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Abstract

Motivated by some variational problems subject to a convexity
constraint, we consider an approximation using the logarithm of the
Hessian determinant as a barrier for the constraint. We show that the
minimizer of this penalization can be approached by solving a second
boundary value problem for Abreu’s equation which is a well-posed
nonlinear fourth-order elliptic problem. More interestingly, a simi-
lar approximation result holds for the initial constrained variational
problem.

Keywords: Abreu equation, Monge-Ampeére operator, calculus of varia-
tions with a convexity constraint.
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1 Introduction

Given €, a bounded, open, convex subset of R with d > 2, F : Q x R = R
strictly convex in its second argument, and ¢ a uniformly convex and smooth
function defined in a neighbourhood of €2, we are interested in the variational
problem with a convexity constraint:

inf  Jo(u) ::/QF(:E,u(x))d:p (1.1)

u€S[p, 9]
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where S[p, )] consists of all convex functions on € which admit a convex
extension by ¢ in a neighbourhood of €). This is a way to express in some
weak sense the boundary conditions

u = ¢ and d,u < J,p on 01, (1.2)

where v denotes the outward normal to 02 and 9, denotes the normal deriva-
tive.

Due to the convexity constraint, it is really difficult to write a tractable
Euler-Lagrange equation for (L)) (see [7], [2]). One may therefore wish to
construct suitable penalizations for the convexity constraint which force the
minimizers to somehow remain in the interior of the constraint and thus to
be a critical point of the penalized functional. Since the seminal work of
Trudinger and Wang [9, 0] on the prescribed affine mean curvature equa-
tion, the regularity of convex solutions of fourth-order nonlinear PDEs which
are Euler-Lagrange equations of convex functionals involving the Hessian de-
terminant have received a lot of attention. In particular, the Abreu equation
which corresponds to the logarithm of the Hessian determinant has been stud-
ied by Zhou [11] in dimension 2 and more recently by Chau and Weinkove [3]
and Le [5] [6] in higher dimensions. What the well-posedness and regularity
results of these references in particular suggest is that a penalization involv-
ing the logarithm of the Hessian determinant should act as a good barrier for
the convexity constraint in problems like (LI). This was indeed confirmed
numerically at a discretized level, see [1].

Our goal is precisely to show that one can indeed approximate (L)) by a
suitable boundary value problem for the Abreu equation. To do so, we first
introduce a penalized version of (L)) with a small parameter € > 0:

inf  J.(v) := Jo(v) — eFalv) (1.3)

veS[p, 9]

where, when v € S[p, )] is smooth and strongly convex, (see section 2] for
the definition for an arbitrary v € S[p, Q]), Fa(v) is defined by

Fa(v) ::/Qlog(det D?v).

Using the convexity of J. setting f(z,u) := 0,F(z, u), one can easily see that
if u is smooth and uniformly convex up to 02, and solves the first-boundary
problem for Abreu equation

t’:'Uijwij = f(z,u) in Q, u= ¢ and d,u = J,p on JQ (1.4)



where w := det(D?u)~! and U denotes the cofactor matrix of D?u then it is
indeed the solution of (L3)). It turns out however that the second-boundary
value problem (where instead of prescribing both values of u and Vu one
rather prescribes u and det(D?u) on 99) is much more well-behaved, see
[3, B, 6] and it was indeed used as an approximation for the affine Plateau
problem in [9]. We shall also consider an extra approximation parameter
and a second-boundary value problem on a larger domain and show that it
approximates correctly not only (IL3]) but also the intial problem (] as the
parameter converges to zero.

The paper is organized as follows. Section 2 gives some preliminaries. In
section 3] we show a I'-convergence result for J.. In sectiond] we consider an
approximation by a second boundary value problem on a ball B containing 2,
with a further penalization $(u—¢) on B\, for which we prove existence and
uniqueness of a smooth solution. In section [, we show that when § — 0,
we recover the minimizer of the problem from section Bl Finally, we also
show full convergence of the second boundary value problem to the initial
constrained variational problem ([I]) when § = §. — 0 as ¢ — 0, provided
F satisfies a suitable uniform convexity assumption.

