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Abstract

In this paper, we study the characterization of geodesics for a class
of distances between probability measures introduced by Dolbeault,
Nazaret and Savaré. We first prove the existence of a potential function
and then give necessary and sufficient optimality conditions that take
the form of a coupled system of PDEs somehow similar to the Mean-
Field-Games system of Lasry and Lions. We also consider an equivalent
formulation posed in a set of probability measures over curves.

Keywords: dynamical transport distances, power mobility, geodesics
in the space of probability measures, optimality conditions.

1 Introduction

Since the work of Benamou and Brenier [2] which showed that the squared
2-Wasserstein distance between two probability measures py and p; on R?
can be expressed as the infimum of the kinetic energy

/01 /Rd |o(t, )| dpy (x)dt

among solutions of the continuity equation with prescribed endpoints

atpt + diV(pt'U) = 07 P(07 ) = P0, P(L ) =P

it is natural to view optimal transport theory from a dynamical perspective
and to look for geodesics rather than just for transport maps. Similarly,
probability measure valued curves governed by the continuity equation (with
specific dependence of the velocity field v on the mass p) play a crucial role
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in the theory of gradient flows in the Wassertsein space (see [1] and the
references therein).

In the recent paper [8], Dolbeault, Nazaret and Savaré, introduced a new
class of distances between probability measures through the introduction of
some concave increasing nonnegative nonlinear mobility function m. As-
suming that pg = poL¢ and p; = p1£%, the corresponding squared distance
between pg and pp is (formally) given by the infimum of
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subject to

Op + div(m(p)v) =0, p(0,.) = po, p(1,.) = p1.

From a Riemannian-like metric viewpoint, the formal interpretation of this
mobility function is a conformal deformation factor of the Riemannian ten-
sor on the tangent space of the space of probability measures at a given point
p. From a modelling viewpoint, the concavity of m is well suited to capture
some congestion effects i.e. the fact that crowded zones of high densities
result in higher values of the metric. Since McCann’s pioneering work on
displacement convexity [12], it is well known that displacement convex func-
tionals play a distinguished role in the theory of gradient flows on the space
of probability measures equipped with the 2-Wasserstein distance. In [6],
Carrillo, Lisini, Slepcev and Savaré identified structural assumptions that
guarantee the convexity of internal energy functionals along geodesics for
the Dolbeault, Nazaret and Savaré distances with a general mobility func-
tion m and this analysis will actually show useful for certain estimates in
the present paper.

Let us mention that the monotonicity assumption on the mobility m
can be replaced by assuming that m is compactly supported in an interval
(0, M), corresponding to a hard congestion effect, since here the density
cannot assume values larger than M. Such a case has been treated in [11]
and also considered in [6]. The main example that enters into this setting
is m(p) = p(1 — p), and a study of geodesics for the associated distance can
be found in the article of Brenier and Puel [3], in the context of optimal
multiphase transportation with a momentum constraint.

In this paper, we will focus on the case of a concave power mobility,
m(p) = p®, a € (0,1), and to avoid both compactness and boundary con-
ditions issues, instead of working on a domain or R%, we will consider the
case of the flat torus T¢ := R%/Z%. Our goal is to characterize minimizing
geodesics i.e. minimizers of

1
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subject to the constraint

atp + diV(an) = 07 p(07 ) = Po, p(17 ) = p1-

It is worth noting as in [8] that W, (po, p1) naturally interpolates between
the H~! and the 2-Wasserstein distance when « varies between 0 and 1
respectively. Just as in [2] taking (p,w) := (p, p*v) as new variables, it
is easy to see that this problem is a convex minimization problem, that is
dual to some variational problem posed over some set of potentials ¢ (which
naturally play the role of Lagrange multipliers associated to the constraint
Op + div(w) = 0). Formally, the optimality conditions for p, ¢ obtained by
convex duality read as the system

B + div(%po‘Vqﬁ) —0,
p>0= ¢+ %p* Vo> =0,
p >0, 0 <0, p0,.) = po, p(1,.) = p1.
Let us remark that this system presents some similarities with the Mean-

Field-Games system of Lasry and Lions [9], [10]. However, in the dual
formulation the energy to be minimized is of the form

oo [ [EAYE= L soam [Lo00n 0

for some positive constant k.. Since this somehow nonstandard functional
is not obviously coercive on some Sobolev space, the existence of a potential
by the direct method of the calculus of variations is not immediate at all.
In order to obtain estimates on minimizing sequences, a key ingredient is an
estimate for some geodesic distances on T? given by Lemma 2.8. In particu-
lar, we have to assume here that o > 1 — %, an assumption that recurrently
appears in previous works on this distances. Secondly, the potential we ob-
tain is merely BV in time so some extra work has to be done to derive and
justify rigorously the system of optimality conditions.

This result and its proof suggest a different approach to the problem, by
somehow lifting the geodesics problem to a variational problem at the level
of measures on curves, which is reminiscent to the work of Carlier-Jimenez-
Santambrogio [5] (see also [4]). More precisely, given 7 a periodic measure
supported by a suitable set I" of curves and which connects pg to p; (in the
sense that the image of n by the evalution maps at initial and terminal time
are respectively py and pi), define the measure o, on [0,1] x T through

1 1
s,x)dop(s,x) = s,7v(8)) |3(s)7/ %) gs
| [ teansa = [ [ @i dsnn)

for any continuous and periodic in space function f. We will investigate the
precise links between the geodesics problem above and the minimization of

- /01 /T (o (t, )2~ da dt.
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The paper is organized as follows. In section 2, when o > 1 — %, we
establish the existence and uniqueness of a potential function (or adjoint
state) and give necessary and sufficient optimality conditions characterizing
geodesics in section 3. Section 4 is devoted to the equivalent reformulation as
a variational problem posed on the set of probability measures over curves.

2 Existence of an adjoint state

In this section, we introduce (a suitably relaxed version of) the minimiza-
tion problem (1.1), dual to the problem defining the distance between two
probability densities. The existence of a solution strongly relies of the exis-
tence of a minimizing sequence satisfying some a priori estimates, the proof
of which is postponed to subsection 2.2.

