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Abstract

In the classical Monge-Kantorovich problem, the transportation
cost only depends on the amount of mass sent from sources to desti-
nations and not on the paths followed by each particle forming this
mass. Thus, it does not allow for congestion effects, which depend in-
stead on the proportion of mass passing through a same point or on a
same path. Usually the travelling cost (or time) of a path depends on
“how crowded” this path is. Starting from a simple network model, we
shall define equilibria in the presence of congestion. We will then ex-
tend this theory to the continuous setting mainly following the recent
papers [10], [8]. After an introduction with almost no mathematical
details, we will give a survey of the main features of this theory.

Keywords: optimal transportation, traffic congestion, Wardrop equi-
libria, minimal flow, degenerate elliptic PDEs, Eikonal equation.

1 Introduction

The understanding of traffic congestion and its effects on the performances of
a road network has always been an intriguing issue, for the questions it brings
both in modelization and in real life behavior. Problems like “if I choose this
secondary uncongested road it would take less time, but if everybody does the
same it would be much worse” are classical, and naturally lead to challenging
game-theory and optimization issues.
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In the 50’s (see [22]) Wardrop formalized the main rule that should lead
the congestion of a network through two principles: first, all the paths con-
necting the same two locations which are actually followed by some vehicles
must provide the same travelling time (a time which depends on their length
as well as on congestion); second, all the other possible paths must provide a
larger travelling time. This may be mathematically translated into the fact
that only paths which are geodesics for a certain metric on the network are
used, but this metric is exactly induced by the the way vehicles use the net-
works. This gives an equilibrium problem that one can see as a fixed point
(which are the ways of choosing some paths on the network, so that, looking
at the geodesics induced by this choice, we find again the same paths?). This
concept of equilibrium, called Wardrop equilibrium, is just a particular case
of Nash equilibria, in a game where the players are the vehicles and the goal
of each of them is to minimize its travelling time.

Soon after Wardrop formulated his principles, Beckmann et al. (see [2])
discovered that Wardrop equilibria have a variational characterization. Ac-
tually, a traffic configuration (i.e. the set of choices of all paths) is an equi-
librium if and only if it optimizes a global criterion, taking into account the
total congestion. When the quantity of traffic on each path on the network is
considered to be a real number (instead of an integer number of vehicles), the
functions H involved in the optimization problem are primitives of increas-
ing functions, which gives convexity. The good point, from the mathematical
point of view, is that such an optimization problem being convex, it allows
for powerful duality and numerical methods to approach it. A discretized
version for integer vehicles exists as well. On the other hand, one could be
disappointed that, except in very special cases, the total cost which is op-
timized does not correspond to the total travelling time of all the vehicles,
which means that looking for the equilibrium and for the social optimum is in
general not the same, and that the equilibrium is in general not efficient. The
literature on price of anarchy and selfish routing (see the book [16] and the
references therein) precisely addresses the relations between equilibria and
social optima, focusing in particular in the lack of efficiency of equilibria.

Similar considerations may be extended to the more recent framework
of continuous traffic congestion, where the network is replaced by a domain
in R2 and vehicles are allowed to move in every direction, thus giving rise
to a density of traffic congestion, that we will call traffic intensity. In such
a case, one can write a convex optimization problem on the space of these
densities, and then prove, again, that at the optimum the paths which are
actually followed are geodesics for the congested metric induced by the traffic
intensity. It is just for the sake of clarity that in this framework one usually
starts from the optimization and then gets the equilibrium as an optimality
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condition (mathematically, the reason is the fact that, when optimizing, the
functional will force the traffic intensity, which will be defined as a measure,
to be absolutely continuous, and its density will appear in the metric it
induces, while geodesics in the case of possibly singular measures are not
well-defined).

A natural question is whether this continuous counterpart is meaningful
in terms of modeling, since car traffic actually occurs on one-dimensional
networks. And the answer is yes, at least for two reasons: first it fits the
situation of pedestrian congestion (which is usually considered in the litera-
ture as a two-dimensional problem); second, it may be useful to look at large
scale traffic problems, when one only wants to detect average values of the
traffic intensity in different zones of a large congested area. Yet, we stress
that the continuous model that we present in this paper is not exactly the
homogenized limit of the discrete ones on grid networks whose step goes to
zero (see [3] for such limit issues). It is anyway the most natural model that
may play the role of Wardrop’s one in a continuous setting and it shares
its main qualitative features. It will be described through the formalism
of measures on the set of paths (which exactly accounts for the statistical
properties of the set of choices of all the vehicles), which is a classical tool
in transport theory, in connection with optimal transport (see [20], [21] for a
recent account of optimal transport theory).