2 Preliminaries

In the sequel, 2 will be an open, bounded and convex subset of R? d > 2.
We are also given an open ball B containing {2 and assume that the boundary
datum ¢ satisfies for some A > 0:

0 € C*YB), o =0o0n OB, D*o > \id on B. (2.1)

We then define S[p, Q)] as the set of convex functions on ), which, once
extended by ¢ on B\ €, are convex on B. Note that elements of S|y, (]
coincide with ¢ on 0f) and are Lipschitz continuous with Lipschitz constant
at most || V| z=(p) so that S[p, ] is compact for the topology of uniform
convergence.

Finally, we assume that the integrand F: (z,u) € Q x R — F(z,u) in
the definition of Jy in (L)) is measurable with respect to z, strictly con-
vex and differentiable with respect to u and such that that F(.,0) € L'(2)
and f(x,u) = 0,F(z,u) satisfies f(.,u) € L>(2) for every u € R. These
assumptions in particular guarantee that the convex functional 7, is every-
where continuous and Gateaux differentiable on S[ip, Q).

Following [9,, 10} [T1], let us recall how to define Fqo(v) for an arbitrary
convex function v on €2, first recall that the subdifferential of v at z € € is



given by
Ov(z) = {p € R : v(y) —v(x) 2 p-(y— =), Vy € Q}.
The Monge-Ampere measure of v, denoted p[v] is then defined by
plv](A) := |Ov(A)]

for every Borel subset A of 2. From the seminal results of Alexandrov (see
[4]), p[v] is indeed a Radon measure and v — p[v] is weakly continuous in the
sense that whenever v,, are convex functions which locally uniformly converge
to v then

lim sup pfv,|(F) < p[v](F), V F C Q, closed .

n
Decomposing the Monge-Ampere measure into its absolutely continuous part
and its singular part (with respect to the Lebesgue measure £?) as

plo] = pfv] + pslv], pefv] < L7, polo] L LY

Thanks to Alexandrov’s theorem, v is differentiable twice a.e., at such points
of twice differentiability, we denote by 9%v its Hessian matrix, Trudinger and
Wang proved in [9] that det(9?v) is the density of ju,.[v] with respect to £,
and following their approach, one can define the functional Fq by

Sa(v) = /Qlog(det 0*v(z))dx, Yv € S[p, Q. (2.2)

It is well-known that §gq is a concave functional and we refer to [8, 9] [11] for
a proof of the useful properties of Fq recalled below in Lemmas 2.1l and

Lemma 2.1. The functional v € S[p, Q] — Fa(v) defined in (22) is con-
cave, upper semi-continuous for the topology of local uniform convergence
and bounded from above on S[p, Q] with the explicit bound (where c¢g denotes
the measure of the unit ball of R?)

call Vel e

Fa(v) < Cayp = [0]log o

), vo € Slp, Q). (2.3)

As we shall also work on the larger domain B, it will be also convenient
to consider for every open subset w of B and every convex function u on B
the concave functional

Sw(v) ::/log(detﬁzv(x))dx. (2.4)

Following the same lines as Lemma 6.4 in Trudinger-Wang [8], we also
have:



Lemma 2.2. If w is an open subset of B with w CC B, then for every
sequence of convex functions u, converging locally uniformly on B to u, one
has

lim sup Fo, (un,) < Fowl(u).

n

3 Logarithmic penalization
Given € > 0, we consider

inf J.(v) := Jo(v) — eFa(v). (3.1)

veS[p, )

Since J. is strictly convex and Isc on the convex compact set S[p, Q], we
immediately have:

Proposition 3.1. Problem (31) admits a unique solution v..

Arguing exactly as in [9, [I1] by using Alexandrov’s maximum principle,
one can show:

Lemma 3.2. Let ¢ > 0 and v. be the solution of (3.1) then pslv.] = 0 i.e.
p[ve] has no singular part.