2.1 Duality
Let a € (0,1), for (p,w) € R x RY, let us define

2

‘j:—,l if p>0
H(p,w) := 0 if (p,w) = (0,0)

+o00  otherwise

and for (a,b) € R x RY,

/{0[<—>E ifa<O0

L(a,b) := 0 if (a,b) = (0,0)
400 otherwise
where N
i—a
Ko 1= (1—a)a —.
4=

By direct computation, one checks that L and H are convex lsc and conju-
gates: L = H*, H = L* and that for (p,w) € R; x R? one has

\w|2 2w .
OH (p,w) = <_O‘pa+1’p—a) if p>0
R_ x {0} if (p,w) = (0,0).

Recall that we work in the space-periodic framework, setting T := R¢ / z-
and Q := [~1/2,1/2]%, this means that we identify spaces of functions on
T to spaces of Q-periodic functions on R?. Let us then consider

1
ottt 10):= [ [ 100 Vot [ o0.9m - [ o0 )(pl)
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where pg, p1 are two given probability measures on ). We shall see that in
some sense to be made more precise, the variational problem (2.1) admits
as dual the Dolbeault-Nazaret-Savaré problem in [8]

~Wal(po, p1)? == sup / /H P, w)dxdt (2.2)

where p?¢ stands for the absolutely continuous part of the measure p with
respect to the Lebesgue measure and the supremum is performed among
pairs of measures (p,w) € M ([0,1] x T%) x M([0,1] x T%)? such that w is
absolutely continuous with respect to the Lebesgue measure and (p, w) is a
weak solution of the continuity equation

Ip + div(w) =0, p(0,.) = po, p(1,.) = p1 (2.3)

i.e. satisfies

/01/628t¢dp+/01/QV¢-w:/ng(l,.)pl—/ng((),.)po (2.4)

for every ¢ € C*([0,1] x T%). The fact that (2.2) coincides with the problem
studied in [8] has to be a little bit further explained: first remark that
if (p,w) € My([0,1] x T4 x M([0,1] x T?)? solves (2.4) then the time
marginal of p is the Lebesgue measure. By disintegration we can thus write
dp = p; @ dt. Note now that w € L'((0,1) x T%), which implies (see for
instance Lemma 4.1 in [8]) that ¢ — p; is continuous for the weak * topology
of M. Finally p*(t,x) = pi°(z) so that the functional in (2.2) can be
rewritten as fol fQ H(p3(x),w(t,z))dxdt which is exactly the functional to
be minimized in [8].

Assuming pg and p; belong to L'(T?), we shall also need to suitably
relax (2.1) by considering

1
. rel L ac _
;gJ<@~%Léuw¢wwwﬁ+Aﬁmmm LMLwlum

where
K:={peBVNL>® : 9,6 <0, Vo € L'}

and 0;¢*° denotes the absolutely continuous part of the measure 0;¢ with
respect to the Lebesgue measure. Since elements of K are bounded and
monotone nonincreasing with respect to time, the second and third term in
J*(¢) are well-defined by monotone convergence i.e. $¢(0,.) and ¢(1,.) are
intended as ¢(0,.) := ¢(0F,.) = sup;e(o 1) 4(t,.), and ¢(1,.) = $(17,.) =
infye(o,1) ¢(t,.). For further use, let us also remark that for ¢ € K, by
Beppo-Levi’s monotone convergence theorem, one has

/¢ /m—mmE/’ o(t, 2)po(x)dadt, (2.6)
0 J0,8]xQ

5€(0,1)
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1
o(1,.)p1 = inf = o(t, z)p1(z)dxdt. 2.7
J oo = nt 5[ ot an) (27

Proposition 2.1. Let py and p1 be two probability measures on T¢ such
that W (po, p1) < 400, then

~Wealpo, p1)? = inf(2.1)

and the infimum in (2.2) is attained. If furthermore py and pi belong to
LY(T9) then, in addition, inf(2.1) = inf(2.5).

Remark 2.2. If we consider a general concave and nonnegative mobility
fonction m, the analogue of the problem (2.1) writes

. o ! * [ 8t¢ 2 :|
1nf[ /0 /Qm ( ’V¢‘2>|V¢| dxdt| ,

where m* stands for the concave Legendre transform of m, defined by

m* (o) = inf (o p—m(p)).

The corresponding duality theorem could be proved for such a general m.
However, the main difficulty here is to get the existence of an adjoint state:
getting estimates as in Proposition 2.7 for a general mobility function m is
an open problem.

Proof. Let us rewrite (2.1) as

pecn (i[lolvfl}de){F (Do) + G(9)}

where D : C'([0,1] x T9) — C([0,1] x T¢) x C(]0,1] x T4)? is defined by
D¢ = (019, V),
1
Fla,b) = /0 /Q L(a(t, z), b(t, 2))dadt,
Y(a,b) € C(]0,1] x T¢) x C([0,1] x T%)? and

m@:AMmM—Lmum.

Note that, if ¢ € C'([0,1] x T9) is such that 0;¢ < —dp < 0, then F is
continuous (for the uniform topology) at D¢. Since G is continuous and
Wa(po, p1) < +oo, Fenchel-Rockafellar’s duality theorem thus implies that

inf(2.1) = (p,w)rél./?/tXXMd{_F*(p’W) —G*(—=D*(p,w))} (2.8)



where M := M([0, 1] x T%) is of course identified to the topological dual of
C(]0,1] x T4). By direct computation, we have

0 if (p,w) solves (2.3)
+00 otherwise.

6" (-0 () = {

Thanks to theorem 5 in [13], and the fact that L* = H, one has

dp dw?
H( )ao
/ / (P w / / d6? do
where (p*¢, w?®) and (p°, w®) denote respectively the absolutely continuous
part and singular part of (p,w), € is any measure with respect to which

(p®,w?®) is absolutely continuous (for instance p° + |w®|) and H. is the
recession function of H:

Heo(p, w) = sup H(Ap,kw)

{ 0 if p>0and w=0
A>0 A

+o00  otherwise.

Replacing in (2.8), we thus deduce that inf(2.1) = —Wu(po, p1).

