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Abstract. Optimal transportation distances are a fundamental family of pa-

rameterized distances for histograms. Despite their appealing theoretical prop-
erties, excellent performance in retrieval tasks and intuitive formulation, their

computation involves the resolution of a linear program whose cost is prohibi-

tive whenever the histograms’ dimension exceeds a few hundreds. We propose
in this work a new family of optimal transportation distances that look at

transportation problems from a maximum-entropy perspective. We smooth
the classical optimal transportation problem with an entropic regularization

term, and show that the resulting optimum is also a distance which can be com-

puted through Sinkhorn-Knopp’s matrix scaling algorithm at a speed that is
several orders of magnitude faster than that of transportation solvers. We also

report improved performance over classical optimal transportation distances

on the MNIST benchmark problem.

1. Introduction

Optimal transportation distances (Villani, 2009, §6) – also known as Earth
Mover’s following the seminal work of Rubner et al. (1997) and their application
to computer vision – hold a special place among other distances in the probability
simplex. Compared to other classic distances or divergences, such as Hellinger,
χ2, Kullback-Leibler or Total Variation, they are the only ones to be parameter-
ized. This parameter – the ground metric – plays an important role to handle
high-dimensional histograms: the ground metric provides a natural way to han-
dle redundant features that are bound to appear in high-dimensional histograms
(think synonyms for bags-of-words), in the same way that Mahalanobis distances
can correct for statistical correlations between vector coordinates.

The central role played by histograms and bags-of-features in most data analysis
tasks and the good performance of optimal transportation distances in practice has
generated ample interest, both from a theoretical point of view (Levina and Bickel,
2001; Indyk and Thaper, 2003; Naor and Schechtman, 2007; Andoni et al., 2009)
and a pracical aspect, mostly to compare images (Grauman and Darrell, 2004;
Ling and Okada, 2007; Gudmundsson et al., 2007; Shirdhonkar and Jacobs, 2008).
Optimal transportation distances have, however, a very clear drawback. No matter
what the algorithm employed – network simplex or interior point methods – their
cost scales at least in O(d3log(d)) when computing the distance between a pair of
histograms of dimension d, in the general case where no restrictions are placed upon
the ground metric parameter (Pele and Werman, 2009, §2.1). This speed can be
improved by ensuring that the ground metric observes certain constraints and/or
by accepting some approximation errors. However, when these restrictions do not
apply, computing a single distance between a pair of histograms of dimension in
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the few hundreds can take more than a few seconds. This issue severely hinders
the applicability of optimal transportation distances in large-scale data analysis
and goes as far as putting into question their relevance within the field of machine
learning.

Our aim in this paper is to show that the optimal transportation problem can
be regularized by an entropic term, following the maximum-entropy principle. We
argue that this regularization is intuitive given the geometry of the optimal trans-
portation problem and has, in fact, been long known and favored in transportation
theory (Erlander and Stewart, 1990). From an optimization point of view, this
regularization has multiple virtues, among which that of turning this LP into a
strictly convex problem that can be solved extremely quickly with the Sinkhorn-
Knopp matrix scaling algorithm (Sinkhorn and Knopp, 1967; Knight, 2008). This
algorithm exhibits linear convergence and can be trivially parallelized – it can be
vectorized. It is therefore amenable to large scale executions on parallel platforms
such as GPGPUs. From a practical perspective, we show that, on the benchmark
task of classifying MNIST digits, Sinkhorn distances perform better than the EMD
and can be computed several orders of magnitude faster over a large sample of
dimensions without making any assumption on the ground metric. We believe this
paper contains all the ingredients that are required for optimal transportation dis-
tances to be at last applied on high-dimensional datasets and attract again the
attention of the machine learning community.

This paper is organized as follows: we provide reminders on optimal transporta-
tion theory in Section 2, introduce Sinkhorn distances in Section 3 and provide
algorithmic details in Section 4. We follow with an empirical study in Section 5
before concluding.