Remark 3.3. Let us remark that Lemma enables one to express —Fq(v.)
in an alternative way as the entropy of the push-forward of the Lebesgue
measure on 2 by Vu.. Also, thanks to Lemma [3.2] one can prove uniqueness
of the solution of ([B]) when J is convex but not necessarily strictly convex.

In dimension 2, we actually even have a uniform local bound on det(9?v.):

Proposition 3.4. Let d = 2, ¢ > 0 and v. be the solution of (31), then
plve] = det(9%v.) € L. ().

Proof. Tt follows from Theorem [5.1]and Proposition 4.3l that v. is the uniform
limit as § — 0 of a sequence of smooth functions (v°) in S[p, Q] such that,
for every open subset w with w CC €, || det(D?v?)|| () < C where C'is a
constant that depends on € and w but not on § . By weak convergence of
Monge-Ampere measures we deduce that det(9?v.) € L2 ().

U

Let us now state a I'-convergence result for J.:



Proposition 3.5. The family of functionals J. defined on S[p, ] equipped
with the topology of uniform convergence I'-converges to Jy in particular v,
converges uniformly to the solution of (IL1).

Proof. Assume u, is a family in Sy, Q] that converges uniformly as ¢ — 0
to u, thanks to (2.3) and Fatou’s Lemma, we have

liminf 7. (u.) > liminf(Jy(u.) — eCa,p) > Jo(u).

Given u € S[p, )], we now look for a recovery sequence u. € S[p, )] con-
verging to u and such that limsup, J:(u.) < Jo(u), we simply take

ue == (1 —e)u+ep

since 9?u. > eD*p we have

o) > d2llog(e) + [ log(det(D%)
Q
with the convexity of Jj, we then have

limsup J.(u.) < limsup((1 - £)Jo(u) + =Jo(¢)) + O(elog(e))) < o(w).

3 3

O

4 Second boundary value approximation

Having Proposition in mind, we now fix the value of €. Throughout this
section, to simplify notations, we therefore take ¢ = 1 and we are interested
in approximating the solution of

inf J1(v) := /QF(:L’,U(:L’))dJ? — Fa(v), (4.1)

veS[p,

by a second-boundary value problem for Abreu equation. More precisely
given § > 0, we consider

Uw;j = fs(z,u), in B, u=p, w=1 ondB (4.2)
where ¢ := det((D?p)~!) and

flz,u)if x € Q

folw,u) = { (u—g(x))ifx € B\ Q

1
s

6



and as before w = det(D?*u)~! and U is the cofactor matrix of D*u. In view
of (A2)) and the definition of fs, it is natural to introduce the functional
defined over convex functions on B by

gty = [ Plv@)ie s g [ @0 =50)
where
Sp(v) = /Blog(det(ﬁ%))
so that

0 = v i v — 2_ (0] € 21)
A = a5 [ ool = [ sttt (43)

4.1 A priori estimates for the second boundary value
problem

Following a similar convexity argument as in Lemma 2.2 in Chau and Weinkove
[3], we first have

Proposition 4.1. Let u be a smooth and uniformly convex solution of ({.3),
then

1
max |ul —i—/ 10,u|” + —/ lu—@]* <C (4.4)
B oB 0 Jpa

for some constant C' only depending on B, |¢||lcs1 g and the constant X in

(2.1).

Proof. First observe that by convexity and (21I), v < 0 in B and d,u > 0 on
OB. Define u := ¢, U as the cofactor matrix of D?p, w := det(D?*p)~! and

f := U%;; (whose L* norm only depends on ||g| cs1(p) and the constant
A in (Z0)) we have by the concavity of §Fp, ([£2) and the monotonicity of



flzx,.):
0> (Fp(u) = Fp(@)(u—1)
/(U”w, - U]w”)(u — @)+ . w(Uij - (72])82(“ — Q)

/f:cu - >—/Bf<u—so>+§/3\ﬂ<u—so>2

@/)(U”” U")d, (u — )

/fw weg)= [ [ weer

V(U 50, (u ~ )
OB
where, in the last line, we have used the fact that Vu — Ve = 0,(u—¢p)v o
OB and set U = Uv-v, U = Uv - v. Using the fact that f(z,p), f, ¥,
Ve and U are bounded, we thus get