Next we assume that pg and p; belong to L'(T¢) and W, (pg, p1) < +oc.
Then, still by the Fenchel-Rockafellar’s duality theorem, the infimum in
(2.2) is attained. Let us finally prove that inf(2.1) = inf(2.5). The fact
that inf(2.1) > inf(2.5) is obvious. Let ¢ € K (extended by ¢(0,.) for
t < 0 and by ¢(1,.) for t > 1), then let ¢* := n° *x ¢ where n°(t,z) :=
e~ la(e7)B(e 2) with a € CX((~1/2,1/2)), a > 0, f1{32a =1, «
even, f € C®((—1/2,1/2)%), 8 > 0, fQﬁ = 1, § even. Moreover we set
¢ (t,x) = ¢°(e+(1—2¢)t,z). To prove the remaining inequality it is enough
to prove that

J*(¢) > limsup .J(¢°). (2.9)
e—0*t
To see this, we assume of course that J™!(¢) < +oc and first remark that
n° x 0pp*® > 0y¢°. Using the fact that L is convex and nondecreasing in its
first argument we thus get

/ / (0h6°,V§*) < R /1 25/ (0" % 8,6™, " % V)

< W/l 5/6277€*L(at¢ac,v¢)—>/0 /QL(&gqbaC,VQS) as £ — 0%

We next observe that thanks to the monotonicity of ¢ in time, setting 5° :=
e74B(s71.), we have

/Q<Z~5€(07-)P0S/Q¢(0,- *po—>/¢ )po as e — 0F (2.10)
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and similarly

/ 5 (1,.)p1 > / o(1,.)5% * p1 —>/ #(1,.)p1 as e — 0 (2.11)
Q Q Q

so that (2.9) holds. O

The crucial step to establish the existence of an optimal potential in
(2.5) is to find a minimizing sequence for (2.1) that satisfies the estimate

[énllLoe + 10:dnllLr + IVenll2 < C.

The proof of this fact is postponed to subsection 2.2. These bounds enable
us to prove the following result.

Theorem 2.3. If a > 1 —2/d and py and py belong to L'(T?). Then (2.5)
admits a unique solution ¢ up to an additive constant. Moreover V¢ € L?.

Remark 2.4. Using the homogeneities in the functional J™!, one easily checks
that, if ¢ is the unique minimizer, then

= | w0 = [ o.9m — [ 60,9

Proof. According to proposition 2.7 below, there is a a minimizing sequence
¢n, of (2.1) (hence also of (2.5)) and a constant C' > 0, such that for every
n, at¢n < —1/7’L, and

[énllLoe + 10:dnllLr + IV @nll2 < C. (2.12)

Taking a subsequence if necessary and using the monotonicity of ¢, with
respect to time, we may assume that there is a ¢ € K such that V¢ € L?
and

¢n — ¢ strongly in L' and weakly * in L, (2.13)
01 dp, — Op weakly * in M, (2.14)
V¢, — V¢ weakly in L2 (2.15)

To prove that ¢ solves (2.1), we first deduce from theorem 5 in [13], that
the functional

1
L(p™ if u<0andveL!
(M,V)eMdeH /O/Q (u*,v) ifp<O0andve
+00 otherwise

is the convex conjugate of

1
0,v) € C(0,1] x T x C([0, 1] x T 1 / / HO(, ), v(t, 2))dwdt .
0 JQ
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It is therefore Isc for the weak * topology of M and therefore

/OI/QL(at¢aC,V¢) Slimninf/ol/QL(atgbn,Vqsn)dxdt_

We finally deduce from (2.6), (2.7) that the second term in J™! is Isc for the
weak * topology of L thanks to (2.13), we thus get

[ 6030 [ o p < timine ([ 60,9~ [ on01001)

so that ¢ solves (2.5).

To prove the uniqueness claim, let us first assume that pg # p;. We
observe that if (a,b) and (a’, ) are two distinct points in R_ x R? at which
L is finite, then L is strictly convex on [(a,b),(a’,V’)] unless b = &' = 0.
Assume now that ¢ and 1 are two solutions of (2.5). By the previous
observation, we have, for almost all (¢, x),

either (0;¢™(t,x), Vo(t,x)) = (O (t,x), V(t, x))

or 0y (t, x) # 0™ (t,x) and Vo(t,x) = Vib(t,z) = 0.

In particular V¢ = Vi a.e., so that there is a measurable map £(t) with
P(t,z) = ¢(t,x)+&(t). Note that £ is BV, because ¢ and v are BV. Next we
note that, for a.e. ¢ such that 0,£%“(t) # 0, we have 0;¢*°(t,x) # Opp*(t, )
and therefore V(t,z) = Vi(t,z) = 0. Let us assume for a while that the
set E of t € (0,1) for which 9;£2¢(t) # 0 has a positive measure. Then,
if ¢ is a density point of E, ¢(t,z) = c a.e. for some constant c. Since
$(0,2) > ¢(t,z) = c > ¢(1,x) a.e., we get

/Qab(o, -)POZCZ/Q¢(1,.)p1.

Therefore
1
Walpo, p1)? = — L(9y¢™, V) dxdt — .. L)p1 <
(P, 1) /O/QW o) dadt /Q¢<o >po+/Q<z><1 ) <0

which is impossible because pg # p1 and W, is a distance. So 0;£*¢ = 0.
Next we prove that the singular measure 0, is zero. Let us decompose 0;&
into its positive and negative part 9T and 9,6~ (i.e., O = & — 9™,
0T, 0,6~ > 0) and let us set ¢y (t,x) = @(t,x) + 9,£T([0,t]). Recall that
0T is concentrated on a Borel set E C [0,1] such that 8, (E) = 0. We
claim that ¢7 is nonincreasing in time. Indeed, for any Borel set A x B C

[0,1] x @,
8161(A x B) = 0p((ANE) x B) + 8,6((ANE) x B) < 0.



Note moreover that ¢1(0,-) = ¢(0,-), 0pi¢ = 0,p*°, Vo1 = Vo, ¢1(1,-) =
o(1,-) + 0:£7([0,1]) so that

1
= ac X . - . — Ot + s .
(1) = /0 /Q L(8,6™, V§)dudt + /Q 6(0,)p0 /Q o(L, o1 — 9ET([0,1))

Since ¢ is a minimizer, this implies that 9;£1([0,1]) = 0, so that 9,£* = 0.
Arguing in the same way with ¢; = ¢+ 9;¢ ([0, t]), one gets that 9;§~ = 0.
In conclusion, £ is constant.

