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Abstract

A continuous maximum flow problem finds the largest t such that
div v = t F (x, y) is possible with a capacity constraint ‖(v1, v2)‖ ≤ c(x, y).
The dual problem finds a minimum cut ∂S which is filled to capacity by
the flow through it. This model problem has found increasing application
in medical imaging, and the theory continues to develop (along with new
algorithms). Remaining difficulties include explicit streamlines for the
maximum flow, and constraints that are analogous to a directed graph.
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1. Introduction

This paper returns to a special class of problems (partial differential equations
with inequality constraints) in continuous linear programming. They describe
flow through a domain Ω, in analogy with flow along the edges of a graph. The
flow is maximized subject to a capacity constraint. The key to the solution
is the dual problem, which looks for a set S ⊂ Ω from which no more flow is
possible. The boundary of S is the minimum cut, and it is filled to capacity
by the maximum flow.

In the discrete case, Kirchhoff’s Current Law that “flow in = flow out”
must hold at every interior node of the network. The maximum flow is the
largest flow from source to sink, subject to Kirchhoff’s equation at the nodes
and capacity constraints on the edges. This fits the standard framework of
linear programming, and Kirchhoff’s incidence matrix (of 1’s, −1’s, and 0’s) has
remarkable properties that lead to an attractive theory. Our purpose is to point
to a maximum flow-minimum cut theorem in the continuous case, and to
introduce new questions.

The principal unknown is the vector v(x, y) that gives the magnitude and
direction of the flow. On a plane domain this is v = (v1(x, y), v2(x, y)). The
analog of Kirchhoff’s matrix is the divergence operator:

Conservation div v =
∂v1

∂x
+

∂v2

∂y
= tF (x, y) in Ω. (1)

That source/sink term tF (x, y) might be zero or nonzero in the interior of the
flow domain Ω. There may also be a source term tf(x, y) on the boundary ∂Ω,
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in closer analogy with the discrete source and sink in classical network flow.
With n as the unit normal vector to ∂Ω, the (possible) boundary sources and
sinks are given by a Neumann condition:

Boundary sources v · n = tf(x, y) on ∂ΩN . (2)

Our examples will involve F but not f . We only note the case ∂ΩN = ∂Ω,
when f is prescribed on the whole boundary. Then the divergence theorem
∫∫

div v dx dy =
∫

v · n ds imposes a compatibility condition on F and f :

Compatibility

∫∫

Ω

F (x, y) dx dy =

∫

∂Ω

f(x, y) ds if ∂ΩN = ∂Ω. (3)

Now comes the key inequality, a limit on the flow. The vector field v(x, y)
is subject to a capacity constraint, which makes the problem nonlinear. In our
original paper [31] this constraint measured (v1, v2) always in the `2 norm at
each point:

Capacity |v(x, y)| =
√

v2
1 + v2

2 ≤ c(x, y) in Ω. (4)

A more general condition would require v(x, y) to lie in a convex set K(x, y):

v(x, y) ∈ K(x, y) for all x, y in Ω. (5)

A typical maximal flow problem in the domain Ω is

Maximize t subject to (1), (2), and (4).

In returning to this maximal flow problem, our goal is to highlight four
questions that were not originally considered. Fortunately there has been good
progress by several authors, and partial answers are available. But the new
tools are not yet all-powerful, as we illustrate with a challenge problem (uniform
source F = 1 and capacity c = 1 with Ω = unit square). This continues to resist
explicit solution for the velocity vector v:

Challenge Maximize t so that div v = t with |v| ≤ 1 in Ω. (6)

The intriguing aspect of this problem is that we can identify the minimal cut.
Therefore we know the maximal flow factor t = 2 +

√
π, from the capacity

across that cut ∂S. Determining ∂S is a constrained isoperimetric problem that
is pleasant to solve (and raises new questions).

