] for the details. Here,
we simply summarize their main results as follows:

14



Theorem 4.1. Assume that νi vanishes on small sets for i = 1, .., p. Then
(Q) admits a unique solution γ ∈ Π(ν1, ..., νp). Moreover, γ is of the form
γ = (T 1

1 , ...., T
1
p )♯ν1 with T 1

i = ∇u∗i ◦ ∇u1 for i = 1, ..., p where the ui’s are
strictly convex potentials defined by

ui(x) :=
λi

2
|x|2 +

gi(x)

λi
, ∀x ∈ R

d (4.8)

and (g1, ..., gp) are convex potentials that solve (Q∗).

In the sequel, we will refer to the maps T 1
i of the previous theorem as

the Gangbo-Świȩch maps between ν1 and νi. Note that the Gangbo-Świȩch
maps a priori depend on the whole collections of the νi’s and the weights λi’s.
These maps are transport maps in the sense that T 1

i ♯ν1 = νi. Of course, by
permuting the indices, one can similarly define the Gangbo-Świȩch maps
T j

i := ∇u∗i ◦ ∇uj between a reference measure νj and νi.

The next result gives the precise relationship between our initial barycen-
ter problem (P) and the multi-marginals problem (Q).

Proposition 4.2. Assume that νi vanishes on small sets for i = 1, .., p.
Then the solution of (P) is given by ν = T♯γ, where T is defined by (4.1)
and γ is the solution of (Q).

Proof. For every i ∈ {1, ..., p} denote by πi the i-th canonical projection from
(Rd)p to R

d (i.e. πi(x) = xi) and define γi := (πi, T )♯γ. By construction,
γi ∈ Π(νi, ν). Then

W 2
2 (νi, ν) ≤

∫

(Rd)p

|xi − T (x)|2dγ(x),

and thus,

p∑

i=1

λi

2
W 2

2 (νi, ν) ≤
∫

(Rd)p

( p∑

i=1

λi

2
|xi − T (x)|2

)
dγ(x). (4.9)

Now let µ ∈ X ′ ∩ M1
+(Rd) and ηi ∈ Π(νi, µ) for i = 1, ..., p. By the disin-

tegration theorem (see [6]), we can write ηi = ηy
i ⊗ µ for a Borel family of

(conditional) probability measures (ηy
i )y∈Rd which precisely means that

∫

Rd×Rd

f(xi, y)dηi(xi, y) =

∫

Rd

( ∫

Rd

f(xi, y)dη
y
i (xi)

)
dµ(y), ∀f ∈ C0

b (Rd×R
d).

Now, let us define η ∈ M1
+((Rd)p+1) by

∫

(Rd)p+1

f(x, y)dη(x, y) =

∫

Rd

( ∫

(Rd)p

f(x, y)dηy
1(x1)...dη

y
p(xp)

)
dµ(y)
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for every test-function f ∈ Cb((R
d)p+1). Let θ ∈ M1

+((Rd)p) be the canonical
projection of η on (Rd)p i.e.

∫

(Rd)p

f(x)dθ(x) =

∫

Rd

(∫

(Rd)p

f(x)dηy
1(x1)...dη

y
p(xp)

)
dµ(y), ∀f ∈ C0

b ((Rd)p).

By construction, θ ∈ Π(ν1, ..., νp). Using (4.2) and the fact that γ solves
(4.3), we then obtain

p∑

i=1

λi

2

∫

Rd×Rd

|xi − y|2dηi(xi, y) =

∫

(Rd)p+1

( p∑

i=1

λi

2
|xi − y|2

)
dη(x, y)

≥
∫

(Rd)p+1

( p∑

i=1

λi

2
|xi − T (x)|2

)
dη(x, y)

=

∫

(Rd)p

( p∑

i=1

λi

2
|xi − T (x)|2

)
dθ(x)

≥
∫

(Rd)p

( p∑

i=1

λi

2
|xi − T (x)|2

)
dγ(x).

Since in the previous inequality, the ηi’s are arbitrary transport plans between
νi and µ, we conclude with (4.9).

Combining Theorem 4.1 and Proposition 4.2, we see that the barycenter
of the (νi, λi)’s is also characterized by

ν :=
( p∑

i=1

λiT
1
i

)
♯ν1 =

( p∑

i=1

λiT
j
i

)
♯νj (4.10)

where the T j
i are the Gangbo-Świȩch maps between νj and νi which are given

by T j
i = ∇u∗i ◦ ∇uj, where the uj’s are strictly convex potentials defined by

(4.8). As an immediate consequence, we deduce that the support of the
barycenter bar((νi, λi)i) is included in

∑p
i=1 λiSupp(νi). Let us also remark

that the center of mass of bar((νi, λi)i) is
∑p

i=1 λi

∫
Rd xdνi(x).