If po = p1, then ¢ = 0 is optimal. If v is another optimal solution, one
can show as in the first part of the proof that ¢(t,x) = £(t), where £ is a
nonincreasing map. Computing the criterium for ¢ shows that £(0) = £(1),
so that again £ is constant. O

A consequence of the proof of Theorem 2.3 is the following technical
remark, needed below:

Lemma 2.5. Under the assumption of Theorem 2.3, let (¢y,) be a minimiz-
ing sequence of (2.1) such that, for any n, Oyp, < —1/n and

[@nllzoe + 10:pnllLr + [[Venlle < C,
and let ¢ be a limit of (¢n,), in the sense that

bn — ¢ strongly in L' and weakly % in L,
01 dp, — Op¢ weakly x in M,
Voén — Vo weakly in L2,

Then ¢ is optimal for (2.1) and

/Ol/QL(amac,Wb) Zli?/ol/QL(&gbn,Van)dxdt, (2.16)

[ 60300 [ o0 =tim ([ 0u0.000 [ ont10m) . 217

Moreover, if we set

2 2
[Vnl and A = Vol

A= Coon(tn)) (00 (t, 2))

o

_« e 2—«
then (A=) converges to A2-a in L1«

Proof. Equalities (2.16), (2.17) are straightforward consequences of the proof
of Theorem 2.3. In view of (2.16), (42™) is bounded in L% Therefore a

e ~ 2—«a
subsequence, still denoted (A5~ ), converges weakly to some A € L1-a. Let

10



now f : [0, 1]xR? — R be a continuous, positive and periodic map. Applying
the argument of the proof of Theorem 2.3 to the convex functional

L/./ |V¢Plla fa,t) da dt,
8tw t .Z'
we get that

1 _ 1 o
/ / Af = lim inf/ / A f
0o JQ " 0 JQ

= liminf Jp(9n) > J5(0 //A“f

Therefore A > A7 . Furthermore, in view of (2.16),

//Ala—hm// ?3>/01/Q;1?

so that A = A7°a and (A @) strongly converges to A5 in Li-a. O

Qe

Here is an elementary property of minimizers.

Proposition 2.6. If ¢ is optimal for (2.5), then t — ess — sup,¢(t, x) and
t — ess —inf,¢(t, x) are constant.

Proof. Let M = ess — sup,¢(1,z) and let us consider ¢ = inf{M, $}. Then
one easily checks that

/Ol/QL(at‘5“=V<5)S/Ol/QL(atwc,w)
/ Jpo < /515 oand/¢ o1 = /¢

Therefore ¢ is also optimal for (2.5), so that by uniqueness ¢ =¢. In
particular, ess — sup,¢(t,x) < M = ess — sup,¢(1,z) for any t. Since ¢ is
nonincreasing in time, we can conclude that t — ess — sup,¢(t,x) is con-
stant. The other assertion is proved similarly considering sup{m, ¢} with
m = ess — inf¢(0, z). O

while

11



2.2 Construction of a minimizing sequence for (2.1)

We now prove that there exists a minimizing sequence for (2.1) which satis-
fies the estimates needed in the proof of theorem 2.3:

Proposition 2.7. If a« > 1—2/d, then there is a minimizing sequence (¢n,)
for (2.1) and a constant C > 0 such that

[énllzoe + [10chnllLr + [[VnllL2 < C.

The proof relies on an integral estimate for geodesic distance. Let a €
(0,1) and @ : [0,1] x R — R be a smooth, positive and Z%—periodic map.
For 0 < s <t <1 andany z,y € Q?, we consider the minimization problem

cal(:0).(t.9)) =1t [ (alror ()2 (e dr (218)

where the infimum is taken over the set of all Wh=a maps 7 : [s,t] — R?
such that v(s) = = and ~v(t) = y. It will be convenient for later use to
introduce the set T'((s, x), (t,y)) of continuous maps v : [s,t] — R? such that
~v(s) = z and y(t) = y and to extend the infimum in (2.18) to I'((s, x), (t,v))
by setting

[ alra ) FE (7 dr = 400 ity g WS,

For simplicity, we denote respectively by cq(z,y) and T'(z,y) the quantity
Ca((ov ZE), (17 y)) and the set F((Ov :E)’ (17 y))

2—d(1—a) )

Lemma 2.8. If a« > 1—2/d, then, for any o € (0, o-a)

bt <[ [ [ Fsags) "o @

where C' = C(d,«,0).

Proof. We start by proving the result for s = 0, t = 1. The general case
is obtained by scaling. Let z,y € . Since o > 1 — 2/d we can fix 6 > 0
sufficiently large such that

>1+d9—20
do '

a

Throughout the proof C' denotes a constant depending on d, o and 6, which
may change from line to line.

12



Let II be the set of Borel probability measures on I'(x, y) endowed with
the C°-distance. We first note that

=m/ / a(s,7()) 255 [3(s)| 25 dsdn(7)
well F(Z‘ y

For any 6 € (0,1/3), r € [0,1] and o € S¢ (S? being the unit sphere of R?),
we set

z+ros’ if s € [0, ]
VWols) =1 & +rosl + W=D if 5 ¢ [5,1 — 4]
y+ro(l—s)? if s € [1—6,1]

and we define the probability measure 7° € II by

d—1
77, - —r drdo
/F(:c,y) / /Sd ‘Sd’

for any Borel measurable nonnegative map ® : I'(z,y) — R. Then

[ ] b=

L+1+ 15

== d
e @rd Ldodrds

IN

Ca($7y) 77{0(8)

N

where

I = /06/01/Sd(a(s,x + Taso))ﬁ
Iy = /51_6/01/5d [a(s,:v +rod? + %(285_5))} 7 %

(@ —y)|7= d
1-25| |59

and

Let us first estimate I. If we set x5 = 2+ (y —2)(3s — 1) for s € [1/3,2/3],
we have, by change of variables and by Holder inequality,

lé%\rd 1alaalrds

— 2—a
rgsf=1

r®dodrds

2
ro(1 — )0t e |;d| =Ldodrds.