2. Reminders on Optimal Transportation

2.1. Transportation Tables and Joint Probabilities. In what follows, 〈·, ·〉
stands for the Frobenius dot-product. For two histograms r and c in the simplex

Σd
def
= {x ∈ Rd+ : xT1d = 1}, we write U(r, c) for the transportation polytope of r

and c, namely the polyhedral set of d× d matrices:

U(r, c)
def
= {P ∈ Rd×d+ | P1d = r, PT1d = c},

where 1d is the d dimensional vector of ones. U(r, c) contains all nonnegative d× d
matrices with row and column sums r and c respectively. U(r, c) has a probabilistic
interpretation: for X and Y two multinomial random variables taking values in
{1, · · · , d}, each with distribution r and c respectively, the set U(r, c) contains
all possible joint probabilities of (X,Y ). Indeed, any matrix P ∈ U(r, c) can be
identified with a joint probability for (X,Y ) such that p(X = i, Y = j) = pij . Such
joint probabilities are also known as contingency tables. We define the entropy h
and the Kullback-Leibler divergences of these tables and their marginals as

r ∈ Σd, h(r) = −
d∑
i=1

ri log ri, P ∈ U(r, c), h(P ) = −
d∑

i,j=1

pij log pij

P,Q ∈ U(r, c), KL(P‖Q) =
∑
ij

pij log
pij
qij
.
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2.2. Optimal Transportation. Given a d×d cost matrix M , the cost of mapping
r to c using a transportation matrix (or joint probability) P can be quantified as
〈P,M 〉. The following problem:

dM (r, c)
def
= min

P∈U(r,c)
〈P,M 〉.

is called an optimal transportation problem between r and c given cost M . An
optimal table P ? for this problem can be obtained with the network simplex (Ahuja
et al., 1993, §9) as well as other approaches (Orlin, 1993). The optimum of this
problem, dM (r, c), is a distance (Villani, 2009, §6.1) whenever the matrix M is itself
a metric matrix, namely whenever M belongs to the cone of distance matrices (Avis,
1980; Brickell et al., 2008):

M = {M ∈ Rd×d+ : ∀i ≤ d,mii = 0; ∀i, j, k ≤ d,mij ≤ mik +mkj}.
For a general matrix M , the worst case complexity of computing that optimum
with any of the algorithms known so far scales in O(d3 log d) and turns out to be
super-cubic in practice as well (Pele and Werman, 2009, §2.1). Much faster speeds
can be obtained however when placing all sorts of restrictions on M and accepting
approximated solutions, albeit at a cost in performance (Grauman and Darrell,
2004) and a loss in applicability.

3. Sinkhorn Distances

We consider in this section a family of optimal transportation distances whose
feasible set is the not the whole of U(r, c), but a parameterized restricted set of
joint probability matrices.

3.1. Entropic Constraints on Joint Probabilities. We recall a basic informa-
tion theoretic inequality (Cover and Thomas, 1991, §2) which applies to all joint
probabilities:

(1) ∀r, c ∈ Σd,∀P ∈ U(r, c), h(P ) ≤ h(r) + h(c).

This bound is tight, since the table rcT – known as the independence table (Good,
1963) – has an entropy of h(rcT ) = h(r) + h(c). By the concavity of entropy, we
can introduce the convex set Uα(r, c) ⊂ U(r, c) as

Uα(r, c)
def
= {P ∈ U(r, c) |KL(P‖rcT ) ≤ α} = {P ∈ U(r, c) |h(P ) ≥ h(r) +h(c)−α}

These definitions are indeed equivalent, since one can easily check that

KL(P‖rcT ) = h(r) + h(c)− h(P ),

a quantity which is also the mutual information I(X‖Y ) of two random variables
(X,Y ) should they follow the joint probability P (Cover and Thomas, 1991, §2).
Hence, all tables P whose Kullback-Leibler divergence to the table rcT is con-
strained to lie below a certain threshold can be interpreted as the set of tables
P in U(r, c) which have sufficient entropy with respect to h(r) and h(c), or joint
probabilities which display a small enough mutual information.