What we do not know is the flow vector v inside the square ! Optimality
tells us the magnitude and direction of v only along the cut, described below.
We apologize for the multiplication of new challenges, when the proper goal of
a paper should be new solutions.

2. New Questions and Applications

The continuous maximal flow problem is attracting a small surge of interest.
We mention recent papers that carry the problem forward in several directions:
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1. Grieser [16] shows how max flow-min cut duality leads to an elegant proof
of Cheeger’s inequality, giving the lower bound in (18) on the first eigenvalue of
the Laplacian on Ω. The eigenfunction has u = 0 on ∂Ω, so ∂ΩN is empty:

Cheeger λ1 ≥ 1

4
h2 where h(Ω) = tmax with F ≡ 1. (7)

The Cheeger constant h is found from the constrained isoperimetric problem
that arises for the minimal cut ∂S:

Definition h(Ω) = inf
S⊂Ω

perimeter of S

area of S
. (8)

As in the particular case of our challenge problem, h(Ω) is often computable.
For the unit square we will note in (24) that the inequality (7) is far from tight.

2. Appleton and Talbot [2] have proposed an algorithm for computing the
maximum flow vector v from a sequence of discrete problems. Their motivation
is to study image segmentation with medical applications (see especially [3, 4]).
The same techniques are successful in stereo matching [26]. Their paper is rich
in ideas for efficient computations and an excellent guide to the literature.

The algorithm approaches the maximum flow field as T → ∞, by introducing
a “Maxwell wave equation” with capacity c and internal source F = 0:

Appleton-Talbot
∂E

∂T
= − div v,

∂v

∂T
= − gradE, |v| ≤ c. (9)

The potential is E, and the first equation ∂E/∂T = − div v is a relaxation of
the conservation constraint div v = 0 (Kirchhoff’s Law). Appleton and Talbot
prove that the energy

∫∫

(|E|2 + |v|2) is decreasing in every subset S of Ω. At
convergence, the optimal cut is the boundary of a level set of E.

The equations (9) are discretized on a staggered grid. This corresponds to
Yee’s method (also called the FTDT method) in electromagnetics. The algo-
rithm has a weighting function to model the effect of source terms, and the
experiments with image segmentation are very promising.

Since primal-dual interior point algorithms have become dominant in opti-
mization, we conjecture that those methods can be effective also here in the
approximation of continuous by discrete maximal flows.

3. Nozawa [23] took a major step in extending the max flow-min cut theorem
from the simple isotropic condition |v| ≤ 1 in (4) toward the much more general
capacity condition (5). This step can be illustrated already in our challenge
problem, by changing from the `2 norm of v(x, y) to the `1 or `∞ norm:

`
1 challenge Maximize t so that div v = t with |v1| + |v2| ≤ 1 in Ω (10)

`
∞ challenge Maximize t so that div v = t with |v1| ≤ 1, |v2| ≤ 1 in Ω (11)
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In the isoperimetric problem (8), this changes the definition of perimeter. The
dual norm (in this case `∞ or `1) becomes the measure of arclength (dx, dy).
Then this dual norm enters the computation of |∂S|:

Perimeter (in R2) |∂S| =

∫

∂S

|(dx, dy)|. (12)

The coarea formula from geometric measure theory [12], on which the proof of
duality rests, continues to apply with the new definition.

As in the `2 case, the maximal t can be computed! So we have new flow
fields to find, reaching bounds that duality says are achievable.

It is intriguing to connect maximal flow with the other central problem for
networks and continua—the transportation problem. This asks for shortest
paths. The original work of Monge and Kantorovich on continuous flows has
been enormously extended by Evans [11], Gangbo and McCann [15], Rachev
and Rüschendorf [25], and Villani [33].

Our challenge problem requires the movement of material F (x, y) from Ω
to ∂Ω. The bottleneck is in moving from the interior of S to the minimal
cut ∂S. The distribution of material is uniform in S, and its destination is
uniform along ∂S, to use all the capacity allowed by |v| ≤ 1. How is the
shortest path (Monge) flow from S to ∂S related to the maximum flow?