1-6
I, = Clz— y|% 5“”/ / (a(s,2))?= dz ds
5 B(zs,69)

11—«

Ol — y|zoa 5~ ' a dyd o Pre
|z —y| o o )(a(s,y)) yds
w’y

—«

40(1—a) 1 o 2-a
Cla—y|75 5~ "4 U/@@mﬁ@ﬂ
0 J@Q
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where C(z,y) = Use[5,1_5]B($sa50) C [-M, M] for some M € N* inde-
pendent of §, r and o (note then that the last inequality comes from the
periodicity of a).

We now estimate I1. By change of variable and Holder inequality, we have:

I, =

= O = [

= C// al(s, z) 2a\z—x]2as ~Ta dzds
:Es‘9

—a)
C // (a(s,y))ladyds] X
0 JB(z,8%)
5 =D
X // 2 — z2s™ W= "2z q5s
0 JB(x,s?)

where the last term is given by

5
/ / I — 25202 g5 — C/ / Abd = dB(2—0) -2, 1.
0 JB(z,s?)

_ 6(2+d)—d6(2—a)—2 g

z — X _ 0—1
s 4+23=3 dzds

IN

059(2+d) —df(2—a)—1

Note that 6(2 4 d) — df(2 — a) — 1 > 0 thanks to the choice of §. The term
I3 can be estimated in the same way.Therefore

(d-a)
t7=a)
o(z,y) <C’[// a(s,y) 1adyds] X

0(2+d)—df(2—a)—1 do(1—a)
R _Hx_y’@ a)5 o)

2 —y|7

Choosing ¢ = 5
4(diam(Q))20-1

€ (0,1/3), we get

1 _a 2—a ; (l_dﬂ(lfa))
ca(z,y) < C [/ /(a(s,y))ladyds] \x—yP a 26-1
0 JQ
where the exponent

v o) = 2 <1_d0(1—a)>

2 -« 20 —1

is positive from the choice of # and that its limit as 8 — o0 is W.

14



It remains to check the general case. Let us notice that

ca((s,2), (t,y)) = (t — )7+ ca(x,y)
where a(7,y) = a(s + 7(t — s),y). Therefore

(1—

al(5,2), (1)) < t—swc{// i(r.y) wdydfr ¥ ot

where
(1—a)
(2 a) 1— 2—a)
[//dTy 1adyd7’} (t—s) 2@ [// a(t,y) 1adyd7']
This gives the result. 0

Proof of proposition 2.7. Let ¢, be a minimizing sequence for (2.1). With-
out loss of generality we can assume that

1
O, < ——, min ¢, (0,z) =0 Vn € N.
n zeQ

Let us set 2/
[Vn(t,z)|~
Ayt x) = ——r—+~——.
) = oromtt, o)
Then, if we set
I — (2 —a)az-«

2
2954
we have that, for any curve v : [0,1] — R,

[e3

% <¢n<m<t>> —da /0 (An(o v 52 (s)|7== ds)
= Oyn + (Von,?) — dg AT " mﬁ

. |V¢TL|2 @
= 8¢TL+ v¢n7 - o 2 o
ibn + (Vn, ) ( PR |Vl
Vop|2=e 2
< Otpp + (Vp,b) —dg————— 10|22 | < 0.
< :g@( t6n + (Von, b) o)™ 0] >

Therefore, for any x,y € Q,

1 2
on(l,y) < igf <¢n(0,v(0)) +da/0 (An(s,7(5))) == [4(s)| 7= d8>

15



where the infimum is taken over absolutely continuous curves such that
(1) = y. In view of Lemma 2.8, for any o € (0, 2_(3(_1;)0‘) ), we have

¢(1y)<1nf ((bn()x +C[// 1adzds]2a]a;—y]")

for some constant C' = C'(d, a, o). Since mingeq ¢,,(0,z) = 0, we finally get

My)mm[// Mdzds]”.

Let now &, : R — R be a smooth function such that 0 < &, < 1,
&n(17) =71 for 7 > 0 and &, > —1/n. From now on we replace ¢, by &, o ¢,:
the new sequence (¢y,) is still minimizing and

11—«
2—a

< 0u(Ly) < My = C(d,0,0) [// ladzds} . (2.20)

Next we modify ¢,(0,-). Let ¢, : R — R be such that 0 < ¢/, < 1 with
Co(T) = 7 for 7 < M, and (,, < 2M,,. Replacing ¢,, by (, o ¢y, we get again
a minimizing sequence such that

_% < on(s,y) <2M,  V(s,y) €[0,1] x Q.

It remains to prove that M,, is bounded: since ¢,, is minimizing, we have,
for n sufficiently large

~W2(po,m)+1 = & //(’Vgin) /% dpo—/% )dp1
o[ [ e [l [

thanks to (2.20), ¢,(0,-) > 0 and the fact p1 is a probability measure.
Slnce o < 1, we obtain that fo fQ 1 o is bounded, so that M, is also
bounded Replacing finally ¢,, by ¢, + 1 / n gives that

0< ¢, <C.

v

In order to conlude, let us now show that
[10cnllr + [[Vénllrz < C.
Indeed, by Holder inequality, we have

2

[lmer=| [ (Eases) | U foe]
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where the right-hand side is bounded since

/o1 /Q n! = /o1 /qg(_at¢n) - /Q‘%(O)dﬂo - /Q¢n(1)dp1 <c.

3 Optimality conditions

Our aim now is to use the duality between (2.5) and (2.2) to write necessary
and sufficient optimality conditions in the form of a (sort of) system of
PDEs. To achieve this goal we have to be able to multiply p by 0;¢* and
w by Vo, since a priori 9;¢* is only L' we shall need a uniform in time
L™ estimate on p; when pg and p; are L. This estimate will follow from a
generalized displacement convexity argument of Carrillo, Lisini, Savaré and
Slepcev [6]. This estimate will also be useful to treat the term

w

/2
PN
pa/2

w- Vo =
if the functional in (2.2) is finite, one has pa% € L? and p*?V¢ € L2
whenever V¢ € L? which ensures the summability of w - V.