A key element in transport theory is the concept of transport plan, i.e.
a probability measure γ on the product space of pairs origin-destination,
which is the main unknown in Monge-Kantorovitch theory. Here, as it is
the case in other path-dependent problems (branched transport, see [7], fluid
mechanics, see [9],. . . ), γ may also be fixed a priori, since the main unknown
is the way the traffic distributes over the multiple paths connecting the same
pair origin-destination. This is what we call the short-term problem, since
for immediate applications one usually knows the proportion of commuters
moving every day between two given points. On the other hand, one can
also consider the problem where γ is allowed to vary, and only its marginals
µ0 and µ1 are prescribed (which means that we know the total number of
paths leaving every origin, and the total arriving at each destination, without
any information on the coupling between them). This may be interpreted
as long-term problem: think for instance of a urban area where people move
from home to work; it is quite clear that the addresses of those who work in a
certain spot may change from year to year, but that, globally, the population
density of all the neighborhoods and the distribution of offices and working
places will stay the same for much more time. The problem where we opti-
mize also over γ is not at all specific to the continuous framework, it may
also be considered in networks, and leads to an extra equilibrium optimality
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condition. Actually one gets that the optimal configuration must realize a
coupling γ which optimizes a Monge-Kantorovitch transport cost, computed
according to the metric induced by the traffic intensity itself. It is once more
an equilibrium problem!

On the other hand, a peculiar feature of this long-term problem which
is very specific to the continuous formulation is its tight connection with
a minimal flow problem. This problem (minimizing a total integral cost∫
H(|v(x)|)dx among vector fields v with prescribed divergence ∇ · v =

µ0 − µ1) is also due to Beckmann [1]. It is strongly related to the Monge-
Kantorovitch transport cost (in the case H(t) = t) with the possible addi-
tional effect that, due to congestion, “where the flow is stronger the cost is
proportionally higher”. It is clear, from the fact that the data on origins
and destinations appear only through µ0−µ1, that this problem may not be
linked to the short-term one. On the contrary, we will explain that in the
long-term case this problem is actually equivalent to the traffic optimization
giving Wardrop equilibria. Indeed, the optimal traffic intensity turns out to
be equal to |v| and the paths actually followed by the commuters are integral
curves of a vector field obtained from the optimal v.

The fact that one can equivalently look, at least in the long-term case,
at Beckmann’s minimization leads to a more classical calculus of variations
problem. In particular, it is possible to write down the optimality conditions
for such a minimization as a PDE. This PDE, of the form v = G(∇u),
with ∇ · G(∇u) = µ0 − µ1, may be strongly degenerate, depending on the
function G = ∇H∗ that one chooses. Even if simple choices lead to the
Laplace or to the p−Laplace equation, it turns out the cases that are realistic
in congestion modeling are exactly those leading to much more degenerate
PDEs (for instance one can find a G that vanishes on a whole ball around
the origin). This has motivated the study of the regularity properties of the
solutions of these equations, since, by the way, some regularity is needed
so as to properly define the integral curves of the optimal vector field (see
[8, 19]).

Notice anyway that the equations which are involved in this formulation
are elliptic PDEs, and no variable playing the role of time appears in them.
This is due to the fact that our model is stationary: it only accounts for sort of
a cyclical, neverending movement, where every path is constantly occupied by
the same density of vehicles, since those who arrive are immediately replaced
by others. This point is in common with the models on networks, where one
can think that the traffic intensity stands for an average occupation ratio
of each road during a period. This is a difference with respect to other
recent mathematical models involving congestion effects, like what one can
see in Mean Field Games. In these continuous non-atomic differential games,
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introduced by J.-M. Lasry and P.-L. Lions (see [14]), a continuum of agents
moves in a domain, minimizing some criteria taking into account lengths and
travelling times as well as congestion ratios they meet at every time. Due to
the explicit presence of time, the PDE describing the optimal evolutions (or
the equilibria, since here as well some equivalences are available) are given
by a system coupling a transport equation and an Hamilton-Jacobi equation,
which is very different from the framework we are going to describe in the
next sections.

The last point that we want to stress in this introduction concerns the
methods for numerical approximation. Exactly as in the discrete network
case, these methods are mainly based on the dual problem of the convex
optimization giving the equilibrium as an optimum. This is for dimensional
reasons: indeed, the primal problem has as many variables as possible paths,
while the dual has only one variable per edge in the network, standing for the
metric at every edge. In the continuous case, this introduces a dual variable
ξ, which is a positive function on the domain and is used as a metric on it.
One needs to optimize a convex criterion on ξ (like an Lp norm), perturbed
by a combination

∫
cξ(x, y)dγ of the distances cξ, defined as the Riemannian

distances with the conformal metric given by ξ times the identity matrix,
computed on the pairs origin-destinations. Obviously this is much easier
in the short-term problem, since the transport plan γ is fixed, and requires
instead an optimization over γ for the long-term one.

In order to do numerics, it is hence necessary (see [5, 6]) to be able
to compute the distances cξ on a discretization grid and to differentiate the
results with respect to ξ (the problem being convex, a simple gradient descent
can be used to approximate the optimum). This is done thanks to the so-
called Fast Marching Method (FMM), a numerical discretization, endowed
with a very efficient way of computing the discretized solutions, which is
suitable for some Hamilton-acobi equations. It is somehow the way how
Hamilton-Jacobi strikes back in the problem, and here the equation we have
to deal with is the Eikonal equation |∇u| = ξ, which is solved by u = cξ(x, ·).
The numerical method, based on a variation of the FMM, which allows to
differentiate cξ with respect to ξ is one of the new contributions in this subject
and has been studied in [6]. It is likely to be interesting in itself and has also
been applied to other problems, different from traffic congestion.