5 Regularity of the barycenter

The relation between the barycenter and the Gangbo-Świȩch maps easily
enables us to obtain a regularity result on the barycenter.
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Theorem 5.1. Let (ν1, ..., νp) in X ′ ∩M1
+(Rd) vanish on small sets and let

(λ1, ..., λp) be positive reals that sum to 1. Also, assume that ν1 ∈ L∞ (i.e. is
absolutely continuous and has a bounded density with respect to the Lebesgue
measure) and define ν := bar((νi, λi)). Then ν ∈ L∞ and more precisely:

‖ν‖L∞ ≤ 1

λd
1

‖ν1‖L∞. (5.1)

Proof. By proposition 4.2, ν = T♯ν1 where

T =

p∑

i=1

λi∇u∗i ◦ ∇u1 = λ1 id +

p∑

i=2

λi∇u∗i ◦ ∇u1

and the potentials ui are defined as in the previous section, in particular each
ui is strictly convex and more precisely ui − λi

2
|.|2 is convex so that one has

in the sense of distributions

D2ui ≥ λi id, (5.2)

(given two symmetric matrices A and B, the notation A ≥ B means, as
usual, that A−B is semi-definite positive). Since ui − λi

2
|.|2 is convex, u∗i is

C1 and for every p and q in R
d, since p ∈ ∂ui(∇u∗i (p)) and q ∈ ∂ui(∇u∗i (q)),

we have

(∇u∗i (p)) −∇u∗i (q)) · (p− q) ≥ λi|∇u∗i (p)) −∇u∗i (q)|2

which shows that ∇u∗i is λ−1
i -Lipschitz, so that u∗i ∈ C1,1, and

D2u∗i ≤
1

λi

id . (5.3)

For ε > 0, we regularize u1 as follows:

uε
1 := ρε ⋆ v

ε
1

where ρε := ε−dρ(./ε), ρ ∈ C∞
c , ρ ≥ 0,

∫
ρ = 1 and Supp(ρ) ⊂ B1, and we

define vε
1 as the usual Moreau-Yosida regularization by infimal-convolution:

vε
1 :=

(
u∗1 +

ε

2
|.|2
)∗
.

By construction, uε
1 is smooth and strictly convex, and by the same arguments

as above, we precisely have

ε id ≤ D2(uε
1)

∗ ≤
( 1

λ1
+ ε
)

id, ε−1 id ≥ D2uε
1 ≥

( λ1

1 + λ1ε

)
id . (5.4)
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Moreover, it is classical to check that ∇uε
1 converges to ∇u1 in L1

loc. We can
now define the Lipschitz map

T
ε

= λ1 id +

p∑

i=2

λi∇u∗i ◦ ∇uε
1

and the image measure νε := T
ε
♯ν1. We first claim that T

ε
is injective.

Indeed, if 0 = T
ε
(x)−T ε

(y), taking the scalar product with ∇uε
1(x)−∇uε

1(y)
and using the monotonicity of ∇u∗i , we get

0 = λ1(x− y) · (∇uε
1(x) −∇uε

1(y))

+

p∑

i=2

λi

(
∇u∗i (∇uε

1(x)) −∇u∗i (∇uε
1(y))

)
· (∇uε

1(x) −∇uε
1(y))

≥ λ2
1

1 + λ1ε
|x− y|2

which proves that x = y. The same argument applies to show that T is also
injective when restricted to the set of points where u1 is differentiable.

Since ∇uε
1 is a smooth diffeomorphism with Jacobian bounded away from

zero, and since the maps ∇u∗i are Lipschitz, the singular set S of points x such
that

∑p
i=2 λi∇u∗i fails to be differentiable at ∇uε

1(x) is Lebesgue negligible.
For x /∈ S, by the usual chain rule, we have

DT
ε
(x) = λ1 id +

p∑

i=2

λiD
2u∗i (∇uε

1(x))D
2uε

1(x)

which we rewrite as λ1 id +AB where both matrices A := D2u∗i (∇uε
1(x)) and

B := D2uε
1(x) are symmetric and positive definite. Now, we claim that this

implies
detDT

ε
(x) = det(λ1 id +AB) ≥ λd

1. (5.5)

