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Abstract. Kremer and Maskin (1996) introduced an idealized model for pair-

ing workers and managers with different skill levels into small teams selected
to maximize productivity. They used it to analyze the impact of technologi-

cal change and widening skill gaps on labor market segregation. The present
paper extends their model to a workforce with multidimensional skill-types,

continuously distributed, and gives a mathematical analysis of the extension.

Pure and mixed notions of optimal pairing are introduced, which play an im-
portant role in the formulation and analysis of the model. The existence and

uniqueness of such pairings are established using techniques from the theory

of optimal transportation and infinite-dimensional linear programming.

Contents

1. Introduction 1
2. Rigorous formulation of the pure pairing problem 2
3. Relaxation: the mixed pairing problem and duality 3
4. Proof of duality theorem 5
5. Review of optimal transportation theory 8
6. Existence and uniqueness of optimal pairing 9
7. Geometric structure of optimal pairing 11
8. Examples and discussion 14
References 17

1. Introduction

In the past, several models were proposed to analyze the impact of technological
change on labor market segregation. Kremer and Maskin (1996) [13] introduced
a matching framework to model within-establishment collaboration between high-
and low-skilled labor in hopes of explaining the recent trend of increasing wage
inequality between high skill and low skill workers. In this framework workers of
different skills are matched with each other to form teams or working pairs. The
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productivity of a pair is supposed to depend on skills of both workers, and the
firm assigns workers to teams so as maximize its total production. Kremer and
Maskin used this matching framework to argue that increases in the mean and
dispersion of the skill distribution in the economy leads to segregation of the labor
market. Li and Suen [14] extended this matching framework to the case when
the distribution of labor skill types is taken to be continuous and derived several
properties of optimal matching. It is however not evident a priori that such a
continuous optimal matching problem has a solution or whether it is unique. In this
paper, we introduce two rigorous formulations of the continuous multidimensional
problem, and give conditions under which these formulations become equivalent,
and for which there exists a unique optimal partitioning scheme. In addition we
exhibit sufficient conditions for a partition to be optimal. We also confirm several
of Li and Suen’s results using the rigorous formulation outlined in this paper.

The authors are pleased to express their gratitude to Hao Li, for introducing
them to this problem and providing stimulating conversations.

2. Rigorous formulation of the pure pairing problem

We begin with a rigorous definition of the problem. Here and throughout, the
space of skill types X will be a compact Hausdorff space; typically X ⊆ Rn.

From a mathematical point of view, it is natural to represent the skill distribution
of the workforce by a Borel probability measure on the space X. In this context,
the pairing of the higher skilled worker, whom we may refer to as a manager,
with a lower skilled worker, referred to as an assistant, is accomplished by a Borel
map f : X 7→ X which maps the distribution of managers to the distribution
of assistants. This terminology is inherited from the one-dimensional case; the
multidimensional generalization allows for workers with complementary strengths
in different areas, lending itself to a richer interpretation than the manager-assistant
paradigm suggests. Note that even when the skill levels of all workers are known,
and the productivity p(x, y) of each working pair is a specified function, presumably
depending asymmetrically on the skill level x of the manager and the skill level y of
the assistant, it is not obvious which employees should be tasked with which roles:
whether it is preferable for the assistant of a talented manager to be more skilled
than the manager of a weak assistant, or vice versa. This is one of the questions
which such a model is intended to resolve.

Let us denote the known skill distribution of the labor force by the Borel prob-
ability measure ω on X, and the unspecified skill distributions of managers by µ
and assistants by ν, so that µ + ν = 2ω. The above constraints characterize the
possible competitors in the optimization problem which we formulate below. The
insistence that each manager be assigned a single assistant — rather than sharing
a probabilistic combination of many assistants — leads to the notion which we call
a pure pairing (in an imperfect analogy with the strategies of game theory). Math-
ematically, this notion of pure pairing is encoded in the next two definitions. The
converse requirement that each assistant have a single manager is not imposed, but
sometimes turns out to be a consequence of the net productivity maximization.

Definition 2.1 (Push-forward). Given measurable spaces (X,Σ) and (X′,Σ′) with
a measure µ on X, each measurable map f : X 7→ X′ induces a measure on
X′, called the push-forward of µ through f and denoted µ′ := f#µ, defined by
µ′(B′) = µ(f−1(B′)) for each B′ ∈ Σ′. Equivalently, for each measurable function
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F : X′ 7→ R, ∫
X′
Fd(f#µ) =

∫
X

(F ◦ f) dµ.

Definition 2.2 (Pure pairing). From here on we denote the set of Borel probability
measures on X by P(X). Given a measure ω ∈ P(X), we say that (µ, f) is a pure
pairing for ω whenever µ ∈ P(X), and f : X 7→ X is a Borel map defined µ-a.e.
such that µ+ f#µ = 2ω. We denote the set of all pure pairings by Γpure

ω .