Numerics will shortly be addressed at the end of Section 4, which is de-
voted to the duality in the short-term case (since, as we underlined above,
the duality formulation is easier when γ is fixed). This section follows two
general sections on the models and the relations between equilibria and opti-
mization in the network (Section 2) and in the continuous (Section 3) cases,
respectively. Section 5, on the contrary, is specific to the long-term problem
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and presents the equivalences with Beckmann’s minimal flow optimization
as well as the PDE issues which arise from this formulation.

2 Wardrop equilibria in a simple congested

network model

The main data of the model are a finite oriented connected graph G = (N,E)
modelling the network, and edge travel times functions ge : w ∈ R+ 7→ ge(w)
giving, for each edge e ∈ E, the travel time on arc e when the flow on this
edge is w. The functions ge are all nonnegative, continuous, nondecreasing
and they are meant to capture the congestion effects (which may be different
on the different edges, since some roads may be longer or wider and may
have different responses to congestion). The last ingredient of the problem
is a transport plan on pairs of nodes (x, y) ∈ N2 interpreted as pairs of
sources/destinations. We denote by (γx,y)(x,y)∈N2 this transport plan: γx,y
represents the “mass” to be sent from x to y. We denote by Cx,y the set
of simple paths connecting x to y, so that C := ∪(x,y)∈N2Cx,y is the set of
all simple paths. A generic path will be denoted by σ and we will use the
notation e ∈ σ to indicate that the path σ uses the edge e.

The unknown of the problem is the flow configuration. The edge flows
are denoted by w = (we)e∈E and the path flows are denoted by q = (qσ)σ∈C :
this means that we is the total flow on edge e and qσ is the mass traveling
on the path σ. Of course the we’s and qσ’s are nonnegative and constrained
by the mass conservation conditions:

γx,y =
∑
σ∈Cx,y

qσ, ∀(x, y) ∈ N2 (1)

and
we =

∑
σ∈C : e∈σ

qσ, ∀e ∈ E. (2)

Given the edge flows w = (we)e∈E, the total travel-time of the path σ ∈ C is

Tw(σ) =
∑
e∈σ

ge(we). (3)

In [22], Wardrop defined a notion of noncooperative equilibrium that
has been very popular since among engineers working in the field of con-
gested transport and that may be described as follows. Roughly speaking,
a Wardrop equilibrium is a flow configuration such that every actually used
path should be a shortest path taking into account the congestion effect i.e.
formula (3). This leads to
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Definition 1 A Wardrop equlibrium is a flow configuration w = (we)e∈E,
q = (qσ)σ∈C (all nonnegative of course), satisfying the mass conservation
constraints (1) and (2), such that, in addition, for every (x, y) ∈ N2 and
every σ ∈ Cx,y, if qσ > 0 then

Tw(σ) = min
σ′∈Cx,y

Tw(σ′).

A few years after Wardrop introduced his equilibrium concept, Beck-
mann, McGuire and Winsten [2] realized that Wardrop equilibria can be
characterized by the following variational principle:

Theorem 1 The flow configuration w = (we)e∈E, q = (qσ)σ∈C is a Wardrop
equilibrium if and only if it solves the convex minimization problem

inf
(w,q)

∑
e∈E

He(we) s.t. nonnegativity and (1) (2) (4)

where, for each e, we take He to be the primitive of ge, i.e. He(w) =∫ w
0
ge(s)ds.

Proof:
Note that due to (2), one can deduce w from q so that (4) is an optimization
problem on q = (qσ)σ∈C only. Assume that q = (qσ)σ∈C (with associated
edge flows (we)e∈E) is optimal for (4) then for every admissible η = (ησ)σ∈C
with associated (through (2)) edge-flows (ue)e∈E, one has

0 ≤
∑
e∈E

H ′e(we)(ue − we) =
∑
e∈E

ge(we)
∑

σ∈C : e∈σ

(ησ − qσ)

=
∑
σ∈C

(ησ − qσ)
∑
e∈σ

ge(we)

so that ∑
σ∈C

qσTw(σ) ≤
∑
σ∈C

ησTw(σ)

minimizing the right-hand side thus yields∑
(x,y)∈N2

∑
σ∈Cx,y

qσTw(σ) =
∑

(x,y)∈N2

γx,y min
σ′∈Cx,y

Tw(σ′)

which exactly says that (q, w) is a Wardrop equilibrium. To prove the con-
verse, it is enough to see that problem (4) is convex so that the inequality
above is indeed sufficient for a global minimum. 2
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The previous characterization actually is the reason why Wardrop equi-
libria became so popular. Not only, one deduces for free existence results,
but also uniqueness for w (not for q) as soon as the functions ge are increasing
(so that He is strictly convex). The variational formulation (4) also admits a
dual formulation. Another major advantage of (4) is that the techniques of
numerical convex optimization can be used to compute Wardrop equilibria,
however there are as many variables as the number of paths which obviously
restricts computations to small networks, the dual formulation has much less
variables but involves nonsmooth terms. Let us also mention an interesting
extension of the model to a stochastic setting by Baillon and Cominetti [4].