Indeed, if z ∈ R
d and µ ∈ R, we have ABz = µz if and only if

(B1/2AB1/2)B1/2z = µB1/2z. So AB has a basis of eigenvectors (because
B1/2AB1/2 has one and B1/2 is invertible) and all its eigenvalues are positive
since they are eigenvalues of the definite positive matrix B1/2AB1/2. Hence
λ1 id +AB has a basis of eigenvectors and all its eigenvalues are larger than
λ1, which proves (5.5). By standard results (see for instance lemma 5.5.3 in
[1]), we obtain that νε ∈ L∞ and

‖νε‖L∞ ≤ 1

λd
1

‖ν1‖L∞.
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We easily deduce (5.1) by remarking that for some sequence εn converging
to 0, νεn

converges narrowly to ν because T
εn

converges a.e. to T .

Remark 5.2. In the previous L∞ estimate, it is actually not necessary to
require that all the measures νi vanish on small sets; this assumption just
allowed us to use results of [8]. Indeed, if we simply assume that ν1 ∈ L∞

vanishes on small sets, it follows from proposition 3.5 that ν = bar(νi, λi)i

is uniquely defined. Moreover it is easy to check that if we approximate
(νi)i=2,..,p by measures that vanish on small sets, the barycenter of the ap-
proximations converges narrowly to ν. We thus recover the estimate (5.1) by
approximation.

6 Examples

6.1 The case d = 1

In the unidimensional space case, d = 1, the description of the barycenter is
quite simple and this is (roughly speaking) due to the fact that gradient of
convex functions are simply nondrecreasing functions, and this property is
stable by composition. Let ν1, ..., νp be nonatomic probability measures on
the real line that have finite second moments, and let λ1, ..., λp be positive
reals that sum to 1. From formula (4.10), the barycenter ν := bar(νi, λi)i is
given by

ν =
(∑

i=1

λiT
1
i

)
♯ν1

where T 1
i is the Gangbo-Świȩch map between ν1 and νi. Therefore, T 1

i is a
nondecreasing map that pushes ν1 forward to νi. There is only one such map,
and that is of course the Brenier map which is given by the usual rearrange-
ment or quantile-like formula T 1

i := F−1
i ◦ F1, where Fi is the cumulative

function of Fi i.e. Fi(α) = νi((−∞, α]), and F−1
i denotes the generalized

inverse of Fi,
F−1

i (t) := inf{α : Fi(α) ≥ t}.
Therefore, bar(νi, λi)i is simply obtained as the image of ν1 by the linearly
interpolated transport map

∑
i λiT

1
i . Of course, one also has

ν =
(∑

i=1

λiT
j
i

)
♯νj
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where T j
i is Brenier’s map between νj and νi. The fact that the resulting

measure does not depend on j is very specific to the unidimensional case and
does not hold in general in higher dimensions.

6.2 The case p = 2

In the case of two measures ν0 and ν1 (regular enough), and t ∈ (0, 1), it is
reasonable to expect that the barycenter of (ν0, (1−t)) and (ν1, t) is McCann’s
interpolant [11]

νt := ((1 − t)id + t∇φ)♯ν0 = (tid + (1 − t)∇φ∗)♯ν1

where ∇φ is Brenier’s map between ν0 and ν1. This is indeed an easy conse-
quence of the triangle inequality but we would like to take advantage of this
simple case to illustrate the duality characterization of proposition 3.8. To
show that νt satisfies the optimality condition of proposition 3.8 it is enough
to prove that

(1 − t)ft + tgt =
1

2
|.|2 + C (6.1)

where C is constant, and ∇ft and ∇gt are respectively Brenier’s maps be-
tween νt and ν0, and νt and ν1, i.e.,

ft =
((1 − t)

2
|.|2 + tφ

)∗
, gt =

( t
2
|.|2 + (1 − t)φ∗

)∗
.

To prove the identity (6.1) (with C = 0 in fact), we first write

−ft(p) = inf
x∈Rd

{(1 − t)
|x|2
2

− p · x+ tφ(x)}

which, thanks to the Fenchel-Rockafellar duality theorem, can be rewritten
as

−ft(p) = sup
z∈Rd

{−tφ∗(−z/t) − 1

2(1 − t)
|p+ z|2}.

Therefore

−(1 − t)ft(p) = sup
y∈Rd

{−t(1 − t)φ∗(y) − 1

2
|p− ty|2}

= −1

2
|p|2 + t sup

y∈Rd

{p · y − (
t

2
|y|2 + (1 − t)φ∗(y))}

= −1

2
|p|2 + tgt(p).