For every such pure pairing (µ, f), the expression
∫
X
p(x, f(x)) dµ gives the cor-

responding total production. Hereafter we will assume p(x, y) is continuous — to
ensure above integral can be defined — and nonnegative without loss of generality.
Then the maximal possible production is given by

(2.1) Kω := sup
{∫

X

p(x, f(x)) dµ | (µ, f) ∈ Γpure
ω

}
.

Of course, it is not clear a priori whether the supremum is attained by any pure
pairing. If it is, we call such a pairing optimal. We refer to the value Kω of the
above supremum as optimal paired productivity.

This definition of an optimal pairing generalizes the finite optimization problem
nicely, but the non-linear dependence of the supremum and constraints (2.1) on
f make it difficult to analyze. Fortunately, mathematical developments in the
theory of optimal transportation provide a way to circumvent this difficulty. As in
game theory, the Kantorovich approach [11] to Monge’s transportation problem [20]
introduces a larger class of competitors which convexifies the problem and linearizes
the cost, facilitating its analysis. A discrete version of this approach was already
explored by Li and Suen in [14].

3. Relaxation: the mixed pairing problem and duality

The similarity between the Monge-Kantorovich and optimal pairing problems
will be apparent to those familiar with the former theory, which is reviewed in
Villani [27]. In fact the only thing that distinguishes the two problems are the
constraints on µ and ν; in the Monge-Kantorovich problem µ and ν would be
fixed exogenously, while in the present problem they are allowed to vary, with only
their average ω being prescribed. This similarity suggests the definition of mixed
competitors for the optimal partitioning problem.

Definition 3.1 (Mixed pairing). A probability measure γ ∈ P(X ×X) is called
a mixed pairing of ω ∈ P(X) if its two marginals average to ω, that is, if
γ[B ×X] + γ[X×B] = 2ω[B] for all Borel sets B ⊆ X. The set of mixed pairings
γ of ω is denoted by Γmix

ω ⊂ P(X2).

Definition 3.2 (Optimal mixed pairing). We define an optimal mixed pairing to
be any measure γ0 ∈ Γmix

ω which attains the following supremum:

(3.1) Jω = sup
{∫

X

p(x, y) dγ(x, y) | γ ∈ Γmix
ω

}
.

We refer to the value of the above supremum as optimal mixed productivity.
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As a consequence of the Riesz-Markov theorem, γ ∈ P(X2) is a mixed pairing
for ω if and only if

(3.2)
∫
X2

{
u(x) + u(y)

}
dγ(x, y) = 2

∫
X

u(x) dω(x) ∀u ∈ C(X)

where C(X) is the Banach space of continuous functions on X equipped with the
sup norm. The advantage enjoyed by the mixed pairing problem (3.1) over the
pure pairing problem is its linearity in γ on the convex, weak-∗ compact set Γmix

ω .
A maximizer can therefore be shown to exist using continuity and compactness,
and can be characterized using the Kuhn-Tucker conditions which emerge from the
dual linear program. We will go on to prove existence of an optimal mixed pairing
in this section and to state the dual linear problem. We will also give sufficient
conditions for duality and optimality. However, we will postpone the actual proof
of the duality theorem for our linear programming problem until the next section.

We begin by proving existence of optimal mixed pairing.

Theorem 3.3 (Existence of optimal mixed pairing). For any ω ∈ P(X) there
exists an optimal mixed pairing.

Proof. Set Γmix
ω is a compact set in a weak-∗ topology, hence continuous mapping

γ →
∫
X×X

p(x, y) dγ(x, y)

obtains its supremum over it. �

Looking at (3.2) and drawing upon analogy with Monge-Kantorovich optimal
pairing problem we might suspect that the dual linear problem consists of finding
a feasible potential — an element of the set

U =
{
u ∈ L1(X, dω)

∣∣∣u is lower semi-continuous, u(x) + u(y) ≥ p(x, y)
}
,

which attains the infimum

(3.3) Iω = inf
{

2
∫
X

u(x) dω(x)
∣∣∣u ∈ U

}
.

Finite dimensional linear programming provides further reason to suspect that this
is the right dual problem, see e.g. [14] where duality for the discrete matching
problem was derived. Assuming lower semi-continuity of u ∈ U will turn out to
cost no generality since p(x, y) has been assumed to be continuous.

We proceed to state sufficiency of the Kuhn-Tucker conditions and some aspects
of the asserted duality.