Theorem 3.1. If pg and p; belong to L=(T?), then W (po, p1) is finite
and the infimum in (2.2) is achieved by a pair (p,w), disintegrating p as
dp = p;y ® dt we also have that p, € L™ for every t with

llpellLee < max(||pol|Le, ||lp1]lze) (3.1)

and w € L?.
Furthermore, if d =1, and if there exists C' > 0 such that

po.p1 > C a.e. on T,

then py > C a.e. on TY, for everyt.

Proof. The fact that W,(pg, p1) is finite follows from Corollary 5.25 in
[8], the fact that the infimum is achieved then follows for instance from
proposition 2.1. The estimate (3.1) is obtained by proving the convexity of
p— fQ p(z)Pdx along geodesics with respect to W, for large p, and letting
p goes to +oo. This has been done in [6], in the case of an open bounded
convex set © in R?, and is a consequence from the fact that the functional
defined above generates a C°-metric contraction gradient flow in the space
of probability measures on €2 endowed with W, (in the sense of [1]), given

17



by the solution of the following porous medium equation on €2 with zero flux
condition on the boundary

Oipr = A (ptaer_l) in (0, +00) x €,

for all p such that

1
p22—<1+a>aandp7é1.

Using the translation invariance of the equation, the reader may check that
all the arguments of [6] can be directly adapted to the case of the flat torus.
To conclude the proof of the first part, let us notice that, since (p,w) has

finite energy, ‘;}U—f € L' so that w € L?.

When d = 1, the displacement convexity results of [6] (again adapted to
the case of the flat torus) imply that t — fQ U(pi(x))dz is convex for any
convex U, we thus have, taking arbitrary negative powers,

—1ys —1 —1
m < m
max oy " lI7s < max(|lpg Iz, o7~ llzee)

for every s > 1 and the desired claim is obtained by letting s — oo. O

Lemma 3.2. Assume that o > 1 —2/d and that pg, p1 belong to L>(T%).
Let (p,w) € L>® x L? be a weak solution of (2.3) and ¢ € K be such that
Vo € L? then

1
/ /Q (006 +w - Vé)dadt + /Q (60, )0 — 61, Jp)dz >0 (3.2)
0
Proof. We regularize ¢ exactly as in the proof of proposition 2.1 and thus set
@F 1= ne * @, since Opp?° > 0y, thanks to (2.3) , defining p® := n® * p (having
extended p by 0 outside [0, 1] which is consistent with the fact that we have

extended 0 in the same way), thanks to the periodicity and 9;¢ < 9;¢*°,
we then have

1
o=/0 /me +w-v¢>+/Q<¢ (0, )0 — 6°(L, )p1)
1
- / / (6016 +w - V) + / (¢5(0, Jpo — ¢(1, )p1)
0 JQ Q
1
g/o /Q<p€at¢“+w-v¢€)+/Q(¢€(0, oo — (1, )p1)

Since w and V¢ are in L2, fol wi - V¢° converges to fol wi - V¢. More-
over, since p° is uniformly bounded and converges to p in L'—hence a.e.

18



up to a subsequence—, Lebesgue’s dominated convergence theorem implies
that fol Jo P°019™ converges to fol Jo POi¢™. Recalling (2.10), (2.11), we
therefore obtain (3.2) by letting & — 0T,

O

Theorem 3.3. Assume that o > 1—2/d and that pgy, p1 belong to L>(T9).
Let (p,w) € L™ x L? be a weak solution of (2.3). Then (p,w) solves (2.2)
if and only if there exists ¢ € BV NL> such that ;¢ <0, V¢ € L? and

w = %pquﬁ so that Oyp + div(%pquﬁ) =0,
p>0= 0,0* + $p* | Vo|? =0,
p=0=w=V¢=0,

Jo Jo p0r6™ +w- Ve = [ (1, )p1 — [, #(0,)po.

Remark 3.4.

1) Let us notice that the optimality system in Theorem 3.3 admits a unique
solution (p, @) (with the property ;¢ < 0, and up to a constant for ¢).
Indeed, we have uniqueness in the dual problem (2.5), up to a constant, and
the distance problem (2.2) admits itself an unique solution (p,w).

2) Corollary 5.18 of [8] states that the distance problem (2.2) provides a
(unique) constant speed geodesics. This last property entails that

2
t— %dw
Q P
is constant on [0, 1], and then, we can slightly improve the regularity prop-
erties of the potential ¢ by

V¢ € L*([0,1], L3(T9))
{ 9,0™ € L>=([0,1], L*(T9)).

3) If (p,w) € L> x L? solves (2.2) and if, in addition, for every ¢, p; > C > 0
a.e. on T? then the optimality conditions of Theorem 3.3 can be improved.
In this case, 0;¢ has no singular part. Indeed, proceeding as in the proof of
lemma 3.2 we obtain

1
0 < —Cll06 | na(o.1yere) + /0 /Q PO +w-Vp+ /Q $(0,.)po /Q o(1, )1

which together with the last condition of Theorem 3.3 gives the desired
claim. In this case, we therefore have ¢ € WH1((0,1) x T¢) and since p is
bounded away from 0, ¢ satisfies the Hamilton-Jacobi equation

« _
0ip + Zﬂa V> =0
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almost everywhere. According to Theorem 3.1, in dimension 1, if pg, p1 are
bounded away from 0 then so is p; (uniformly in ¢) so that the previous
properties hold. Unfortunately, we do not know whether the same holds in
higher dimension.

Proof of Theorem 3.3. Let (p,w) solve (2.2) (so that (p,w) € L> x L? by
Theorem 3.1). We deduce from Theorem 2.3 that there is a unique (up to a
constant) solution ¢ € K of (2.5) and it satisfies V¢ € L%. By the duality
relation of proposition 2.1, the fact that L and H are convex conjugates and
Young’s inequality, we then have

1
0= /0 /Q H(p, w) + L(0:6™, V6) + /Q (6(0, )p0 — 6(1, )1 )de

1
> /0 / (0™ +w - V)dodt + /Q (60, )0 — B(1, )p ).