As a classic result of linear optimization, the optimum of classical optimal trans-
portation distances is achieved on vertices of U(r, c), that is d × d matrices with
only up to 2d − 1 non-zero elements (Brualdi, 2006, §8.1.3). Such plans can be
interpreted as quasi-deterministic joint probabilities, since if pij > 0, then very few
values pij′ will have a non-zero probability. By mitigating the transportation cost
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M

dM,α(r, c) = 〈P ?,M〉

U(r, c)

rcT

P ?

Uα(r, c) = {P ∈ U(r, c)|KL(P‖rcT ) ≤ α}

Figure 1. Schematic view of the transportation polytope and the
Kullback-Leibler ball of level α that surrounds the independence
table rcT . The Sinkhorn distance is the dot product of M with
the optimal transportation table in that ball.

objective with an entropic constraint, which is equivalent to following the max-
entropy principle (Jaynes, 1957; Dud́ık and Schapire, 2006) and thus for a given
level of the cost look for the most smooth joint probability, we argue that we can
provide a more robust notion of distance between histograms. Indeed, for a given
pair (r, c), finding plausible transportation plans with low cost (where plausibility
is measured by entropy) is more informative than finding extreme plans that are
extremely unlikely to appear in nature.

We note that the idea of regularizing the transportation problem was also con-
sidered recently by Ferradans et al. (2013). In their work, Ferradans et al. also
argue that an optimal matching may not be sufficiently regular in vision applica-
tions (color transfer), and that these undesirable properties can be handled through
an adequate relaxation and penalization (through graph-based norms) of the trans-
portation problem. While Ferradans et al. (2013) penalize the transportation prob-
lem to obtain a more regular transportation plan, we believe that an entropic
regularization yields here a better distance. An illustration of this idea is provided
in Figure 1. For reasons that will become clear in Section 4, we call such distances
Sinkhorn distances.

Definition 1 (Sinkhorn Distances). dM,α(r, c)
def
= min

P∈Uα(r,c)
〈P,M 〉

3.2. Metric Properties. When α is large enough, the Sinkhorn distance coin-
cides with the classic optimal transportation distance. When α = 0, the Sinkhorn
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distance has a closed form and becomes a negative definite kernel if one assumes
that M is itself a negative definite distance, that is a Euclidean distance matrix.

Property 1. For α large enough, the Sinkhorn distance dM,α is the transportation
distance dM .

Proof. Since for any P ∈ U(r, c), h(P ) is lower bounded by 1
2 (h(r) +h(c)), we have

that for t large enough Ut(r, c) = U(r, c) and thus both quantities coincide.

Property 2 (Independence Kernel). When α = 0 and M is a Euclidean Distance
Matrix1, the Sinkhorn distance has the explicit form dM,0 = rTMc. dM,0 is a

negative definite kernel, i.e. e−tr
TMc is a positive definite kernel ∀t > 0. We call

this kernel the independence kernel.

The proof is provided in the appendix. Beyond these two extreme cases, the
main theorem of this section states that Sinkhorn distances are symmetric and
satisfy triangle inequalities for all possible values of α. Since for α small enough
dM,α(r, r) > 0 for any r such that h(r) > 0, Sinkhorn distances cannot satisfy
the coincidence axiom2. However, multiplying dM,α by 1r 6=c suffices to recover the
coincidence property if needed.

Theorem 1. For all α ≥ 0 and M ∈ M, dM,α is symmetric and satisfies all
triangle inequalities. The function (r, c) 7→ 1r 6=cdM,α(r, c) satisfies all three distance
axioms.

The gluing lemma (Villani, 2003, Lemma 7.6) plays a crucial role to prove that
optimal transportation distances are indeed distances. The version we use below is
slightly different since it incorporates the entropic constraint.