Theorem 3.4 (Sufficient conditions for duality and optimality). With p : X2 7→
[0,∞) nonnegative, continuous and ω ∈ P(X), it follows that Iω ≥ Jω ≥ Kω. If
for some γ ∈ Γmix

ω and some feasible potential v ∈ L1(X, dω)

(3.4) 2
∫
X

v(x) dω =
∫
X×X

p(x, y)dγ(x, y),

then Jω = Iω, with the supremum (3.1) and infimum (3.3) being attained by γ and
v respectively.
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Proof. First of all it is clear that Jω ≥ Kω. This is because any pure pairing (µ, f)
is also a mixed pairing of the form (id×f)#µ. Furthermore, since for any γ ∈ Γmix

ω

and any u ∈ L1(X, dω) such that u(x) + u(y) ≥ p(x, y), we have∫
X

2u(x) dω =
∫
X2
u(x) + u(y) dγ ≥

∫
X2
p(x, y) dγ,

we see immediately that Iω ≥ Jω. This proves the first claim. As for the second
claim, equality (3.4) together with∫

X

2v(x) dω ≥ Iω ≥ Jω ≥
∫
X×X

p(x, y) dγ,

immediately imply that Iω = Jω with Iω attained by v and Jω attained by γ. �

The value v(x) of the minimizer may be interpreted as the gross marginal util-
ity provided to the company by a worker with skill level x, relative to the utility
provided by its other employees. The deviation of this value from the wage com-
manded by a similar worker in the marketplace would be an appropriate parameter
to keep in mind for a company planning to expand its workforce.

Example 3.5. Let us now describe an example which motivates above problem.
Suppose skill levels are measured on a scale from 0 to 1 and production function
p : [0, 1] × [0, 1] → R is of the form p(x, y) = xαyβ , where α, β > 0. This is the
so-called Cobb-Douglas production function. Given that our skill distribution ω
is represented by some L1([0, 1]) density, we wish to know how this distribution is
split into distribution of managers and assistants. For example, is it possible for
managers to have the same skill levels as some assistants? This is the problem
studied in [14], where Li and Suen concluded that this is indeed impossible as long
as labor distribution is assumed to be concentrated sufficiently close to 1. In the
last section we will provide independent confirmation of their results in our setting.

4. Proof of duality theorem

The fact that under suitable conditions linear programs possess dual problems is
very well known and goes back to the work of Dantzig [5], von Neumann [29], Kan-
torovich [10] and Koopmans [12]. There are many books available on the subject;
Andersen and Nash [1] for example is particularly relevant to our infinite dimen-
sional setting. For the particular case of optimal transport a version of the duality
theorem was originally proved by Kantorovich [10]. Since then the duality theorem
for optimal transportation has been proved in a rather general setting [22] [23]. In
this section we will derive a duality theorem for our linear programming problem.
We could do that using abstract Fenchel-Rockafellar duality theorem, as in for in-
stance [2]; however, we choose to proceed by exploiting Monge-Kantorovich duality
instead, which we feel presents a more concrete exposition.

Let us first review Monge-Kantorovich duality. As we mentioned this duality has
been much studied and there is extensive literature on it. For a modern treatment
with the emphasis on optimal transportation see Rachev and Rüschendorf [21]. See
also Villani [28] for a nice and thorough exposition.

There are several ways to state Monge-Kantorovich duality. The following The-
orem presents it in a way that is most useful to us in this paper.
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Theorem 4.1. For any two measures µ, ν ∈ P(X)

sup
{∫

X×X

p(x, y) dγ
∣∣∣ γ ∈ Γ(µ, ν)

}
=(4.1)

inf
{∫

X

φ(x) dµ(x) +
∫

X

ψ(y) dν(y)
∣∣∣ (φ, ψ) ∈ Φp

}
(4.2)

where Γ(µ, ν) is a set of measures in P(X×X) with x— and y— marginals being µ
and ν respectively, and Φp is a set of lower semi-continuous pairs in L1(dµ)×L1(dν)
satisfying

(4.3) φ(x) + ψ(y) ≥ p(x, y) for (x, y) ∈ X×X.

Furthermore, both supremum (4.1) and infimum (4.2) are attained. In addition
maximizer γ of (4.1) and minimizer (φ, ψ) of (4.2) are characterized by the follow-
ing

(4.4) φ(x) + ψ(y) = p(x, y) holds for all (x, y) ∈ spt γ.

Above, spt γ refers to the smallest closed set carrying the mass of γ.

Having reviewed Monge-Kantorovich duality we return to the proof of duality for
our pairing problem. The concept that will play an important role in the following
is that of symmetrized productivity

(4.5) s(x, y) := sup{p(x, y), p(y, x)}.

It turns out that optimal mixed productivity with production function p(x, y) is
the same as the optimal mixed productivity with symmetrized production function
s(x, y). Intuitively, if for some pairing we have a pair of workers with manager of
skill x and assistant of skill y, but with

p(x, y) < p(y, x),

we can always improve paired productivity by making the worker of skill x assistant
and worker of skill y manager. The symmetrized production function, however, is
symmetric and we can exploit this symmetry together with Monge-Kantorovich
duality applied to the production function s(x, y) to obtain a feasible potential
which would satisfy Theorem 3.4.

Let us introduce some notation. For any measure γ ∈ P(X × X) by γxS we
mean the measure γ restricted to the set S, i.e. γxS[B] = γ[B ∩ S]. For any set S
by S† we denote the reflection S† =

{
(y, x) ∈ X×X

∣∣ (x, y) ∈ S
}
. Also by γ† we

mean a push-forward of γ by a map that interchanges the two coordinates. Notice
that the sum of marginals of γ† is the same as that of γ and spt (γ†) = (spt γ)†.