4. Directed graphs and flows. Chung [8, 9] has emphasized that Cheeger’s
theory (and the Laplacian itself) are not yet fully developed for directed graphs.
For maximal flow on networks, Ford and Fulkerson [13] had no special difficulty
when the edge capacities depend on the direction of flow. The problem is still
a linear program and duality still holds.

For directed continuous flows we lack a correctly formulated duality theorem.
The capacity would be a constraint v(x, y) ∈ K(x, y) as in (5). Nozawa’s duality
theorem in [23] quite reasonably assumed that zero is an interior point of K.
Then a flow field exists for sufficiently small t (the feasible set is not empty). The
continuous analog of direction-dependent capacities seems to require analysis of
more general convex sets K(x, y), when zero is a boundary point. In [22],
Nozawa illustrated duality gaps when his hypotheses were violated.

Finally we mention that all these questions extend to domains Ω in Rn. The
constrained isoperimetric problems generalize to higher dimensions as well as
different norms. The one simplification in the plane is the introduction of a
stream function s(x, y), with (v1, v2) = (∂s/∂y,−∂s/∂x) as the general solution
to div v = 0. Our survey [30] formulated the corresponding primal and dual
problems for s(x, y) as L1 and L∞ approximations of planar vector fields—
where Laplace’s equation corresponds to L2.

The remaining sections of this paper discuss the topics outlined above. We
compute the minimum cuts in the three versions of the challenge problem on
the unit square. We also mention an isoperimetric problem (with a different
definition of perimeter) to which we return in a later paper [32].
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3. Duality, Coarea, and Cheeger Constants

The maximum flow is limited by the capacity c(x, y):

Primal problem Maximize t subject to

div v = tF (x, y) in Ω, v · n = tf(x, y) on ∂ΩN , |v(x, y)|2 ≤ c(x, y) in Ω.

Nozawa’s duality theorem requires a proper choice of function spaces and bound-
ary conditions, in this problem and in its dual for u(x, y) in BV(Ω). Where
the primal involves the divergence, the dual involves the gradient. Kohn and
Temam [19] extended Green’s formula

∫∫

u div v = −
∫∫

v ·gradu to allow func-
tions u(x, y) of bounded variation.

We will see that the optimal u(x, y) in the dual problem is the characteristic
function of a set S with finite perimeter. This u(x, y) is not smooth, but it lies
in BV. The dual problem does not initially ask for a minimum cut!

Dual problem Minimize ‖u‖BV,c with `(u) = 1 OR Minimize
‖u‖BV,c

|`(u)|

‖u‖BV,c =

∫∫

Ω

c(x, y)| gradu|2 dx dy `(u) =

∫

∂ΩN

uf ds −
∫∫

Ω

uF dx dy. (13)

The key step toward the solution is to recognize the extreme points of the unit
ball in this weighted BV norm ‖u‖BV,c =

∫∫

c | gradu|2 dx dy. Those extreme
points are characteristic functions u = χS of open subsets S of Ω:

χS(x, y) = {1 for x, y in S, 0 otherwise}.

The BV norm of χS is the weighted perimeter
∫

c ds of S, because the gradient
is a measure (a line of delta functions) supported only on that boundary ∂S.

The coarea formula gives the BV norm of u (weighted by the capacity c) as
an integral over the norms of characteristic functions of level sets S(t) of u:

Coarea ‖u‖BV,c =

∫

‖χS(t)‖BV,c dt with S(t) = {x, y | u(x, y) < t}. (14)

Consider the case with F ≥ 0 and no boundary sources f . Specializing
in (13) to the characteristic functions u = χS , our dual problem reduces to an
isoperimetric problem for S and the minimum cut ∂S:

min
u∈BV

∫∫

c | gradu|2 dx dy
∫∫

Fu dx dy
= min

S ⊂Ω

weighted perimeter
∫

∂S c ds

weighted area
∫∫

S F dx dy
. (15)