Remark 1. It would be very tempting to deduce from theorem 1 that
equilibria are efficient since they are minimizers of (4). One has to be cau-
tious with this quick interpretation since the quantity

∑
e∈E He(we) does not

represent the natural total social cost measured by the total time lost in
commuting which reads as ∑

e∈E

wege(we). (5)

The efficient transport patterns are minimizers of (5) and thus are different
from equilibria in general. Efficient and equilibria configurations coincide in
the special case of power functions where ge(w) = aew

α, but this case is not
realistic since it implies that traveling times vanish if there is no traffic...
Moreover, a famous counter-example due to Braess shows that it may be
the case that adding an extra road on which the travelling time is aways
zero leads to an equilibrium where the total commuting time is increased!
This illustrates the striking difference between efficiency and equilibrium, a
topic which is very well-documented in the finite-dimensional network setting
where it is frequently associated to the literature on the so-called price of
anarchy (see [16]).

Remark 2. In the problem presented in this paragraph, the transport plan
γ is fixed, this may be interpreted as a short-term problem. Instead, we
could consider the long-term problem where only the distribution of sources
µ0 and the distribution of destinations µ1 are fixed. In this case, one requires
in addition, in the definition of an equilibrium that γ is efficient in the sense
that it minimizes among transport plans between µ0 and µ1 the total cost∑

γx,ydw(x, y) with dw(x, y) := min
σ∈Cx,y

Tw(σ).

In the long-term problem where one is allowed to change the assignment
as well, equilibria still are characterized by a convex minimization problem
where one also optimizes over γ.
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3 Optimal transport with congestion and equi-

libria in a continuous framework

The aim of this paragraph is to generalize the previous analysis to a con-
tinuous framework. In the continuous setting, there will be no network, all
paths in a certain given region will therefore be admissible. The first idea
is to formulate the whole path-dependent transport pattern in terms of a
probability measure Q on the set of paths (this is the continuous analogue
of the path flows (qσ)σ of the previous paragraph). The second one is to
measure the intensity traffic generated by Q in a similar way as one defines
transport density in the Monge’s problem (this is the continuous analogue
of the arc flows (we)e of the previous paragraph). The last and main idea
will be in modelling the congestion effect through a metric that is monotone
increasing in the traffic intensity (the analogue of ge(we)).

We will deliberately avoid to enter into technicalities so the following
description will be pretty informal (see [10] for details). From now on, Ω
denotes an open bounded connected subset of R2 (a city say), and we are
also given :

• either two probability measures µ0 and µ1 (distribution of sources and
destinations) on Ω in the case of the long-term problem,

• or a transport plan γ (joint distribution of sources and destinations)
that is a joint probability on Ω× Ω) in the short-term case.

Given an absolutely curve σ ; [0, 1] 7→ Ω and a continuous function ϕ, let
us set

Lϕ(σ) :=

∫ 1

0

ϕ(σ(t))|σ̇(t)|dt. (6)

A transport pattern is by definition a probability measure Q on C :=
C([0, 1],Ω) concentrated on absolutely continuous curves that is compatible
with mass conservation, i.e. such that either

e0#Q = µ0, e1#Q = µ1

(where, as usual, f#µ denotes the push forward of the measure µ through
the map f) in the case of the long-term problem, or

(e0, e1)#Q = γ, with et(σ) := σ(t), ∀t ∈ [0, 1]

in the case of the short-term problem. We shall denote by Q(µ0, µ1) and
Q(γ) the set of admissible transport patterns respectively for the long-term
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and for the short-term problem:

Q(µ0, µ1) := {Q : e0#Q = µ0, e1#Q = µ1}

and
Q(γ) := {Q : (e0, e1)#Q = γ}.

In the remainder of this paragraph, we will focus for simplicity on the long-
term problem. We are interested in finding an equilibrium i.e. a Q ∈
Q(µ0, µ1) that is supported by geodesics for a metric ξQ depending on Q
itself (congestion).

The intensity of traffic associted to Q ∈ Q(µ0, µ1) is by definition the
measure iQ ∈M(Ω), defined by∫

ϕdiQ :=

∫
C([0,1],Ω)

(∫ 1

0

ϕ(γ(t))|γ̇(t)|dt
)
dQ(γ) =

∫
C

Lϕ(σ)dQ(σ).

for all ϕ ∈ C(Ω,R+). This definition is a generalization of the notion of
transport density and the interpretation is the following: for a subregion A,
iQ(A) represents the total cumulated traffic in A induced by Q, it is indeed
the average over all paths of the length of this path intersected with A.