We proceed to prove that mixed optimal productivity with production function
p(x, y) and production function s(x, y) are the same.

Proposition 4.2.

sup
{∫

p(x, y) dγ(x, y)
∣∣∣ γ ∈ Γmix

ω

}
= sup

{∫
s(x, y) dγ(x, y)

∣∣∣ γ ∈ Γmix
ω

}
.

Proof. From (4.5), the expression on the right is greater then the expression on the
left. Now let γ be any measure in Γmix

ω and

S =
{

(x, y) ∈ X×X
∣∣∣ s(x, y) > p(x, y)

}
.
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Let γ̃ = (γxS)† + γxSc, then γ̃ ∈ Γmix
ω and∫

X×X

s dγ =
∫

S

s(x, y) dγ(x, y) +
∫

Sc

s(x, y) dγ(x, y) =

=
∫

S

p(y, x) dγ(x, y) +
∫

Sc

p(x, y) dγ(x, y) =

=
∫
X×X

p dγ̃.

This equality immediately implies that optimal mixed productivity with production
function p(x, y) is at least as big as with production function s(x, y). �

Next we use the symmetry of s(x, y) and Monge-Kantorovich duality to find a
feasible potential that satisfies the condition (3.4) of Theorem 3.4, thus proving
duality theorem and showing that the dual problem has a minimizer in one shot.

Remark 4.3. Before we proceed, let us point out that optimal mixed pairings are
naturally maximizers of Monge-Kantorovich problem. This is because if γ ∈ Γmix

ω

is an optimal mixed pairing but not a Monge-Kantorovich maximizer, there would
be some measure in Γ(πX

#γ, π
Y
#γ) ⊂ Γmix

ω with higher paired productivity then γ,
which is obviously a contradiction. In particular for an optimal mixed pairing γ,
the value of the Monge-Kantorovich supremum (4.1) with µ = πX

#γ and ν = πY
#γ

is the same as optimal mixed productivity corresponding to γ.

Theorem 4.4. There exists a feasible potential v that satisfies the conclusion (3.4)
of Theorem 3.4. In particular Iω = Jω and the dual problem has a minimizer.

Proof. Let γ ∈ Γmix
ω be an optimal mixed pairing for the production function s(x, y)

and set γ̃ to be

γ̃ =
γ + γ†

2
,

then γ̃ ∈ Γmix
ω and is also an optimal mixed pairing for the production func-

tion s(x, y) (this is because s(x, y) is symmetric). Also γ̃ is a maximizer of the
Monge-Kantorovich problem with the production function s(x, y) among measures
in Γ(πX

# γ̃, π
Y
#γ̃) as was pointed out in Remark 4.3 above. Now we can apply The-

orem 4.1 to conclude that there exist functions (φ, ψ) ∈ Φs with

φ(x) + ψ(y) = s(x, y) for all (x, y) ∈ spt γ̃.

However, spt γ̃ = spt γ
⋃

spt γ†, thus

φ(x) + ψ(x)
2

+
φ(y) + ψ(y)

2
≥ s(x, y)

with equality holding for (x, y) ∈ spt γ. Now if we let

v(x) =
φ(x) + ψ(x)

2
then v is a feasible potential, since s(x, y) ≥ p(x, y), and∫

X×X

s(x, y) dγ =
∫
X×X

v(x) + v(y) dγ = 2
∫
X

v(x) dω(x).

Therefore Proposition 4.2 imply that v satisfies conditions of Theorems 3.4. �
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At this point we have proved duality theorem and showed that dual problem has
a minimizer. We will see later that just as in the case of the Monge-Kantorovich
problem, we can take minimizers of the dual problem to be of a special form. This,
as in the case of optimal transportation, turns out to be crucial for further analysis
of the pairing problem.

5. Review of optimal transportation theory

In this section we review important concepts from the theory of optimal trans-
portation and state some theorems that we will need later to prove existence and
uniqueness of optimal pairing. The material in this section is well known. For the
relevant discussion see e.g. Rochet [24], Gangbo [6], Gangbo and McCann [8, 9],
Caffarelli [3], Knott and Smith [25], McCann [18], Villani [27, 28].

We begin this section by discussing notions of p-convexity and p-cyclical monotonic-
ity.

Definition 5.1 (p-convexity). Fix u : X 7→ R ∪ {+∞} not identically infinite.
(i) The p-subdifferential of u is the set

∂pu := {(x, y) ∈ X×X | u(z) ≥ u(x) + p(z, y)− p(x, y) ∀z ∈ X}.
(ii) The p-transform up of u is the function up(y) := sup

x∈X
{p(x, y)− u(x)} .

(iii)The function u is called p-convex if u = upp̃ := (up)p̃ where p̃(y, x) = p(x, y),
or equivalently, if there is a set A ⊂ X×R such that

u(x) = sup
(y,λ)∈A

p(x, y) + λ.