Lemma 1 (Gluing Lemma With Entropic Constraint). Let α ≥ 0 and x, y, z be
three elements of Σd. Let P ∈ Uα(x, y) and Q ∈ Uα(y, z) be two joint probabilities
in the transportation polytopes of (x, y) and (y, z) with sufficient entropy. Let S be

the d× d matrix whose (i, k)’s coefficient is sik
def
=

∑
j
pijqjk
yj

. Then S ∈ Uα(x, z).

The proof is provided in the appendix. We can prove the triangle inequality for
dM,α by using the same proof strategy than that used for classical transportation
distances.

Proof of Theorem 1. The symmetry of dM,α is a direct result of M ’s symmetry.
Let x, y, z be three elements in Σd. Let P ∈ Uα(x, y) and Q ∈ Uα(y, z) be the
optimal solutions obtained when computing dM,α(x, y) and dM,α(y, z) respectively.
Using the matrix S of Uα(x, z) provided in Lemma 1, we proceed with the following

1∃n,∃ϕ1, · · · , ϕd ∈ Rn such that mij = ‖ϕi − ϕj‖22 (Dattorro, 2005, §5). Recall that, in that

case, M.t = [mt
ij ], 0 < t < 1 is also a Euclidean distance matrix (Berg et al., 1984, p.78,§3.2.10)

2satisfied if d(x, y) = 0⇔ x = y holds for all x, y
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chain of inequalities:

dM,α(x, z) = min
P∈Uα(x,z)

〈X,M 〉 ≤ 〈S,M 〉 =
∑
ik

mik

∑
j

pijqjk
yj

≤
∑
ijk

(mij +mjk)
pijqjk
yj

=
∑
ijk

mij
pijqjk
yj

+mjk
pijqjk
yj

=
∑
ij

mijpij
∑
k

qjk
yj

+
∑
jk

mjkqjk
∑
i

pij
yj

=
∑
ij

mijpij +
∑
jk

mjkqjk = dM,α(x, y) + dM,α(y, z).�

4. Computing Sinkhorn Distances with the Sinkhorn-Knopp
Algorithm

Recall that the Sinkhorn distance (Definition 1) is defined through a hard con-
straint on the entropy of h(P ) relative to h(r) and h(c). In what follows, we consider
the same program with a Lagrange multiplier for the entropy constraint,

(2) dλM (r, c)
def
= 〈Pλ,M 〉, where Pλ = argmin

P∈U(r,c)

〈P,M 〉 − 1

λ
h(P ).

By duality theory we have that for every pair (r, c), to each α corresponds an
λ ∈ [0,∞] such that dM,α(r,c) = dλM (r, c). We call dλM the dual-Sinkhorn divergence
and show that it can be computed at a much cheaper cost than the classical optimal
transportation problem for reasonable values of λ.

4.1. Computing dλM . When λ > 0, the solution Pλ is unique by strict convexity
of minus the entropy. In fact, Pλ is necessarily of the form uie

−λmijvj , where u
and v are two non-negative vectors uniquely defined up to a multiplicative factor.

Algorithm 1 Computation of dλM (r, c) using Sinkhorn-Knopp’s fixed point itera-
tion

Input M, λ, r, c.
I=(r>0); r=r(I); M=M(I,:); K=exp(-λ*M)
Set x=ones(length(r),size(c,2))/length(r);
while x changes do
x=diag(1./r)*K*(c.*(1./(K’*(1./x))))

end while
u=1./x; v=c.*(1./(K’*u))

dλM (r,c)=sum(u.*((K.*M)*v))

This well known fact in transportation theory (Erlander and Stewart, 1990)
can be indeed checked by forming the Lagrangian L(P, α, β) of the objective of
Equation (2) using α, β ≥ 0d for each of the two equality constraints in U(r, c). For
these two cost vectors α, β,

L(P, α, β) =
∑
ij

1

λ
pij log pij + pijmij + αT (P1d − r) + βT (PT1d − c)
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We obtain then, for any couple (i, j), that if ∂L
∂pλij

= 0, then

pλij = e−
1
2−λαie−λmije−

1
2−λβj ,

and thus recover the form provided above. Pλ is thus, by Sinkhorn and Knopp’s
theorem (1967), the only matrix with row-sum r and column-sum c of the form

(3) ∃u, v > 0d : Pλ = diag(u)e−λM diag(v).