With (3.2), we then have

/ /patﬁbaC—I-w Vo= /¢ )p1— /¢

so that we should also have a.e. an equality in Young’s inequality above.
This means that (0;¢*“(t, ), Vo(t,x)) € OH(p(t, z), w(t, z)) for a.e. (t,z) €
(0,1) x T¢. Therefore w = 1p*V¢ a.e., for a.e. (t,z) for which p(t,z) = 0
one has Vo(t,z) = w(t,x) = 0 and for a.e. (¢,z) for which p(t,x) > 0 one
has

w(t,x 2 a
%:—ZP HVe(t,z).

This proves the necessity claim. To prove sufficiency, assume that (p, w) and
¢ satisfy the claim of the theorem. Let (u,v) solve the continuity equation
(2.3) with (u,v) € L x L? (which is without loss of generality in view of
theorem 3.1) and fol Jo H(u(t, z),v(t,z))dzdt < +oo. Since, as previously,

(0p*(t,x),Vo(t,z)) € OH (p(t,x),w(t,z)) for a.e. (t,x) € (0,1) x T?, we

have
/Ol/QH(M(t,:E),U(t,:n))dxdt—/Ol/QH(p(t,x),w(t,x))d:Edt

1
> /0 /Q (1 — P)ONG™ + (v — w) - V]dudt

WP (t,x) = —«

1
- / / (O™ +v- Vo) + / (6(0,2)po () — $(1, 2)p1 (2))da
0 JQ Q

By Lemma 3.2, we have

1
/ / (0™ + v - Vo)dxdt > /((b(l, Jp1 — ¢(0,.)po)dx
0 JQ Q
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which finally enables us to conclude that (p, w) solves (2.2). O

4 A problem on measures on curves

Let T be the set of continuous curves 7 : [0,1] — R? endowed with the
topology of the uniform convergence and W be the subset of such curves
which are absolutely continuous and have a derivative in L% (=% ([0, 1]).
For t € [0,1], we denote by e; the evaluation map at time t: e;(y) = ~(¢).
We denote by II the set of Borel probability measures 1 on I" which are
74 periodic in space: if 7, is the translation in R? with vector k € Z¢ and
Tk(Y)(s) = v(s) + k, then 738y = n. Let I be the subset of such measures
with

1 2
/ / K (1) 7 dtdn(y) < +o0 .
rJo

To any measure 1 € IIy we associate the measure o, on [0, 1] x @ defined by
the equality

[ | stz = [ ) )5 dsdn(y).

for any continuous and periodic in space map f. We denote by Ils 4. the set
of measures 7 € Il such that the measure o, is absolutely continuous with
respect to the Lebesgue measure. In this case we identify o, with its density.
Finally, given two probability densities pg, p1, we denote by IIz 4c(po, p1) the
set of ) € Ilg 4. such that epfin = po and e1fn = py. We set

1
2—«a .
on(s,x dxds if n € Ily 0, P1
PR Y Ay RCACED) 1€ Mo (oo, 1)
+00 otherwise
Let us note for later use that:
Lemma 4.1. The map K is lower semicontinuous on II.
Proof. Let n, weakly converge to 1. Without loss of generality we can
assume that M := limsup,,_,, . K(n,) < +00. Since (o, ) is bounded in
L?>~“ we can assume without loss of generality that (oy,) converges weakly

in L2~ to some o € L?>~®. For any continuous periodic and positive map
f the map

1 2
. /0 F(s,7()) [3(s) [ 7 ds ity € W

+00 otherwise

21



is lower semicontinuous in I'. Hence
1 1 i
/0 /Q f(s,2)do(s,2) = /F /O f(smfs))Ms)w dsdn(7)
timinf [ [ 726D 15617 dsdn )

1
= liminf/ /f(s,m)ann(s,a:)
n—-400 0 Q

= /Ol/Qf(s,az)a(s,az)

Therefore, o, is absolutely continuous, with o > o, and

1 1
K(n)z/o /Qo?f”‘ < /0 /Qaz‘“ < liminf K (1) -

IN

O

Theorem 4.2. Let py and p1 be two Borel probability measures on T¢. Then

inf  K(n) = Wal(po, p1)*. (4.1)
7761_[2,ac(p()7p1)

In addition, this problem is attained by some 7 € Il 4c(po, p1)-

Proof. In order to show that inf,cry, ,_(pg,00) K (1) = Wal(po, p1)?, we recall
that, from proposition 2.1

Walpo, p1)? = — inf J(o) .
(pos p1) d)éCl(l[I(},l}x’]Td) (¢)

Let v € W and ¢ be a C! periodic map such that 0;¢ < 0. We set
2
Vo(t,z)|a
Alt,z) = ————F—
&) = Ca0.a)
and L
dy = 2-ajara ) (4.2)

_2
2 2—a

Following the same computations as in the proof of Proposition 2.7, we have

% <¢<t=7<t>> —da /O (A(s,74(5))) 77 [3(s)| == ds) <0
Therefore
! a 2
$(1,7(1)) < $(0,7(0)) +da [ (A(s,y(s)) 2= [4(s)| 2= ds . (4.3)



Let now 7 € Iz 4c(po, p1). Integrating (4.3) with respect to n then gives

/¢0xdpo

/ 6(1, 2)dp1 (
< d // (5,7() F5% [4(s)| =5 dsdn()
:d// (s,9) 2a0n(8y)dsdy
Therefore
V|2 -
) da:dt+/Q¢(0)dpo /¢(1)dp1

//(( 15t<l5
/ / Ko (A, ) ™% — do(A(s, ) 5 0 (s,9) ) v

>
2 «
/ / (on(s,y)) dxdt .