(iv) A set S ⊂ X ×X is called p-cyclically monotone if for each k ∈ N, chain
(x1, y1), . . . , (xk, yk) ∈ S, and permutation σ on k letters,

k∑
i=1

p(xi, yi) ≥
k∑

i=1

p(xi, yσ(i)).

Remark 5.2. Notice that (x, y) ∈ ∂pu holds if and only if u(x) + up(y) = p(x, y),
which is also denoted by writing y ∈ ∂pu(x).

The relationship between p-convex functions and p-cyclically monotone subsets
is made explicit by the following generalization of Rockafellar’s theorem (see Ro-
chet [24]):

Theorem 5.3. A set S ⊂ X × X is p-cyclically monotone if and only if it is
contained in the p-subdifferential of a p-convex function.

A very useful notion which we will employ later is that of p-contact maps.

Definition 5.4. Suppose u : X → R ∪ {+∞} is p-convex. We say that a Borel map
f : A → X is a p-contact map for u if {x ∈ A | {f(x)} 6= ∂pu(x)} is of Lebesgue
measure zero.

The Monge-Kantorovich optimal plans in general are not pure but the following
condition of Gangbo, Carlier, and Ma, Trudinger and Wang, is sufficient to establish
purity of optimal plans [7], [4], [16]. This condition can be viewed as a generalization
to higher dimensions of the single-crossing criterion of Lorentz [15], Mirrlees [19],
and Spence [26], and was called a generalized Spence-Mirrlees condition in [4].
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Definition 5.5. (Twist condition) We say that p satisfies a twist condition if for
all x ∈ X map y → ∇1p(x, y) is injective. Here and in what follows ∇1p(x, y) =(

∂p
∂x1 , . . . ,

∂p
∂xn

)
and ∇2p(x, y) =

(
∂p
∂y1 , . . . ,

∂p
∂yn

)
.

Remark 5.6. It turns out (see Theorem 5.9 in [28]) that supports of maximiz-
ers of Monge-Kantorovich problem are p-cyclically monotone. Since Remark 4.3
tells us that optimal mixed pairings are also maximizers of the Monge-Kantorovich
problem, they have p-cyclically monotone supports as well.

Now we state our assumptions on p and X:
A1: X is a compact subset of Rn.
A2: p is non-negative on X.
A3: p is continuously differentiable on X.
A4: p satisfies the twist condition of Definition 5.5.

It is well know that p-convex functions under some assumptions possess regularity
properties. In consequent sections we need the following result:

Lemma 5.7. Under our assumptions on p, p-convex functions are Lipschitz.

Proof. For the proof we refer to the proof of Theorem 10.26 in [28]. �

In what follows Pac(X) is a set of Borel measures on X absolutely continuous
with respect to Lebesgue measure.

Theorem 5.8. Let S be a p-cyclically monotone set. Then there exists a p-contact
map f such that all γ ∈ P(X ×X) with spt γ ⊆ S and πX

#γ ∈ Pac(X) are of the
form γ = (id× f)#(πX

#γ).

Proof. The proof of this theorem is essentially contained in the proof of Theorem
5.26 in [28]. We need only to check that for any p-convex function ψ the set of
x ∈ X such that ∂pψ(x) contains more then one element has Lebesgue measure
zero. However, this follows easily from differentiability of ψ (see Lemma 5.7) and
twist condition 5.5. �

Theorem 5.9 (Uniqueness of optimal transport). Let f and g be two p-contact
maps and µ ∈ Pac(X). If f#µ = g#µ, then f = g, µ-almost everywhere.

Proof. The above uniqueness statement is contained in Theorem 10.27 in [28]. �

6. Existence and uniqueness of optimal pairing

In this section we show that optimal mixed pairing is pure and characterize the
possible non-uniqueness. In addition we show that the optimal paring is unique if
we assume that the only optimal way to pair managers and assistants who have
the same skill distributions is by pairing workers of the same skill level, so that the
only optimal transport between identical distributions is the identity map.

Our proof of the fact that optimal mixed pairing is pure is reminiscent of the proof
of purity in Gangbo and McCann [9]. Basically we show that union of supports of
all optimal mixed pairings is a p-cyclically monotone set. This together with results
from optimal transportation will enable us to conclude existence of a pure pairing.

Theorem 6.1 (Existence of optimal pure pairings). Let p satisfy assumptions A1-
A4 and ω ∈ Pac(X). Then there is a p-contact map f such that all optimal
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mixed pairings γ are of the form γ = (id × f)#(πX
#γ). It is unique in the sense

that if for some p-contact map g, some optimal mixed pairing γ is of the form
γ = (id× g)#(πX

#γ), then f(x) = g(x) for (πX
#γ)-almost every x.