Given e−λM and marginals r and c, it is thus sufficient to run enough iterations
of Sinkhorn and Knopp’s algorithm to converge to a solution Pλ of that problem.
We provide a one line implementation in Algorithm 1. The case where some co-
ordinates of r or c are null can be easily handled by selecting those elements of
r that are strictly positive to obtain the desired table, as shown in the first line
of Algorithm 1. Note that Algorithm 1 is vectorized : it can be used as such to
compute the distance between r and a family of histograms C = [c1, · · · , cN ] by
replacing c with C. These O(d2N) linear algebra operations can be very quickly
executed by using a GPGPU.

4.2. Computing dM,α through dλM . With a naive approach, dM,α can be ob-
tained by computing dλM iteratively until the entropy of the solution Pλ has reached
an adequate value h(r) + h(c) − α. Since the entropy of Pλ decreases monotoni-
cally when λ increases, this search can be carried out by simple bisection, starting
with a small λ which is iteratively increased. In what follows, we only consider
the dual-Sinkhorn divergence dλM since it is cheaper to compute and displays good
performances in itself. We believe that more clever approaches can be applied to
calculate exactly dM,α, and we leave this for future work. In the rest of this paper
we will now refer to dλM as the Sinkhorn distance, despite the fact that it is not
provably a distance.

5. Experimental Results

5.1. MNIST Digits. We test the performance of Sinkhorn distances on the MNIST
digits3 dataset, on which the ground metric has a natural interpretation in terms of
pixel distances. Each digit is provided as a vector of intensities on a 20× 20 pixel
grid. We convert each image into a histogram by normalizing each pixel intensity
by the total sum of all intensities . We consider a subset of N points in the training
set of the database, where N ranges within {3, 5, 12, 17, 25} × 103 datapoints.

5.1.1. Experimental setting. For each subset of size N , we provide mean and stan-
dard deviation of classification error using a 4 fold (3 test, 1 train) cross validation
scheme repeated 6 times, resulting in 24 different experiments. We study the per-
formance of different distances with the following parameter selection scheme: for
each distance d, we consider the kernel e−d/t, where t > 0 is chosen by cross val-
idation individually for each training fold within the set {1, q10(d), q20(d), q50(d)},
where qs is the s% quantile of a subset of distances observed in the training fold.
We regularize non-positive definite kernel matrices resulting from this computation
by adding a sufficiently large diagonal term. SVM’s were run with libsvm (one-vs-
one) for multiclass classification, the regularization constant C being selected by 2
folds/2 repeats cross-validation on the training fold in the set 10−2:2:4

3http://yann.lecun.com/exdb/mnist/
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Figure 2. Average test errors with shaded confidence intervals.
Errors are computed using 1/4 of the dataset for train and 3/4 for
test. Errors are averaged over 4 folds× 6 repeats = 24 experiments.

5.1.2. Distances. The Hellinger, χ2, Total Variation and squared Euclidean (Gauss-
ian kernel) distances are used as such. We set the ground metric M to be the
Euclidean distance between the 20× 20 points in the grid, resulting in a 400× 400
distance matrix. We also tried to use Mahalanobis distances on this example with
a positive definite matrix equal to exp(-tM.^2), t>0, as well as its inverse, with
varying values of t but none of the results proved competitive. For the Indepen-
dence kernel, since any Euclidean distance matrix is valid, we consider [ma

ij ] where
a ∈ {0.01, 0.1, 1} and choose a by cross-validation on the training set. Smaller
values of a seem to be preferable. We select the entropic penalty λ of Sinkhorn dis-
tances so that the matrix e−λM is relatively diagonally dominant and the resulting
transportation not too far from the classic optimal transportation. We select λ for
each training fold by internal cross-validation within {5, 7, 9, 11}× 1/q50(M) where
q50(M) is the median distance between pixels on the grid. We set the number of
fixed-point iterations to an arbitrary number of 20 iterations. In most (though not
all) folds, the value λ = 9 comes up as the best setting. The Sinkhorn distance
beats by a safe margin all other distances, including the EMD.