1
5 (u— )+ wU””8Vu§C<1+/ \u\—i—/ 8,,u+/ U””). (4.5)
OB B OB OB

B\Q

Denoting by R the radius of B and by the same argument as in Lemma 2.2
in [3], one has

1
Rd—-1

U = O,u’™ + E with |E| < C(1 + 9,u’?) on 0B. (4.6)

Moreover since u is convex and u = ¢ = 0 on B, one has

max lu| = — mBinu < 2RO, u(z) for all z € 0B. (4.7)
Putting together (A5]), (£6]), (£7) and the fact that infyp 1) > 0, we obtain

/aB(ayu)d <C(1+ /E)B(ayu)d—l)

which gives a bound on ||0,u| rasp) hence also on maxp |u| by ([#.T) so that
finally the bound on 67" [5 (u — )? follows from the latter bounds and

(L5). O



4.2 Existence and uniqueness of a smooth uniformly
convex solution

Thanks to Theorem 1.1 in [3], a Leray-Schauder degree argument and the a
priori estimate (4.4)), one easily deduces the following:

Theorem 4.2. For every § > 0, the second boundary value problem ({.3)
admits a unique uniformly convex solution which is W*P(B) for every p €
[1,+00).

Proof. Let D := {u € C(B), |ulle) < € +1} where C'is the constant from
#4). For t € [0,1] and u € D, it follows from Theorem 1.1 in [3] that there
exists a unique W*? for every p € [1,00) and uniformly convex solution of

Viw;; = tfs(x,u),w = det(D*v) " in B, v=¢,w =1 on dB (4.8)

where V' denotes the cofactor matrix of D?v. We denote by v = Ti(u) the
solution of ([£S)). Moreover, by Theorem 2.1 of [3], for every « € (0,1) there
are a priori bounds on ||v]|¢s.« and on supg(det(D?v) + det(D?v)~!) that
only depend on C, «, §, ||¢||cs: and the constant A in (2I). Therefore
(t,u) € [0,1] x D + Ty(u) is continuous on [0, 1] x D and T; is compact in
C(B) for every t € [0,1]. Since Ty is constant and by ([&4) it has a unique
fixed point in D, again by (4.4]), T; has no fixed point on 9D, it thus follows
from the Leray-Schauder Theorem that 77 has a fixed point in D, this proves

the existence claim for (£.2)).

Finally, uniqueness follows from the same argument as in Lemma 7.1
from [10] where it is proven that two smooth solutions actually have the
same gradient on 0B and then are the minimizers of the same strictly convex
minimization problem hence coincide.

O

In dimension d = 2, following the argument of Remark 4.2 of Trudinger
and Wang [9] and taking advantage of the fact that the right-hand side of
the Abreu equation (£.2)) does not depend on § on €2, we have the following
local bound (which we have used in the proof of Proposition B.4)):

Proposition 4.3. Let d = 2 and u be the solution of ({-3) then for every
open set w CC Q, || det(D*u)| < () s bounded independently of 0.

Proof. Let B, = B.(0) CC €, and observe that thanks to (4.4]) both
I fs(ou()|ze@) = [[f(ul.)||Le@) and ||[Vu| pe) are bounded indepen-

dently of §. Define then n(z) := 3(r* — |z|?) and consider z := log(w) —

9



2log(n) — 1|Vul?, by construction z achieves its minimum at an interior
point xg of B, at such a point, we have

Vuw Vn

— =2— + D*uVu. (4.9)
w n
We also have
ij 5@ i
w w? n Uk

multiplying by wU = [D?u] ™!, using wU"z;; > 0 at zg, U w;; = f(z,u) < C

and the identities
iy Wy, Vw
wUupuj, = uy = Au, wU]uUkuk = ——wu = ——— - Vu, (4.11)
w w

(the second identity is classically obtained by first differentiating the relation