Proof. Let us denote the set of optimal mixed pairings in Γmix
ω by Γ0. Let

S =
⋃

γ∈Γ0

spt γ

be the union of supports of all optimal mixed pairings. We claim that S is p-
cyclically monotone. Indeed, the definition of p-cyclical monotonicity is a condition
on finite subsets, thus a union of collection of sets is p-cyclically monotone if and
only if the union of any finite subcollection of sets is p-cyclically monotone. How-
ever, it is clear that the union of any finite number of supports of optimal mixed
pairings is itself the support of a measure that is some convex combination of
optimal mixed pairings, hence an optimal mixed pairing itself, and therefore has
p-cyclically monotone support by Remark 5.6. See Corollary 2.4 in [9], where a
similar argument was used to prove purity of optimal transport.

At this point we established existence of a p-cyclically monotone set S that con-
tains supports of all optimal mixed pairings. By Theorem 5.8, which was discussed
in the previous section, we can conclude existence of a p-contact map f such that
all optimal mixed pairings γ are of the form (id × f)#(πX

#γ). The uniqueness
statement is a consequence of Theorem 5.9. �

Next we derive characterization of non-uniqueness.

Theorem 6.2 (Controlling non-uniqueness). Suppose p satisfies assumptions A1-
A4 and ω ∈ Pac(X), and let f be as in the statement of Theorem 6.1. For any
two mixed optimal pairings γ1, γ2 ∈ Γmix

ω with corresponding x-marginals µ1, µ2 we
have

(6.1) (µ2 − µ1)+ = f# [(µ2 − µ1)−] , (µ2 − µ1)− = f# [(µ2 − µ1)+] ,

(6.2) |µ2 − µ1| = f#|µ2 − µ1|.

Proof. Let γ1 and γ2 be two mixed optimal pairings. Theorem 6.1 tells us that
γ1 and γ2 can be written as (id × f)#µ1 and (id × f)#µ2 respectively. Since
(id × f)#µ1, (id × f)#µ2 ∈ Γmix

ω we have the following equality µ1 + f#µ1 =
µ2 + f#µ2 = 2ω, in particular (µ2 − µ1) + f#(µ2 − µ1) = 0. Denoting by µ+ and
µ− positive and negative parts of µ2 − µ1 we see immediately that µ+ + f#(µ+) =
µ− + f#(µ−). Let A ⊆ X denote the set of full measure for µ+ and zero measure
for µ− provided by the Hahn decomposition and set B = X\A. We observe that

µ+[X] ≤ µ+[A] + f#(µ+)[A] = f#(µ−)[A] ≤ µ−[X],

However, since (µ+−µ−)[X] = (µ2−µ1)[X] = 0, we conclude that f#(µ+)[A] = 0.
Similarly we conclude f#(µ−)[B] = 0. In particular, this implies that µ+ = f#(µ−),
µ− = f#(µ+), and therefore |µ2 − µ1| = f#|µ2 − µ1|. �

To deduce uniqueness we need to assume that identity is the only optimal match-
ing between two equal measures. In terms of economic interpretation this means
the following: given managers and assitants with the same distribution of skills the
only optimal way to pair then is to match manager with assistant of the same skill.

10



Corollary 6.3 (Uniqueness). Suppose p satisfies assumptions A1-A4 and ω ∈
Pac(X). If the diagonal {(x, x) ∈ X×X} is p-cyclically monotone, then there is
a unique optimal mixed pairing.

Proof. Let γ1, γ2 ∈ Γmix
ω be two optimal mixed pairings. The above Theorem,

equation (6.2) and Theorem 5.9 imply that f is equal to identity |µ2 − µ1|-almost
everywhere. But then by (6.1), (µ2 − µ1)+ = (µ2 − µ1)−, which is a contradiction
unless µ2 = µ1. �

7. Geometric structure of optimal pairing

In this paper we chose to exploit the Monge-Kantorovich theory to prove ex-
istence and uniqueness of optimal pairings. However, we feel it is worthwhile to
point out that this optimization problem enjoys a peculiar geometric structure,
which could be alternatively used to prove most of the above results. We will also
employ this structure to characterize optimal pairing as well as to deduce existence
of minimizers of the dual problem that are of special form. Namely we will show
that we can take such a minimizer to be

φ(x) + φs(x)
2

,

where s is the symmetrized cost and φ is s-convex. Since under our assumptions on
p, s-convex functions are Lipschitz (see Lemma 5.7), this implies that minimizers
of the dual problem can be taken to be Lipschitz as well.

Let us thus suppose that γ ∈ Γmix
ω is optimal with x– and y– marginals µ and ν

respectively, and that v is a minimizer of the dual problem. Then duality implies∫
v(x) dµ(x) +

∫
v(y) dν(y) = 2

∫
v(x) dω(x) =

∫
p(x, y) dγ(x, y),

and together with v(x) + v(y) ≥ p(x, y) we conclude that

p(x, y) = v(x) + v(y) for all (x, y) ∈ spt γ.

The fact that this equality holds on the support of optimal pairings has particular
implications for its geometry, which we state in the following Proposition.

Proposition 7.1. Let v be a feasible potential and Sv be the set

Sv =
{
(x, y)

∣∣ v(x) + v(y) = p(x, y)
}
.