5.2. Does the Sinkhorn Distance Converge to the EMD?. We study in this
section the convergence of Sinkhorn distances towards classical optimal transporta-
tion distances as λ gets bigger. Because of the additional penalty that appears in
(2) program, dλM (r, c) is necessarily larger than dM (r, c), and we expect this gap to
decrease as λ increases. Figure 3 illustrates this by plotting the boxplot of distri-
butions of (dλM (r, c) − dM (r, c))/dM (r, c) over 402 pairs of distinct points taken in
the MNIST database. As can be observed, even with large values of λ, Sinkhorn
distances hover above the values of EMD distances by about 10%. For practical
values of λ such as λ = 9 selected above we do not expect the Sinkhorn distance to
be numerically close to the EMD, nor believe it to be a desirable property.
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Figure 4. Average computational time required to compute a
distance between two histograms sampled uniformly in the d di-
mensional simplex for varying values of d. Sinkhorn distances are
run both on a single CPU node and on a GPU card, until the
variation in x becomes smaller than ε = 0.01 in Euclidean norm.

5.3. Several Orders of Magnitude Faster. We measure in this section the com-
putational speed of classic optimal transportation distances vs. that of Sinkhorn
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Figure 5. The influence of λ on the number of iterations required
to converge on histograms uniformly sampled from the simplex.

distances using Rubner et al.’s (1997)4 and Pele and Werman’s (2009)5 publicly
available implementations. We generate points uniformly in the d-simplex (Smith
and Tromble, 2004) and generate random distance matrices M by selecting d points
distributed with a spherical Gaussian in dimension d/10 to obtain enough vari-
ability in the distance matrix. M is then divided by the median of its values,
M=M/median(M(:)). Sinkhorn distances are implemented in matlab code (see Al-
gorithm 1) while emd mex, emd hat gd metric are mex/C files. The emd distances
and Sinkhorn CPU are run on a matlab session with a single working core (2.66
Ghz Xeon). Sinkhorn GPU is run on an NVidia Quadro K5000 card. Following the
experimental findings of Section 5.1, we consider two parameters for λ, λ = 1 and
λ = 9. λ = 1 results in a relatively dense matrix K = e−λM , with results compara-
ble to that of the Independence kernel, while λ = 9 results in a matrix K = e−λM

with mostly negligible values and therefore a matrix with low entropy that is closer
to the optimal transportation solution. Rubner et al.’s implementation cannot be
run for histograms larger than d = 512. For large dimensions and on the same
CPU, Sinkhorn distances are more than 100.000 faster than EMD solvers given a
threshold of 0.01. Using a GPU results in a speed-up of a supplementary order of
magnitude.

5.4. Empirical Complexity. To provide an accurate picture of the actual num-
ber of steps required to guarantee the algorithm’s convergence, we replicate the
experiments of Section 5.3 but focus now on the number of iterations of the loop
described in Algorithm 1. We use a tolerance of 0.01 on the norm of the difference
of two successive iterations of x ∈ Rd. As can be seen in Figure 5, the number of
iterations required so that ‖x− x′‖2 ≤ 0.01 increases as e−λM becomes diagonally
dominant. From a practical perspective, and because keeping track of the change

4http://robotics.stanford.edu/ rubner/emd/default.htm
5http://www.cs.huji.ac.il/ ofirpele/FastEMD/code/, we use emd hat gd metric in these

experiments
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of x at each iteration can be costly on parallel platforms, we recommend setting a
fixed number of iterations that only depends on the value of λ. With that modifi-
cation, and when computing the distance of a point r to a family of points C, we
obtain speedups by using GPGPU’s which are even larger than those displayed in
Figure 4.