So we have proved that

0

inf K(n) .

inf J(p) > —
N€ll2 ac(po,p1)

~Walpo, p1)? =
(100 pl) $eC1([0,1]xT)
) be optimal in

We now show the opposite inequality. For this, let (p,

the problem
Wa(po, p1)? = mf/ /Hp w)dzdt

Let (£.).>0 be the heat kernel on R?. Then following [8] the pair (p.,w.) =
) % & satisfies the continuity equation

(p,w
Ope + div(wes) =0

and is such that p2¢ = p. and

1 1
| [ s woasa = | /Q H(p, w)dadt = Wa(po, p1)
0

lim
e—0 0 Q
Note also that p. is periodic, smooth in space and bounded below by a
positive constant, while w, is also periodic and smooth. Therefore the flow
d we(t, X})
—xr— e\t telo.l
N = L X7 0.1] (4.4
Xj==x
X?Z for any k € Z* From standard

is well defined and satisfies X"
properties related to the continuity equation (see [7] for instance), we have
(t,x)dz = Xi8pe 0 where p: o = po * §e(z)dx
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Let us defined 7. € 1I by

/f e (y /f "Ydpe o)

for any continuous periodic and bounded map f on I'. Let us compute o, .
We have

/Ol/Qﬂt,x)dans(t,:c) - // £t, X7)
- [ e

for any continuous, periodic map f on [0, 1] x R%. Therefore

2 [e

el XD 1™ Gt ()

pe(t X;f‘;)

we(t, y)‘2 " pe(t, y)dtdy

paty)

Uﬁs(tvx) = wi& )

which shows that 7. € Il 4.. Moreover

K(n.) / / d:L"dt / /H,og,w5 Ydxdt

In particular, as ¢ — 0, K(n.) — Wal(po,p1)?, which conclude the first
part of the theorem. The existence of a minimizer is a straightforward
consequence of the next Lemma—the proof of which is postponed—stating
that there is a subsequence 7)., which converges weakly to some 1 € Il 4,
together with Lemma 4.1. O

Lemma 4.3. Let (1,) be a sequence in Iy 4. such that K(n,) < C for
some constant C'. Then, up to a subsequence, (n,) weakly converges to some

ne H2,ac-

Proof of Lemma 4.3. For R > 0,let Ep = {ye W, H’yH% > R}, then

R na(Eg) < / / 5(8)| 7= dtdn()
Er

// 5(8) 75 dtdia(v)
//‘777 t,x)dtdz

1
2—a
< [ / / (o0, (t,2))2dtdz| < CFa
QJO

Since W\ Ep is relatively compact in I', the sequence (7,) is tight, which
implies that it has a converging subsequence. O

IN

IN
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Remark 4.4. Assume n € I3 4c(po, p1) is optimal for the problem (4.1).
Then, for any ' €€ I3 4c(po, p1), one has ny := (1=N)n+ A1 € g 4c(po, p1)
and o, = (1 — X)o, + Ao,y. Therefore one gets as optimality condition for
7 the inequality:

1
/0 /QJ%_O‘(J,]/ —oyp)dxdt > 0 V' €€ Ha.uc(po, p1) -

Since the problem is convex, this necessary condition is also sufficient.
Recalling the definition of o), the above inequality heuristically means
that any 7 in the support of 7 is optimal for the problem

m/ 0) 3075 dt

where the infimum is taken over the curves « such that v(0) = 7(0) and
7(1) =~ ().

Next we explain some relations between the minimizer (p,w) of (2.2),
the minimizer ¢ of (2.5) and a minimizer 7 of (4.1).

Proposition 4.5. Assume that py and p1 belong to L=(T9). Let (p,w), ¢
and n be optimal for (2.2), (2.5) and (4.1) respectively. Then

2
20 WP _ ke V[T

K 01—« (— atgbac)ﬁ

with the convention that 0/0 =0 and a/0 = +oo if a > 0. Moreover, there
is a minimizer n of (4.1) such that p; = eifn and

1 1
| [ Fanutond = [ [(Feao)i@dne) @)
0 Q IJo

for any continuous, periodic map F : [0,1] x RY — R<,

Proof. The second equality is a straightforward consequence of Theorem 3.3.
As for the first one, let us use the strategy of proof of Theorem 4.2. Let
(€.)e>0 be the heat kernel on R?, set (p.,w.) = (p,w) % &, and consider

ne € II defined by
/ F(Vdne(y / F(XT)dpe o)

for any continuous periodic and bounded map f on I', where X7” is the
solution of the differential equation (4.4). We already know that

2

t,x)|7=
On. = 7‘108( 7?‘ -
2—«

Pe
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and that, up to some sequence, 7. converges to some 77 which is optimal for
(4.1). Since (0, ) is bounded in L*~%, we can consider a weak limit o of the
(0.) in L*~ and we have explained in the proof of Lemma 4.1 that o > o3.
Hence

1 1
Wa(ﬂmpl)z:gi_%K(na)z/o /QUQ“”Z/O /Qa,%‘“zWa(po,pl)Q.

This implies that o, strongly converges in L?>~ to om. The map n — o
being affine and t — >~ strictly convex, we must have o, = og. Further-
more,

et ) P

P P

0_2—0¢ _

) a.e. on {p >0}ase —0,

wl?
pe

Wa(po, p1) = / / op / / 1m0y
w2 w2
= /0 Ll | 1m0y = /0 lel” | = Walpo, p1)

Therefore o, =0 = h:—tf a.e. on {p = 0}.

Let us finally check that n satisfies (4.5). By definition of 7., e:fn. = pe s
Moreover, for any continuous, periodic map F : [0, 1] x R? — R4 we have

1 1
/0 / (F(t, 2), we (t, 2))dudt = /F /0 (F(t (1)), 4 (8)) dtdne ().

Defining Ir(y fo ,7(t))dt, it is therefore enough to prove that
[ Ipdn. — fr Ipdn as e — 0 to obtain (4.5). Let R > 0 and

a

so that 0727_ = a.e. on {p > 0}. To complete the proof we note that

2 .
Br:={yeWhza, ~(0) € Q, 17l 2. < R},

for N € N* and v € Wl’%, define

N-1

IF () =Y (F(k/N,y(k/N),v((k + 1)/N) = 4(k/N)) .

k=0

By standard uniform continuity arguments, observe that for fixed R > 0,
Sr,N = Sup,ep, Ir(7) — I (7)| tends to 0 as N — oo. Now since F is

bounded and R%Ta(n6 +n)(T'\ Br) < C (see Lemma 4.3) we have

‘/F[Fd(ne —n) HFHOO +‘/mBR n)(

1 7] oo
| H +‘/ dT]E—T])‘+25R7N.
I'nBr
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Finally, since I I{Y is continuous for the C° topology, fF 1 I{Y dn. — fF 1 };V dn as
€ — 0 which is enough to conclude.

O
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