—log(w) = log(det D?*u) and then taking the scalar product with Vu) as well

as the fact that Tr(U) = Au in dimension d = 2, we get

Vw Vw Vn Vn n Vw

0<C —-—wl—- —+2 Y Au + 20U —
w w non w

-Vu— Au. (4.12)

Using (£9) and using again wU = [D?u]™!, we then obtain

G A A A/ A/ B S VR v/ VA P P
woow noon 77
and v v
Y vu =2 Yyt D2V - V. (4.14)
w 0

Replacing (4.13), (414) in (412), multiplying by 1 and rearraging gives

w
Au(n—2w) < Cn—QgUV'r]-Vn—QVn-Vu < On+||Vnlpe || Vul| gy < C7
(4.15)
If n(zo) > 4w(xg), ([EIH) gives n(zo)Au(xy) < 2C" and since Au(zo)w(zo)/? >
2 we get the desired lower bound on the minimum of n~2w. In the remaining
case w(zg) > n(wg) > = (TQ and we reach the same conclusion. This gives

a local lower bound on w i.e. the desired local upper bound on det(D?u).
O

10



5 Convergence

5.1 Letting 6 — 0 for fixed ¢

In this paragraph, we fix ¢ (and thus normalize it to € = 1 as we did in the
whole of section H).

Theorem 5.1. Let us be the unique smooth strictly convex solution of ({.3),
then us converges uniformly on € to the unique minimizer of (4.1) asd — 0.

Proof. We already know from (4] that (possibly up to an extraction) us
converges locally uniformly on B to some convex u and it also follows from
(@4) that u € S[p, Q). Let v € S[yp, Q] (extended by ¢ on B\ ), thanks to
(E2) and the convexity of J we first have

Tw) — T (ug) > / U0, (us — )

B
1.e.
1

Ji(v) = Jilus) = 55 B\Q(u(s — )"+ /B\Q(log(det(mw) — log(det(D%us)))

4 / U240, (us — )
oB

Z /B\Q(log(det(DZSO)) - log(det(DZU(s))) + /aB U(Syyway(ué . (,0)

It follows from Lemma below that

lim inf /B  log(det (D7)~ log(det(D?us) 2 0.

6—0

We now have to pay attention to the boundary term, we know from (Z.6)
that 05 := U satisfies 0 < 05 < C(1 + (9,us)?1) so that thanks to (@4,

05 is bounded in Ld;il(aB), up to an extraction we may therefore assume

that it weakly converges in Lﬁ(ﬁB) to some nonnegative function 6. By
convexity we also have that for 7 > 0

Oyus(x) > Dy yus(x) == %(u(;(a: —1v(zr)) — us(r — 27’I/<5L’))>, Vo € 0B

For small fixed 7 > 0 note that D, ,us is bounded independently of § thanks
to ({4) and that it converges as 6 — 0 pointwise to D ¢, we thus have

lim inf/ 050, (us — ) > lim inf/ 05(D;us — 0,0)
:/ H(Dﬂ,,(p —0,p)
oB

11



where in the last line we have passed to the limit using the fact that we have
the product of a weakly convergent sequence with a strongly convergent
sequence. Now letting 7 — 0 and using the smoothness of ¢, we deduce that

lim inf/ U5 0, (us — ) > 0.
OB

6—0

Since J; is lower semi-continuous thanks to Lemma 2.2 we can conclude
that
Ji(v) > lilgglf Ji(us) > Ji(u)

so that u solves (4] and by uniqueness of the minimizer there is in fact
convergence of the whole sequence.
U

In the previous proof we have used:

Lemma 5.2. Let us be the unique smooth strictly convex solution of (4.2)
as before, then

limsup/ log(det(D%us)) §/ log(det(D%p)).
50 JB\Q B\Q

Proof. The key point here is the estimate [, Aus = fBB d,us < C which
follows from (4.4]). Let w be an arbitrary Borel subset of B, we have (for
some constant C' varying from a line to another):

/log(det(D2U5)) < C(|wl —|—/det(D2u5)1/2d)

gc<|w|+/w\/AT(s) SC(|W|+|W|1/2</BAu5)1/2>
C’(|w| + |W|1/2(/aB au”é) 1/2>

/ log(det(Dus)) < C(Jw| + [w]/2). (5.1)

so that

Take 0 < R’ < R with Q contained in Bg (recall R is the radius of B),
we then have, thanks to Lemma 2.2] the fact that log(det(D?y)) is bounded

12



and (B.1)):

lim sup §p\o(us) = limsup §p\q(us)
§—0 6—0

< lim sup 3BR,\§(u5) + lim sup 5\ 5,, (us)
§—0 §—0
< Fp,\a(®) + C(IB\ Br|+|B\ Br|"?)