6. Conclusion

We have shown that regularizing the optimal transportation problem with an
intuitive entropic penalty opens the door for new research directions and poten-
tial applications at the intersection of optimal transportation theory and machine
learning. This regularization guarantees speed-ups that are effective whatever the
structure of the ground metric M . Based on preliminary evidence, it seems that
Sinkhorn distances do not perform worse than the EMD, and may in fact perform
better in applications. Sinkhorn distances are parameterized by a regularization
weight λ which should be tuned having both computational and performance ob-
jectives in mind, but we have not observed a need to establish a trade-off between
both. Indeed, reasonably small values of λ seem to perform better than large ones.

7. Appendix: Proofs

Proof of Property 1. The set U1(r, c) contains all joint probabilities P for which
h(P ) = h(r) +h(c). In that case (Cover and Thomas, 1991, Theorem 2.6.6) applies
and U1(r, c) can only be equal to the singleton {rcT }. If M is negative definite, there
exists vectors (ϕ1, · · · , ϕd) in some Euclidean space Rn such that mij = ‖ϕi−ϕj‖22
through (Berg et al., 1984, §3.3.2). We thus have that

rTMc =
∑
ij

ricj‖ϕi − ϕj‖2 = (
∑
i

ri‖ϕi‖2 +
∑
i

ci‖ϕi‖2)− 2
∑
ij

〈riϕi, cjϕj 〉

= rTu+ cTu− 2rTKc

where ui = ‖φi‖2 and Kij = 〈ϕi, ϕj 〉. We used the fact that
∑
ri =

∑
ci = 1 to go

from the first to the second equality. rTMc is thus a n.d. kernel because it is the
sum of two n.d. kernels: the first term (rTu+ cTu) is the sum of the same function
evaluated separately on r and c, and thus a negative definite kernel (Berg et al.,
1984, §3.2.10); the latter term −2rTKu is negative definite as minus a positive
definite kernel (Berg et al., 1984, Definition §3.1.1).

Remark. The proof above suggests a faster way to compute the Independence
kernel. Given a matrix M , one can indeed pre-compute the vector of norms u as
well as a Cholesky factor L of K above to preprocess a dataset of histograms by
premultiplying each observations ri by L and only store Lri as well as precomputing
its diagonal term rTi u. Note that the independence kernel is positive definite on
histograms with the same 1-norm, but is no longer positive definite for arbitrary
vectors.

Proof of Lemma 1. Let T be the a probability distribution on {1, · · · , d}d whose
coefficients are defined as

(4) tijk
def
=
pijqjk
yj

,
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for all indices j such that yj > 0. For indices j such that yj = 0, all values tijk are
set to 0.

Let S
def
= [

∑
j tijk]ik. S is a transportation matrix between x and z. Indeed,∑

i

∑
j

sijk =
∑
j

∑
i

pijqjk
yj

=
∑
j

qjk
yj

∑
i

pij =
∑
j

qjk
yj
yj =

∑
j

qjk = zk (column sums)

∑
k

∑
j

sijk =
∑
j

∑
k

pijqjk
yj

=
∑
j

pij
yj

∑
k

qjk =
∑
j

pij
yj
yj =

∑
j

pij = xi (row sums)

We now prove that h(S) ≥ h(x)+h(z)−α. Let (X,Y, Z) be three random variables
jointly distributed as T . Since by definition of T in Equation (4)

p(X,Y, Z) = p(X,Y )p(Y,Z)/p(Y ) = p(X)p(Y |X)p(Z|Y ),

the triplet (X,Y, Z) is a Markov chain X → Y → Z (Cover and Thomas, 1991,
Equation 2.118) and thus, by virtue of the data processing inequality (Cover and
Thomas, 1991, Theorem 2.8.1), the following inequality between mutual informa-
tions applies:

I(X;Y ) ≥ I(X;Z), namely h(X,Z)−h(X)+h(Z) ≥ h(X,Y )−h(X)+h(Y ) ≥ −α.
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Ferradans, S., Papadakis, N., Rabin, J., Peyré, G., Aujol, J.-F., et al. (2013). Regularized

discrete optimal transport. In International Conference on Scale Space and Variational
Methods in Computer Vision, pages 1–12.