We thus conclude that the set of barycenters of ν0 and ν1 is nothing but the
geodesic curve t ∈ [0, 1] 7→ νt given by McCann’s interpolation [11].
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6.3 The gaussian case

Let us now consider the case where for i = 1, ..., p, νi = N (0, Si) i.e. νi

is a gaussian measure with mean 0 and covariance matrix Si. We assume
that each Si is positive definite and, given weights λi > 0 that sum to 1,
we consider again the barycenter problem (2.2). This gaussian case was
already considered by Knott and Smith [9] who suggested an almost explicit
construction for the barycenter (which turns out to be gaussian as well).
But the existence and uniqueness of the barycenter was not proved in their
paper. The following theorem addresses these issues and also gives an explicit
construction of the barycenter in this case.

Theorem 6.1. In the gaussian framework of this paragraph, there is a unique
solution ν to (2.2). Moreover, ν = N (0, S) where S is the unique positive
definite root of the matrix equation

p∑

i=1

λi

(
S1/2SiS

1/2
)1/2

= S. (6.2)

Proof. Step 1: existence of a solution to (6.2). Let αi and βi denote re-
spectively the smallest and largest eigenvalue of Si, and α and β be such
that

β ≥
( p∑

i=1

λi

√
βi

)2

≥
p∑

i=1

(
λi

√
αi

)2

≥ α.

Let Kα,β be the (convex and compact) set of symmetric matrices S such that
βI ≥ S ≥ αI. For S ∈ Kα,β, define

F (S) :=

p∑

i=1

λi

(
S1/2SiS

1/2
)1/2

.

It is easy to see that

βI ≥
p∑

i=1

λi

√
ββiI ≥ F (S) ≥

p∑

i=1

λi

√
ααiI ≥ αI, ∀S ∈ Kα,β.

Then F is a self-map of Kα,β. It is also continuous on Kα,β. The existence of
a solution to (6.2) in Kα,β then directly follows from Brouwer’s fixed-point
theorem.

Step 2: sufficiency. Set ν := N (0, S) where S is a positive definite
solution of (6.2). The optimal transport between ν and νi is then the linear
map

Ti = S
1/2
i

(
S

1/2
i SS

1/2
i

)−1/2

S
1/2
i .
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Let us now prove that
∑p

i=1 λiTi = I that we already know, from proposition

3.8, to be a sufficient condition for ν to solve (2.2). Set Ki = S
1/2
i and

K := S
1/2

. Using the identity

(KK2
i K)1/2 = KKi(KiK

2
Ki)

−1/2KiK

we may rewrite F (S) = S as

p∑

i=1

λiKKi(KiK
2
Ki)

−1/2KiK = K
2

and since K is invertible, this yields

p∑

i=1

λiKi(KiK
2
Ki)

−1/2Ki =

p∑

i=1

λiTi = I

which proves that ν is optimal.

Step 3: We already know that (2.2) admits a unique solution and from
the previous step, we have for any positive definite solution S of (6.2), N (0, S)
solves (2.2). This proves that (6.2) has a unique positive definite solution.

The crucial role played by the nonlinear matrix equation (6.2) and the
sufficiency step in the proof above is due to Knott and Smith [9]. But the
authors left open the existence and uniqueness issues for (6.2); indeed the
fact that barycenters of gaussians are also gaussians was not proved in their
paper. Let us point out here that Rüschendorf and Uckelman proved in
[13] existence of a solution to (6.2) by a completely different argument than
Brouwer’s fixed point, but they did not study its uniqueness.

7 Convex functionals

Here we extend the notion of displacement convexity introduced by McCann
[11] for two probability measures, to any finite number of probability mea-
sures. For simplicity, we assume from now on that all probability measures
are absolutely continuous with respect to the Lebesgue measure. Also, the
space X ′ ∩ M1

+(Rd) will be equipped with the Wasserstein metric (2.1); it
will then be called the Wasserstein space.

Definition 7.1. A functional F : X ′ ∩ M1
+(Rd) → R is said to be convex

along barycenters in the Wasserstein space X ′ ∩M1
+(Rd), if given any p ≥
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2 probability measures ν1, · · · , νp in X ′ ∩ M1
+(Rd) and any p positive real

numbers λ1, · · · , λp that sum to 1, we have

F (bar(νi, λi)i=1,··· ,p) ≤
p∑

i=1

λiF(νi), (7.1)

where bar(νi, λi)i=1,··· ,p denotes the barycenter of the probability measures νi

with the weights λi.