The congestion effect is then captured by the metric associated to Q:

ξQ(x) := g(x, iQ(x)), for iQ � L2 (+∞ otherwise).

for a given increasing function g(x, .) : R+ → R+. The fact that there exists
at least one Q ∈ Q(µ0, µ1) such that iQ � L2 is not always true and depends
on µ0 and µ1 but again we do not wish to enter the details, let us only
indicate that this condition is satisfied when µ0 and µ1 are “well behaved”
(this is a nontrivial fact for which we refer to the regularity results of De
Pascale and Pratelli [12] and to the more recent paper [18]) . Let us now
describe what a reasonable definition of an equilbrium should look like. If
the overall transport pattern is Q, an agent commuting from x to y choosing
a path σ ∈ Cx,y (i.e. an absolutely continuous curve σ such that σ(0) = x
and σ(1) = y) spends time

LξQ(σ) =

∫ 1

0

g(σ(t), iQ(σ(t))|σ̇(t)|dt

. She will then try to minimize this time i.e. to achieve the corresponding
geodesic distance

cξQ(x, y) := inf
σ∈Cx,y

LξQ(σ)
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paths in Cx,y such that cξQ(x, y) = LξQ(σ) are called geodesics (for the metric
induced by the congestion effect generated by Q). A first requirement, in the
definition of an equilibrium therefore is that Q-a.e. path σ is a geodesic
between its endpoints σ(0) and σ(1). The transportation pattern may be
disintegrated with respect to γQ := (e0, e1)#Q:

Q = γQ ⊗ (px,y)

i.e. ∫
C

Φ(σ)dQ(σ) =

∫
Ω×Ω

(∫
Cx,y

Φ(σ)dpx,y(σ)
)
dγQ(x, y), ∀Φ.

In other words, γQ(A× B) is the probability that a path has starting point
in A and a terminal point in B. Denoting by Π(µ0, µ1) the set of transport
plans between µ0 and µ1 (that is the set of probability measures on Ω × Ω
having µ0 and µ1 as marginals), the requirement thatQ ∈ Q(µ0, µ1) obviously
translates into γQ ∈ Π(µ0, µ1). Given starting and terminal points (x, y), px,y

is a probability on Cx,y that represents the probability over paths conditional
on (x, y). The requirement that Q gives full mass to geodesics says that for
γQ-a.e. (x, y), px,y is supported on the set of geodesics between x and y
but this does require any particular property on the coupling γQ. We thus
supplement the definition of an equilbrium by the additional requirement
that γQ should solve the optimal transportation problem:

inf
γ∈Π(µ0,µ1)

∫
Ω×Ω

cξQ(x, y)dγ(x, y). (7)

This yields:

Definition 2 A Wardrop equilbrium (for the long-term problem) is a Q ∈
Q(µ0, µ1) such that

Q({σ : LξQ(σ) = cξQ(σ(0), σ(1)) = 1 (8)

and γQ := (e0, e1)#Q solves the optimal transport problem (7).

Of course in the short-term case, γQ is fixed equal to γ so that Wardrop
equilibria are defined by condition (8) only.

Let us then consider the (convex) variational problem

inf
Q∈Q(µ0,µ1)

∫
Ω

H(x, iQ(x))dx (9)

where H ′(x, .) = g(x, .), H(x, 0) = 0. We shall refer to (9) as the congested
optimal mass transportation problem for reasons that will be clarified later.
Under some technical assumptions that we do not reproduce here, the main
results of [10] can be summarized by:
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Theorem 2 Problem (9) admits at least one minimizer. Moreover Q ∈
Q(µ0, µ1) solves (9) if and only if it is a Wardrop equilibrium. In particular
there exist Wardrop equilibria.

The full proof is quite involved since it requires to take care of some regu-
larity issues in details. But the intuition of why solutions of (9) are Wardrop
equilibria can be understood easily from the following formal manipulations.
By convexity arguments, it is easily seen that Q = γ⊗px,y ∈ Q(µ0, µ1) solves
(9) if and only if it satifies the variational inequalities∫

Ω

ξiQ = inf

{∫
Ω

ξiQ : Q ∈ Q(µ0, µ1)

}
with ξ(x) := H ′(x, iQ(x)), (10)

which we may rewrite as∫
Ω

ξiQ =

∫
C

Lξ(σ)dQ(σ)

=

∫
Ω×Ω

(∫
Cx,y

Lξ(σ)dpx,y(σ)

)
dγ(x, y)

= inf
(γ,p)

∫
Ω×Ω

(∫
Cx,y

Lξ(σ)dpx,y(σ)

)
dγ(x, y)

= inf
γ∈Π(µ0,µ1)

∫
Ω×Ω

(
inf

p∈M1
+(Cx,y)

∫
Cx,y

Lξ(σ)dp(σ)

)
dγ(x, y)

= inf
γ∈Π(µ0,µ1)

∫
Ω×Ω

(
inf

σ∈Cx,y
Lξ(σ)

)
dγ(x, y)

Let us then define the geodesic distance cξ by

cξ(x, y) := inf
σ∈Cx,y

Lξ(σ),

we firstly get ∫
Ω×Ω

cξ(x, y)dγ(x, y) ≤
∫
C

LξdQ

= inf
γ∈Π(µ0,µ1)

∫
Ω×Ω

cξ(x, y)dγ(x, y)

so that γ solves the Monge-Kantorovich problem:

inf
γ∈Π(µ0,µ1)

∫
Ω×Ω

cξ(x, y)dγ(x, y).
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Secondly, we obtain∫
C

Lξ(σ)dQ(σ) =

∫
Ω×Ω

cξ(x, y)dγ(x, y)

=

∫
C

cξ(σ(0), σ(1))dQ(σ)

and since Lξ(σ) ≥ cξ(σ(0), σ(1)), we get

Lξ(σ) = cξ(σ(0), σ(1)) for Q-a.e. σ.

or, in an equivalent way, for γ-a.e. (x, y) one has:

Lξ(σ) = cξ(x, y) for px,y-a.e. σ

which exactly proves that Q is a Wardrop equilibrium.