Then for any k points (x1, x2), . . . , (x2k−1, x2k) ∈ Sv and for any permutation σ on
2k symbols the following holds:

(7.1)
k∑

i=1

p(x2i−1, x2i) ≥
k∑

i=1

p(xσ(2i−1), xσ(2i)).

11



Proof. The proof of this Proposition is very straightforward. Let (x1, x2), . . . ,
(x2k−1, x2k) be k points in Sv, then

k∑
i=1

p(x2i−1, x2i) =
k∑

i=1

v(x2i−1) + v(x2i) =

=
k∑

i=1

v(xσ(2i−1)) + v(xσ(2i))

≥
k∑

i=1

p(xσ(2i−1), xσ(2i)).

�

Definition 7.2. Let us say S ⊂ X×X is p-optimal if for any k points (x1, x2), . . . ,
(x2k−1, x2k) ∈ S and for any permutation σ on 2k symbols the following inequality
holds:

(7.2)
k∑

i=1

p(x2i−1, x2i) ≥
k∑

i=1

p(xσ(2i−1), xσ(2i)).

We obtained the existence of p-optimal sets from feasible potentials, but we can
ask ourselves whether for any p-optimal set S there exists a feasible potential such
that S ∈ Sv. The answer is yes.

Proposition 7.3. If S is a p-optimal set, then there exists a feasible potential v
of the form

v(x) =
φ(x) + φs(x)

2
such that S ⊆ Sv. We call feasible potentials of this special form canonical.

Proof. Let S be a p-optimal set. We first show that there exists a s-convex φ whose
s-subdifferential contains S ∪ S† ⊂ ∂sφ. To do this we first prove that if S is
p-optimal, then T := S ∪ S† is s-optimal.

Indeed, given any (x1, x2) . . . (x2k−1, x2k) ∈ S and permutation σ there exists a
permutation τ such that

k∑
i=1

s(xσ(2i−1), xσ(2i)) =
k∑

i=1

p(xτ(2i−1), xτ(2i))

≤
k∑

i=1

p(x2i−1, x2i)

≤
k∑

i=1

s(x2i−1, x2i).

Thus S is s-optimal. On the other hand s(x, y) = s(y, x), so any sequence (x1, x2) . . .
(x2k−1, x2k) from S ∪ S† corresponds, after reordering some number of the pairs,
to a sequence from S. This shows that T := S ∪ S† is s-optimal.

Since T is s-optimal, it is s-cyclically monotone a fortiori. Now Rochet’s general-
ization Theorem 5.3 of Rockafellar’s theorem, applied to the s-cyclically monotone
set T = S ∪ S†, yields the desired s-convex function φ = φss with T ⊂ ∂sφ.

12



Now from the definition of φs we obtain φs(y) := supz∈X{s(z, y) − φ(z)} ≥
s(x, y)− φ(x) for all (x, y) ∈ X×X. Thus

v(x) + v(y) :=
φ(x) + φs(y)

2
+
φ(y) + φs(x)

2

≥ s(x, y) + s(y, x)
2

= s(x, y)
≥ p(x, y).

For (x, y) ∈ S, the first inequality is saturated because both (x, y) and (y, x) lie in
∂sφ; the second inequality is saturated due to the case k = 1 = σ(2) and σ(1) = 2
in the definition (7.2) of p-optimality of S. �

The above discussion points to the following characterization of optimal pairing.

Theorem 7.4 (Characterization of optimal support). Let p be continuous. A
measure γ ∈ Γmix

ω is an optimal mixed pairing if and only if spt γ is p-optimal.
Also, γ is an optimal mixed pairing if and only if spt γ ⊆ Sv for some feasible
potential v. In particular the infimum Iω is attained by a canonical potential.

Proof. Suppose γ ∈ Γmix
ω is optimal. As we discussed at the beginning of this

section, if v is any minimizer of the dual problem, then spt γ ⊆ Sv, hence spt γ is
p-optimal by Proposition 7.1.

Suppose conversely that γ ∈ Γmix
ω has p-optimal support. By Proposition 7.3 we

conclude that there exists canonical feasible potential v such that

v(x) + v(y) = p(x, y) for all (x, y) ∈ spt γ.

Therefore, since v is lower semi-continuous and non-negative (2v(x) ≥ p(x, x)),∫
X×X

p(x, y) dγ(x, y) =
∫
X×X

v(x) + v(y) dγ(x, y) =
∫
X

v(x) dω(x)

and by Theorem 3.4 we deduce that v is a minimizer of the dual problem and γ is
an optimal mixed pairing. �

Remark 7.5. As we discussed at the beginning of this section canonical feasible
potentials are Lipschitz due to Lemma 5.7, hence differentiable Lebesgue almost
everywhere.