To compare the convexity along barycenters with McCann’s displacement
convexity, let us first recall the definition of displacement convexity as intro-
duced in [11].

Definition 7.2. A functional F : X ′ ∩ M1
+(Rd) → R is said to be dis-

placement convex in the Wasserstein space X ′ ∩M1
+(Rd), if given any two

probability measures ν0 and ν1 in X ′ ∩ M1
+(Rd), the function [0, 1] ∋ t 7→

F(νt) ∈ R is convex; here νt is McCann’s interpolant between ν0 and ν1 given
by νt = ((1 − t)id + tT ) ♯ν0, where T = ∇φ is Brenier’s map transporting ν0

to ν1.

The following proposition shows that the convexity along barycenters
generalizes McCann’s displacement convexity.

Proposition 7.3. If a functional F : X ′ ∩ M1
+(Rd) → R is convex along

barycenters, then it is displacement convex.

Proof. Let ν0, ν1 ∈ X ′∩M1
+(Rd) and t ∈ [0, 1]. From section 6.2, we have that

the barycenter of ν0 and ν1 with weights λ0 = 1−t and λ1 = t respectively, is
McCann’s interpolant νt. Then if F is convex along barycenters, then (7.1)
implies that

F(νt) ≤ (1 − t)F(ν0) + tF(ν1),

which proves the displacement convexity of F .

Contrarily to the Euclidean case, definitions 7.1 and 7.2 may not be equiv-
alent, except in dimension d = 1 (see proposition below). But they are re-
lated to a third notion of convexity, that is the convexity along generalized
geodesics joining any two probability measures ν1 and ν2 with base a proba-
bility measure ν (see [1]). In fact, the convexity along generalized geodesics
is the strongest among these three notions of convexity, while McCann’s
displacement convexity is the weakest. Before justifying this statement, let
us first recall the definition of generalized geodesics and its corresponding
convexity, as presented in [1].
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Definition 7.4. Let ν1, ν2, ν ∈ X ′∩M1
+(Rd). Denote by Ti = ∇φi Brenier’s

map transporting ν to νi for i = 1, 2. Then the generalized geodesic joining
ν1 and ν2 with base ν is the interpolated curve

[ν1, ν2]
ν
t := ((1 − t)T1 + tT2) ♯ν, t ∈ [0, 1]. (7.2)

Moreover, a functional F : X ′ ∩ M1
+(Rd) → R is said to be convex along

generalized geodesics, if given any three probability measures ν1, ν2, ν ∈ X ′ ∩
M1

+(Rd), we have

F ([ν1, ν2]
ν
t ) ≤ (1 − t)F(ν1) + tF(ν2), (7.3)

where [ν1, ν2]
ν
t is defined as above.

The definition of convexity along generalized geodesics could as well be
given with any finite number of probability measures. Indeed, we have:

Proposition 7.5. A functional F : X ′ ∩ M1
+(Rd) → R is convex along

generalized geodesics if and only if, given any p ≥ 2 probability measures
ν1, · · · , νp ∈ X ′ ∩M1

+(Rd), any p positive real numbers λ1, · · · , λp that sum
to 1, and a reference measure ν ∈ X ′ ∩M1

+(Rd), we have

F
(
[ν1, · · · , νp]

ν
λi

)
≤

p∑

i=1

λiF(νi) (7.4)

where

[ν1, · · · , νp]
ν
λi

:=

(
p∑

i=1

λi∇Φi

)
♯ν (7.5)

and ∇Φi is Brenier’s map transporting ν to νi.

Proof. The proof is done by induction on the number p of probability mea-
sures. We start with three measures ν1, ν2, ν3 in X ′ ∩M1

+(Rd) with respec-

tive weights λ1, λ2, λ3 such that
∑3

i=1 λi = 1. We have that
∑3

i=1 λi∇Φi =
λ12∇Φ12 + λ3∇Φ3, where λ12 = λ1 + λ2, and Φ12 = λ1

λ12
Φ1 + λ2

λ12
Φ2 is convex.