Remark 3. The use of the weighted length functional Lξ and thus also the
geodesic distance cξ above is purely formal since defining these quantities

actually makes sense only if ξ is continuous or at least l.s.c.. We therefore
refer the interested reader to [10] for details on how to define these objects
when ξ is just an Lq function. Let us also mention that a recent regularity
result (see [19]) actually proves that ξ is in fact a continuous function (in
dimension 2 and under reasonable assumptions on the data).

Remark 4. For the short-term problem, a similar variational characteriza-
tion holds, namely that Q ∈ Q(γ) is a (short-term) Wardrop equilibrium if
and only if it solves

inf
Q∈Q(γ)

∫
Ω

H(x, iQ(x))dx. (11)

We have proved that, as in the finite-dimensional network case, Wardrop
equilibria have a variational characterization which is in principle easier to
deal with than the definition. Unfortunately, the convex problems (9) and
(11) may be difficult to solve since they involve measures on sets of curves that
is two layers of infinite dimensions! The next two paragraphs are precisely
intended to consider different formulations that turn out to be much more
tractable:

• for the short-term problem (11), we will see that the equilibrium metrics
solve a kind of dual problem that can be solved numerically,

• for the long-term problem (9), we will deduce optimal Q’s from a min-
imal flow problem à la Beckmann and a construction à la Moser, in
other words, the problem will amount to solve a certain nonlinear ellip-
tic PDE (which turns out to be quite degenerate in realistic congestion
models).
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4 Duality for the short-term problem

The purpose of this Section is to give a dual and tractable formulation of the
variational problem for the short-term problem (11). For every x ∈ Ω and
ξ ≥ 0, let us define

H∗(x, ξ) := sup{ξi−H(x, i), i ≥ 0}, ξ0(x) := g(x, 0).

By our assumptions on g, one has H∗(x, ξ) = 0 for every x ∈ Ω and ξ ≤ ξ0(x).
Let us recall Young’s inequality:

H(x, i) +H∗(x, ξ) ≥ ξi, ∀i ≥ 0,∀ξ ≥ ξ0(x). (12)

Notice that the inequality (12) is strict unless ξ = g(x, i) ≥ ξ0(x). In partic-
ular, for Q ∈ Q(γ), we have the identity

H(x, iQ(x)) +H∗(x, ξQ(x)) = ξQ(x)iQ(x) (13)

and
H(x, iQ(x)) +H∗(x, ξ) > ξiQ(x), ∀ξ ≥ ξ0(x), ξ 6= ξQ(x) (14)

(for ξQ(x) := g(x, iQ(x))). Let us now define the functional

J(ξ) =

∫
Ω

H∗(x, ξ(x))dx−
∫

Ω×Ω

cξ(x, y)dγ(x, y) (15)

where, as usual, cξ is the geodesic distance associated to the metric ξ i.e.

cξ(x, y) := inf
σ∈Cx,y

Lξ(σ).

Consider now:
sup {−J(ξ) : ξ ≥ ξ0} (16)

Theorem 3 The following duality formula holds

min(11) = max(16) (17)

and ξ solves (16) if and only if ξ = ξQ for some Q ∈ Q(γ) solving (11).

Proof:
Let Q ∈ Q(γ) (so that ξQ ≥ ξ0) and let ξ ≥ ξ0; from (12) and∫

Ω

ξ(x)iQ(x) dx =

∫
C

Lξ(σ) dQ(σ). (18)
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we first get: ∫
Ω

H(x, iQ(x))dx ≥
∫

Ω

ξiQ −
∫

Ω

H∗(x, ξ(x))dx

=

∫
C

Lξ(σ)dQ(σ)−
∫

Ω

H∗(x, ξ(x))dx.

Using the fact that
Lξ(σ) ≥ cξ(σ(0), σ(1)) (19)

and Q ∈ Q(γ) we then have∫
C

Lξ(σ)dQ(σ) ≥
∫
C

cξ(σ(0), σ(1))dQ(σ) =

∫
Ω×Ω

cξ(x, y)dγ(x, y).

Since Q ∈ Q(γ) and ξ ≥ ξ0 are arbitrary and since we already know that the
infimum of (11) is attained we thus deduce

min(11) ≥ sup(16). (20)

Now let Q ∈ Q(γ) solve (11) and set ξ := ξQ (recall that ξQ does not depend
on the choice of the minimizer Q). From the equivalence between Wardrop
equilibria and solutions of (11), we know that

Lξ(σ) = cξ(σ(0), σ(1)) for Q-a.e. σ ∈ C.

With (18), integrating the previous identity and using Q ∈ Q(γ) we then
get: ∫

Ω

ξiQ =

∫
C

Lξ(σ)dQ(σ) =

∫
Ω×Ω

cξ(x, y)dγ(x, y).