Choosing c(x, y) = 1 and F (x, y) = 1, this computes the Cheeger constant:

Cheeger constant h(Ω) = inf
S ⊂Ω

|∂S|
|S| . (16)
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Weak duality h ≥ t is the inequality
∫

c ds ≥ t
∫∫

F dx dy for every feasible t in
the primal problem. This is just the divergence theorem when div v = tF (x, y)
and |v| ≤ 1:

Weak duality
h ≥ t

∫

∂S

c ds ≥
∫

∂S

v · n ds =

∫∫

S

div v dx dy = t

∫∫

S

F dx dy. (17)

Duality says that equality holds for the maximal flow v and the minimal cut ∂S.
Historically, the key inequality given by Cheeger [7] was a lower bound on

the first eigenvalue λ1 of the Laplacian on the domain Ω. Grieser [16] observed
how neatly and directly this bound follows from Green’s formula, when F = 1
and |v| ≤ 1. We expect to see the Schwarz inequality in the step from problems
in L1 and L∞ to the eigenvalue problem in L2:

t

∫∫

u2 =

∫

(div v)u2 = −
∫∫

v(gradu2)

≤ 2

∫∫

|u| | gradu| ≤ 2

[
∫∫

u2

∫∫

| gradu|2
]1/2

.

Thus any feasible t gives a lower bound t2/4 to the Rayleigh quotient for any
u(x, y) with u = 0 on ∂Ω:

t2

4
≤

∫∫

| gradu|2 dx dy
∫∫

u2 dx dy
. (18)

The minimum of the right side is λ1(Ω), and the maximum of the left side is
h2/4. Cheeger’s inequality becomes h2/4 ≤ λ1(Ω).

A widely studied paper [10] of Diaconis and Stroock introduces another very
useful measure of the “bottleneck” that limits flow on a graph.

4. The Challenge Problems

When we use the `2 norm of the flow vector v = (v1, v2) at each point, the
constraint |v(x, y)| ≤ c(x, y) is isotropic. Other norms of v give constraints
that come closer to those on a discrete graph. The edges of the graph might
be horizontal and vertical (from a square grid) or at 45◦ and −45◦ (from a
staggered grid). We will use the challenge problem with F = c = 1 on a unit
square as an example that allows computation of the minimal cut in all three
cases:

`
2 constraint v2

1 + v2
2 ≤ 1 (19)

`
1 constraint |v1| + |v2| ≤ 1 (20)

`
∞ constraint max(|v1|, |v2|) ≤ 1 (21)

The `1 and `∞ norms give problems in linear programming.
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The dual (minimum cut) problems will use the dual norms. For `2 we had the
usual BV norm

∫∫

| gradu| dx dy and the usual measure |∂S| =
∫

ds of perime-
ter. For the `1 and `∞ constraints, the BV norms change and the perimeters
reflect those changes (coming from the coarea formula in the new norms):

|v|1 ≤ 1 leads to ‖u‖BV =

∫∫

| gradu|∞ dx dy and |∂S|∞=

∫

∂S

max(|dx|, |dy|)

|v|∞ ≤ 1 leads to ‖u‖BV =

∫∫

| gradu|1 dx dy and |∂S|1=

∫

∂S

|dx| + |dy|.

The perimeter of a square changes as the square is rotated, because the norm
of (dx, dy) is changing. In each case the dual problem looks for the minimum
cut as the solution to a constrained isoperimetric problem:

Duals of
`
2, `

1, `
∞

Minimize
S ⊂ [0,1]2

|∂S|
|S| and

|∂S|∞
|S| and

|∂S|1
|S| . (22)

In all cases the optimal S will reach the boundary ∂Ω of the square. (If S is
stretched by a factor c, the areas in the denominators of (22) are multiplied
by c2 and the numerators by c.) The symmetry of the problem ensures that
the optimal ∂S contains four flat pieces of ∂Ω, centered on the sides of the
square (Figure 1). The only parameter in the three optimization problems is
the length L of those boundary pieces!