Since λ12 +λ3 = 1 = (λ1/λ12)+ (λ2/λ12), then using (7.5) and (7.3), we have

F
(
[ν1, ν2, ν3]

ν
λi

)
= F ((λ12∇Φ12 + λ3∇Φ3) ♯ν)

≤ λ12F (∇Φ12♯ν) + λ3F (∇Φ3♯ν)

≤ λ12

(
λ1

λ12

F(∇Φ1♯ν) +
λ2

λ12

F(∇Φ2♯ν)

)
+ λ3F (∇Φ3♯ν)

=
3∑

i=1

λiF (∇Φi♯ν) =
3∑

i=1

λiF(νi).

(7.4) then readily follows by an induction argument on p.
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The next proposition shows that convexity along barycenters is interme-
diate to the other two notions of convexity.

Proposition 7.6. If F : X ′ ∩ M1
+(Rd) → R is convex along generalized

geodesics, then it is convex along barycenters (and therefore displacement
convex because of proposition 7.3).
Moreover if d = 1, then displacement convexity implies convexity along gen-
eralized geodesics; hence in this case, these three notions of convexity are
equivalent.

Proof. Let ν1, · · · , νp ∈ X ′ ∩M1
+(Rd), and consider the barycenter

bar(νi, λi)i=1,··· ,p of these measures with respective weights λ1, · · · , λp. From
the multi-marginal characterization (4.10) of barycenters, we have

bar(νi, λi)i=1,··· ,p =

(
p∑

i=1

λi∇u∗i ◦ ∇u1

)
♯ν1 =

(
p∑

i=1

λi∇u∗i

)
♯ν̃1

where ν̃1 := ∇u1♯ν1, the ui are strictly convex on R
d, and the T 1

i = ∇u∗i ◦∇u1

satisfy T 1
i ♯ν1 = νi. So if F is convex along generalized geodesics, then using

(7.4) and (7.5), we conclude that

F((bar(νi, λi)i=1,··· ,p) ≤
p∑

i=1

λiF (∇u∗i ♯ν̃1) =

p∑

i=1

λiF
(
T 1

i ♯ν1

)
=

p∑

i=1

λiF(νi),

that is the convexity of F along barycenters.
Next assume that d = 1, and consider ν, ν0, ν1 ∈ X ′ ∩ M1

+(R). Then
Brenier’s map transporting ν to νi is Φ′

i, where Φi is nondecreasing for i =
0, 1. So T = Φ′

1◦(Φ′
0)

−1 is nondecreasing and T♯ν0 = ν1, so that T is Brenier’s
map transporting ν0 to ν1. Therefore, the generalized geodesic joining ν0 and
ν1 with base ν coincides with McCann’s geodesic, since

[ν0, ν1]
ν
t = [(1 − t)Φ′

0 + tΦ′
1] ♯
(
(Φ′

0)
−1♯ν0

)
= [(1 − t)id + tT ] ♯ν0.

Hence if F is displacement convex, we have

F ([ν0, ν1]
ν
t ) = F ([(1 − t)id + tT ] ♯ν0)

≤ (1 − t)F(ν0) + tF (T♯ν0)

= (1 − t)F (Φ′
0♯ν) + tF (Φ′

1♯ν) ,

which shows that F is convex along generalized geodesics.
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We end this section by remarking that the three basic examples of func-
tionals, i.e. the internal energy, the potential energy and the interaction
energy, are convex along barycenters, since they are all convex along gener-
alized geodesics in X ′ ∩ M1

+(Rd) as shown by Ambrosio, Gigli and Savaré
in [1], propositions 9.3.2, 9.3.5 and 9.3.9. In the next statement, we identify
the absolutely continuous probability measures belonging to X ′ with their
density functions that we denote by ρ.

Proposition 7.7. Let F : [0,∞) → R be continuous on [0,∞), and V,W :
R

d → R be continuous on R
d, with W being an even function.

1. If F (0) = 0 and (0,∞) ∋ t 7→ tdF (t−d) is convex and nonincreas-
ing, then the internal energy E(ρ) =

∫
Rd F (ρ(x)) dx is convex along

generalized geodesics in X ′ ∩M1
+(Rd).

2. If V is convex, then the potential energy E(ρ) =
∫

Rd V (x)ρ(x) dx is
convex along generalized geodesics in X ′ ∩M1

+(Rd).

3. If W is convex, then the interaction energy

E(ρ) =
1

2

∫

Rd

(W ⋆ ρ) (x)ρ(x) dx =
1

2

∫ ∫

Rd×Rd

W (x− y)ρ(x)ρ(y) dx dy

is convex along generalized geodesics in X ′ ∩M1
+(Rd).

Therefore, all these functionals are convex along barycenters in the Wasser-
stein space X ′ ∩M1

+(Rd).
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