Using (13), (20) and the fact that Q ∈ Q(γ) solves (11) yields:

sup(16) ≤ min(11) =

∫
Ω

H(x, iQ(x))dx =

∫
Ω

ξiQ −
∫

Ω

H∗(x, ξ(x))dx

=

∫
Ω×Ω

cξ(x, y)dγ(x, y)−
∫

Ω

H∗(x, ξ(x))dx

so that ξ solves (16) and (17) is satisfied. Finally if ξ solves (16) andQ ∈ Q(γ)
solves (11), then with (18) and (19), one has∫

Ω

ξiQ −
∫

Ω

H∗(x, ξ(x))dx ≥
∫

Ω×Ω

cξ(x, y)dγ(x, y)−
∫

Ω

H∗(x, ξ(x))dx

= max(16) = min(11) =

∫
Ω

H(x, iQ(x))dx

and thus we deduce from (12) and (14) that ξ = ξQ. 2
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Remark 5. Under reasonable continuity and strict monotonicity assump-
tions on the congestion function g, the dual problem (16) has a unique solu-
tion so that the equilibrium metric ξQ and the equilibrium intensity of traffic
iQ are unique although Wardrop equilibria Q might not be unique.

Numerics. In [5], [6], we designed a consistent numerical scheme to ap-
proximate the equilibrium metric ξQ by a descent method on the dual which
can be done in an efficient way by the Fast Marching Algorithm. One can
recover the corresponding equilibrium intensity iQ by inverting the relation
ξ(x) = g(x, iQ(x)).

The goal is to find a method to approximate the minimizers of functional
J in (15). This is done by means of a discretization grid, and the values of ξ
are considered as defined at the nodes of the grid. The first integral becomes
a sum on all the points of the grid, while, for the second, one needs to replace
the transport plan γ with a discretized one defined on pairs of points (x, y)
on the same grid, and to define cξ(x, y) consequently.

To define such a distance cξ(x0, ·), for a fixed source x0, as a function of
the second variable, one uses the fact that it is the unique viscosity solution
of the Eikonal non-linear PDE{

‖∇U ξ(x)‖ = ξ,

U ξ(x)(x0) = 0,
(21)

The computation of U ξ(x) thus requires the discretization of (21) so that
a numerical scheme captures the viscosity solution of the equation. By drop-
ping the dependence on ξ and x0 of the distance map U ξ = U to ease the
notations, the geodesic distance map U ξ is discretized on a grid of n×n points,
so that Ui,j for 0 ≤ i, j < n is an approximation of U ξ(ih, jh) where the grid
step is h = 1/n. The metric ξ is also discretized so that ξi,j = ξ(ih, jh).

Classical finite difference schemes do not capture the viscosity solution of
(21); upwind derivative should be used instead

D1Ui,j := max{(Ui,j − Ui−1,j), (Ui,j − Ui+1,j), 0}/h,
D2Ui,j := max{(Ui,j − Ui,j−1), (Ui,j − Ui,j+1), 0}/h.

As proposed by Rouy and Tourin [17], the discrete geodesic distance map
U = (Ui,j)i,j is found as the solution of the following discrete non-linear
equation that discretizes (21)

DU = ξ where DUi,j =
√
D1U2

i,j +D2U2
i,j. (22)
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Rouy and Tourin [17] showed that this discrete geodesic distance U converges
to U ξ when h tends to 0. The Fast Marching Algorithm exactly uses a
clever way of ordering the points of the grid so as to solve recursively all the
equations in (22).

Once we are able to compute the value of J(ξ) for every discrete metric
ξ on the grid, we want to differentiate it w.r.t. ξ, so as to to take advantage
of a gradient descent algorithm. Actually, one can see that J is not always
differentiable in ξ, but, since all the terms cξ(x, y) may be proven to be con-
cave in ξ, we face a convex function, and we can look for its sub-differential.
Differentiating the equations in (22) (see [6]) one gets a new set of equations
on the gradient ∇ξcξ(x, y). The same loop of the Fast Marching Algorithm
allows to solve them in a quite efficient way, thus giving an element of the
sub-differential. Afterwards, usual subgradient algorithms allow to approxi-
mate the optimal solution ξ̄.

An example is given in the following figure:

Figure 1: Traffic intensity at equilbrium in a city with a river and a bridge.

In a symmetric configuration of two sources S1 and S2, and two targets T1

and T2; we consider a river where there is no traffic and a bridge linking the
two sides of the river (see the map on the left in Figure 1, where the grey scale
and the level lines show the equilibrium traffic intensity) and the level lines
are meant to We chose the traffic weights such that γ1,1 +γ1,2 = 2(γ2,1 +γ2,2)
and γ2,2

γ2,1
= γ1,1

γ1,2
= 2. The traffic intensity going out from S1 is twice S2’s. One

can note, in the picture at the right in Figure 1, the two hollows on each
side of the river appearing because of the inter-sides and intra-sides crossed
traffics, together with the traffic peaks close to the bridge ant do the points
Si and Tj.
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5 Beckmann-like reformulation of the long-

term problem

In the long-term problem (9), we have one more degree of freedom since the
transport plan is not fixed. This will enable us to reformulate the problem as
a variational divergence constrained problem à la Beckmann and ultimately
to reduce the equilibrium problem to solving some nonlinear PDE. For Q ∈
Q(µ0, µ1), let us define the vector-field σQ through

∀X ∈ C(Ω,Rd)

∫
Ω

X(x)σQ(x)dx :=

∫
C([0,1],Ω)

(∫ 1

0

X(γ(t)) · γ̇(t)dt

)
dQ(γ)

which is a kind of vectorial traffic intensity. Taking a gradient field X = ∇u
in the previous definition yields∫

Ω

∇uσQ =

∫
C([0,1],Ω)

[u(σ(1))− u(σ(0))]dQ(γ) =

∫
Ω

u(µ1 − µ0)

which means that
∇ · σQ = µ0 − µ1,

moreover it is easy to check that

|σQ| ≤ iQ.