Figure 1a shows the solution for the `2 problem, where the “unconstrained”
parts of the cut ∂S are circular arcs. This follows from the classical isoperimetric
problem, and it is easy to show that the arcs must be tangent to the square.
The four arcs would fit together in a circle of radius r. With L = 1 − 2r, the
optimal cut solves the Cheeger problem:

tmax = h(Ω) = min
perimeter of S

area of S
= min

4(1−2r) + 2πr

1 − 4r2 + πr2
. (23)

PSfrag replacements

SSS

r

r

L = 1−2r

|∂S| = 4L + 2πr

R

R

L = 1−2R

|∂S|∞ = 4L + 4R

L = 1

|∂S|1 = 4

Figure 1: The minimum cuts ∂S for `2, `1, and `∞ constraints on v(x, y).

The derivative of that ratio is zero when

(1 − 4r2 + πr2)(8 − 2π) = (4 − 8r + 2πr)(8r − 2πr).
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Cancel 8 − 2π to reach 1 − 4r + (4 − π)r2 = 0. Then r = 1/(2 +
√

π) ≈ .265.
The Cheeger constant h(Ω) is the ratio |∂S|/|S| = 1/r = 2 +

√
π.

A prize of 10,000 yen was offered in [30] for the flow field that achieves
div v = 2 +

√
π with |v| ≤ 1. Lippert [20] and Overton [24] have the strongest

claim on the prize, by computing a close approximation to v. The discrete
velocity clearly confirms the cut in Figure 1a as the set where |v| = 1.

The eigenfunctions of the Laplacian on the unit square are (sin πx)(sin πy)
and the lowest eigenvalue is λ1 = 2π2. Cheeger’s inequality λ1 ≥ h2/4, which
other authors have tested earlier, is far from tight:

Unit square 2π2 > (2 +
√

π)2/4 or 19.74 > 3.56 . (24)

The second challenge problem has |v1| + |v2| ≤ 1 leading to the mea-
sure |∂S|∞ of the perimeter in the dual. Now the unconstrained isoperimet-
ric problem is solved by a diamond with |n1| = |n2| = 1/

√
2 on all edges.

The optimal cut ∂S in Figure 1b is a union of boundary pieces and diamond
edges. The edge length

√
2R is multiplied by 1/

√
2 from |n1| = |n2| to give

|∂S|∞ = 4L + 4R = 4 − 4R. Then the minimum cut has R = (2 −
√

2)/2 ≈ .3:

min
|∂S|∞
|S| = min

R

4 − 4R

1 − 2R2
=

√
2√

2 − 1
≈ 3.5 .

For the flow field v in this `1 problem, the prize is reduced to 5000 yen. Lippert
has reached the computational prize also in `1. This is linear programming and
interior point methods soundly defeated the simplex method.

We cannot afford the prize in the `∞ problem, whose solution is simply
v = (2x − 1, 2y − 1) on the square 0 ≤ x, y ≤ 1 with div v = 4 = tmax.

The minimum cut for the `∞ problem is the whole boundary of the square.
This coincides with the unconstrained isoperimetric solution when the perimeter
is measured by

∫

|dx| + |dy|. The minimizing set S would have horizontal and
vertical sides wherever the constraint S ⊂ Ω is inactive—and here it is active
everywhere on ∂S = ∂Ω. The Cheeger constant in this norm is h = 4/1.

In [32] we prove that the unit ball in the dual norm (rotated by π/2) is
isoperimetrically optimal. Here that ball is a circle or a diamond or a square.
This isoperimetrix was discovered by Busemann [5] using the Brunn-Minkowski
theorem in convex geometry (the Greeks knew much earlier about the circle).
Our proof finds a simple linear equation for the support function of the optimal
convex set S.
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