Good, I. (1963). Maximum entropy for hypothesis formulation, especially for multidimen-
sional contingency tables. The Annals of Mathematical Statistics, pages 911–934.

Grauman, K. and Darrell, T. (2004). Fast contour matching using approximate earth
mover’s distance. In IEEE Conf. Vision and Patt. Recog., pages 220–227.

Gudmundsson, J., Klein, O., Knauer, C., and Smid, M. (2007). Small manhattan networks
and algorithmic applications for the earth movers distance. In Proceedings of the 23rd
European Workshop on Computational Geometry, pages 174–177.



SINKHORN DISTANCES 13

Indyk, P. and Thaper, N. (2003). Fast image retrieval via embeddings. In 3rd International
Workshop on Statistical and Computational Theories of Vision (at ICCV).

Jaynes, E. T. (1957). Information theory and statistical mechanics. Phys. Rev., 106:620–
630.

Knight, P. A. (2008). The sinkhorn-knopp algorithm: convergence and applications. SIAM
Journal on Matrix Analysis and Applications, 30(1):261–275.

Levina, E. and Bickel, P. (2001). The earth mover’s distance is the mallows distance: some
insights from statistics. In Proceedings of the Eighth IEEE International Conference on
Computer Vision, volume 2, pages 251–256. IEEE.

Ling, H. and Okada, K. (2007). An efficient earth mover’s distance algorithm for robust
histogram comparison. IEEE transactions on Patt. An. and Mach. Intell., pages 840–
853.

Naor, A. and Schechtman, G. (2007). Planar earthmover is not in l1. SIAM J. Comput.,
37(3):804–826.

Orlin, J. B. (1993). A faster strongly polynomial minimum cost flow algorithm. Operations
research, 41(2):338–350.

Pele, O. and Werman, M. (2009). Fast and robust earth mover’s distances. In ICCV’09.
Rubner, Y., Guibas, L., and Tomasi, C. (1997). The earth movers distance, multi-

dimensional scaling, and color-based image retrieval. In Proceedings of the ARPA Image
Understanding Workshop, pages 661–668.

Shirdhonkar, S. and Jacobs, D. (2008). Approximate earth movers distance in linear time.
In CVPR 2008, pages 1–8. IEEE.

Sinkhorn, R. and Knopp, P. (1967). Concerning nonnegative matrices and doubly sto-
chastic matrices. Pacific J. Math, 21(2):343–348.

Smith, N. A. and Tromble, R. W. (2004). Sampling uniformly from the unit simplex.
Johns Hopkins University, Tech. Rep, 10:15–20.

Villani, C. (2003). Topics in Optimal Transportation, volume 58. AMS Graduate Studies
in Mathematics.

Villani, C. (2009). Optimal transport: old and new, volume 338. Springer Verlag.

Graduate School of Informatics, Kyoto University

E-mail address: mcuturi@i.kyoto-u.ac.jp


	1. Introduction
	2. Reminders on Optimal Transportation
	2.1. Transportation Tables and Joint Probabilities
	2.2. Optimal Transportation

	3. Sinkhorn Distances
	3.1. Entropic Constraints on Joint Probabilities
	3.2. Metric Properties

	4. Computing Sinkhorn Distances with the Sinkhorn-Knopp Algorithm
	4.1. Computing dM
	4.2. Computing dM, through dM

	5. Experimental Results
	5.1. MNIST Digits
	5.2. Does the Sinkhorn Distance Converge to the EMD?
	5.3. Several Orders of Magnitude Faster
	5.4. Empirical Complexity

	6. Conclusion
	7. Appendix: Proofs
	References