Since H is increasing, it proves that the value of the scalar problem (9)
is larger than that of the minimal flow problem à la Beckmann:

inf
σ : ∇·σ=µ0−µ1

∫
Ω

H(σ(x))dx (23)

where H(σ) = H(|σ|) and H is taken independent of x only for simplicity.
Conversely, if σ is a minimizer of (23) and Q ∈ Q(µ0, µ1) is such that iQ = |σ|
then Q solves the scalar problem (9) (i.e. is an equilibrium).

To build such a Q, we can formally use the following construction à la
Moser (see Moser [15] and Dacorogna and Moser [11]). Assuming σ smooth
and µ0 and µ1 absolutely continuous, with nice densities bounded away from
0, let us consider the nonautonmous ODE

Ẋ(t, x) =
σ(X(t, x))

(1− t)µ0(X(t, x)) + tµ1(X(t, x))
, X(0, x) = x,

and define Q by
Q = δX(.,x) ⊗ µ0.
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Set µt = (1− t)µ0 + tµ1 and

v(t, x) =
σ(x)

µt(x)

then by construction µt solves the continuity equation:

∂tµt +∇ · (µtv) = 0

By construction we also have e0#Q = µ0 and, because of the uniqueness
in the continuity equation, X(t, .)#µ0 = µt = (1−t)µ0+tµ1. In particular the
image of µ0 by the flow at time 1, X(1, .) is µ1, which proves that e1#Q = µ1

hence Q ∈ Q(µ0, µ1). Moreover for every test-function ϕ:∫
Ω

ϕdiQ =

∫
Ω

∫ 1

0

ϕ(X(t, x))|v(t,X(t, x))|dtdµ0(x)

=

∫ 1

0

∫
Ω

ϕ(x)|v(t, x)|µt(x)dxdt

=

∫
Ω

ϕ(x)|σ(x)|dx

so that iQ = |σ| and then Q is optimal.
The previous argument works as soon as σ is regular enough (say, Lip-

schitz continuous). To get regularity, one needs to look at the optimality
conditions satisfied by σ as a minimizer of (23). By duality, the solution of
(23) is σ = ∇H∗(∇u) where H∗ is the Legendre transform of H and u solves
the PDE: {

∇ · (∇H∗(∇u)) = µ0 − µ1, in Ω,
∇H∗(∇u) · ν = 0, on ∂Ω,

(24)

This equation turns out to be a standard Laplace equation if H is quadratic,
or it becomes a p−Laplace equation for other power functions. In these
cases, regularity results are well-known, under regularity assumptions on µ0

and µ1. Yet, let us recall that H ′ = g where g is the congestion function, so it
is natural to have g(0) > 0 : the metric is positive even if there is no traffic!
This means that the radial function H is not differentiable at 0 and then its
subdifferential at 0 contains a ball. By duality, this implies ∇H∗ = 0 on this
ball which makes (24) very degenerate, even worse than the p−Laplacian.
For instance, a reasonable model of congestion is g(t) = 1 + tp−1 for t ≥ 0,
with p > 1, so that

H(σ) =
1

p
|σ|p + |σ|, H∗(z) =

1

q
(|z| − 1)q+, with q =

p

p− 1
(25)
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so that the optimal σ is

σ =
(
|∇u| − 1

)q−1

+

∇u
|∇u|

,

where u solves the very degenerate PDE:

∇ ·
((
|∇u| − 1

)q−1

+

∇u
|∇u|

)
= µ0 − µ1, (26)

with Neumann boundary condition(
|∇u| − 1

)q−1

+

∇u
|∇u|

· ν = 0.

Note that there is no uniqueness for u but there is for σ.
For this degenerate equation (more degenerate than the p-laplacian since

the diffusion coefficient identically vanishes in the zone where |∇u| ≤ 1),
getting Lipschitz continuity on σ is not reasonable. Yet, Sobolev regularity
of σ and Lipschitz regularity results for solutions of this PDE can be found
in [8]. This enables one to build a flow à la DiPerna-Lions [13] and then to
justify rigorously the construction above, even without a Cauchy-Lipschitz
flow. Interestingly, in two dimensions it is also available (see [19]) a continuity
result on the optimal σ, obtained as a consequence of a fine analysis of this
degenerate elliptic PDE. Besides the interest for this regularity result in itself,
we also stress that continuity for σ implies continuity for the optimal iQ, and
this exactly gives the regularity which is required in the proof of Theorem 2
(the main difficulty being defining cξ̄ for a non-continuous ξ̄, and this is the
reason why our proof in Section 3 is only formal).
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