< Fmalp) + C'(|B\ Br| +|B\ Br|"?).

The desired result follows by letting R’ tend to R. O

5.2 Full convergence

We now take 6 = 6, > 0 with

lim &, =0, (5.2)

e—0t

i.e. we only have a single small parameter ¢ and we consider the second-
boundary value problem

gU;ij - ga($,U5)a n Ba Ue = P, w® = ?/} on B (53)
where 1 := det((D?*p)™1),

%@m%:{ﬂﬂwﬁxEQ

é(u—cp(:p)) ifre B\Q '

w® = det(D?u.)~! and UL is the cofactor matrix of D?u.. We further assume
that there is an a > 0 such that

(f(z,u) — f(z,0))(u—v) > alu—v)?, V(u,v) €R? and ae. v € Q (5.4)

which amounts to say that the integrand F' is uniformly convex in its second
argument. Under these assumptions, we have a full convergence result:

Theorem 5.3. Let u. be the unique smooth strictly convex solution of (5.3),
then u. converges uniformly on §) to the unique minimizer of (I1l) ase — 0F.

Proof. Step 1: a priori estimates. The first step of the proof is similar to
the proof of Proposition [4.1l Again define u := ¢, U as the cofactor matrix

13



of D%p, W = det(D2%p)"! and f. := eﬁijﬁiij. We then have together with
G.4):

0> e(Fy(ue) — §lp (@)t — )
2AU@W%JM%—@+a/wfwf+iémwfwf

Q

te [ YU —U")0,(u: — ¢)

0B

thanks to the fact that f(z,p) — f; is bounded uniformly with respect to ¢,
using Young’s inequality and invoking (4.6]), we get

N2 i e — )2 w)?
/Q(uE ©) +5E B\Q( e — ) +€/aB(8V < C. (5.5)

Step 2: convergence. Thanks to (5.3), up to taking a subsequence of
vanishing ¢,, we may assume that u. converges locally uniformly in B to
some u such that u = ¢ in B\ Q so that the restriction of u to € belongs to
S, Q). For every v convex on B such that v = ¢ on 9B, define

T.(v) = /QF(Q;, v(z))dz + % B\Q(v — )% — 5/Blog(det(82v)).

Let then v € S[p, Q] (extended by ¢ on B\ ), we then have

T(v) = Telue) > | U9, (uc — )

0B

hence

€

Jo(v) > liminf Jo(u.) + liminf e(§p(v) — Fp(ue)) — limsupe [ U0, 4.
&€ £ OB

Arguing as in the proof of Proposition 3.5 we may actually assume that
Sa(v) > —oo so that liminf. eFg(v) > 0. As for an upper bound for e§p(u.)
we use the fact that thanks to (E.5), we have [,,d,u. < Ce~'/¢ and argue
in a similar way as in the proof of Lemma [5.2] to obtain

efpu:) < Ce(l +/

B

det(D?u.)"/?) < Ce(1 +/ dyue) < Cfe + &7V,

0B

which yields
liminfe(Fp(v) — Fp(u:)) > 0.

14



Thanks to (4.6]), we have

but,

WU, < C / (14 (@u)™")
oB oB

thanks to (5.5) and Holder’s inequality, we deduce

5/ (8Vu5)d_1 < Cei
oB

so that

Jo(v) > limeinf Jo(ue) = Jo(u)

hence u solves (L) (and the whole family u. converges uniformly on €2 to u
by uniqueness of the minimizer of J, on S[p, Q).

O
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