The concepts of p-optimality and canonical potential are clearly analogous to
concepts of p-cyclical monotonicity and p-convex function. In fact it is possible
to prove existence of optimal pure pairings by pursuing this analogy further and
taking an approach similar to the one taken by one of us [17] to prove existence and
uniqueness of optimal transport. Thus one could show that there exists a measure
γ0 in Γmix

ω with p-optimal support, construct a canonical feasible potential using
Proposition 7.3, and then use the fact that equality

v(x) + v(y) = p(x, y)

holds for all (x, y) ∈ spt γ0 together with Theorem 3.4 to conclude duality, optimal-
ity of γ0 and v all in one go.
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8. Examples and discussion

In this section we revisit several results obtained by Li and Suen in [14] using the
mathematical framework we have introduced. Some of the results generalize their
work to a multidimensional setting. We begin by deriving a condition that must be
satisfied for a worker to be indifferent to being a manager or an assistant. Then we
proceed to specialize this condition to the case of a multidimensional Cobb-Douglas
type production function and deduce complete segregation of the labor market into
managers and assistants in the case of skill distribution concentrated in a narrow
skill band. We then derive efficiency of the linear matching with a given slope and
point out how one can obtain examples of optimal pairing without role segregation.

The next lemma is multidimensional generalization of Lemma 5.1 in [14]. It
essentially states that if in an optimal pairing a worker of skill level z is indifferent
to being matched as a manager to assistant of skill level y or as an assistant to a
manager of skill level x, then x, y, z must satisfy a condition involving the partial
derivatives of p.

Lemma 8.1. Suppose p is continuously differentiable. Let S ⊂ X×X be p-optimal.
Then for Lebesgue almost all z ∈ πX(S) ∩ πY (S) we have

(8.1) ∇1p(z, y) = ∇2p(x, z),

where (x, z) ∈ S and (z, y) ∈ S.

Proof. Let v be a canonical feasible potential such that Sv ⊃ S. By Lemma 5.7
and Rademacher theorem v is differentiable Lebesgue almost everywhere. Let z ∈
πX(S) ∩ πY (S) be a point where v is differentiable and suppose x, y ∈ X are such
that (z, y), (x, z) ∈ S. Since v is a feasible potential and Sv ⊃ S

v(a) + v(b)− p(a, b) ≥ 0

for all (a, b) ∈ X with equality holding for (z, y) and (x, z). Hence we conclude that

∇v(z) = ∇1p(z, y), ∇v(z) = ∇2p(x, z),

and the lemma follows. �

We need the following lemma to relate the support of the marginal to the pro-
jection of the support.

Lemma 8.2 (Projected support is dense in support of projection). If γ ≥ 0 is a
Borel measure on Rn ×Rn, then spt (πX

#γ) = πX(spt γ).

Proof. We first show that πX(spt γ) is contained in spt (πX
#γ). Suppose that x ∈

πX(spt γ), meaning there is a point (x, y) ∈ spt γ. If B ⊂ Rn is a neighbourhood
of x, then B × Rn is a neighbourhood of (x, y), so (πX

#γ)[B] = γ[B × Rn] > 0.
Therefore x is in support of πX

#γ. Because sptπX
#γ is closed, πX(spt γ) ⊂ spt (πX

#γ).
Conversely, suppose x ∈ sptπX

#γ. Then for every open set U ∈ Rn containing
x, γ[U × Rn] = (πX

#γ)[U ] > 0, hence U × Rn intersects the support of γ. Thus
U contains a point in πX(spt γ), and we conclude that x belongs to the closure of
πX(spt γ). This completes the lemma. �
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Let us now restrict our attention to the Cobb-Douglas type production functions
of the form

(8.2) p(x1, ..., xn, y1, ..., yn) =
n∑

i=1

xαi
i yβi

i

on [0, 1]2n; the case n = 1 was discussed in Example 3.5. We take αi > βi ≥ 1 for
each i, meaning the productivity of each pair is more sensitive to the manager’s skill
level than to the assistant’s. We now specialize the preceding result to deduce and
constrain the possibilities of substantial overlap between the skill levels of managers
and assistants, represented by the intersection sptµ ∩ spt ν.

Theorem 8.3. Let ω be supported on [0, 1]n, and let p(x, y) be as in (8.2) with
αi > βi ≥ 1 for all i. Suppose γ ∈ Γmix

ω is the optimal mixed pairing and µ, ν
are the x− and y− marginals of γ respectively. Then for Lebesgue almost every
z in sptµ

⋂
spt ν, there exist x, y such that (x, z), (z, y) ∈ spt γ and the following

equality holds for each i:

(8.3)
(
zi

xi

)αi
(
yi

zi

)βi

=
βi

αi
.

Proof. First notice that equality ∇1p(z, y) = ∇2p(x, z) for our particular p becomes
(8.3). Now because πX is a compact map and the set spt γ is closed and bounded,
we have

πX(spt γ) = πX(spt γ) = sptµ,
where last equality holds by Lemma 8.2. Similarly, πY (spt γ) = spt ν. Thus by
Lemma 8.1, the fact that spt γ is p-optimal implies that for almost every point of
sptµ

⋂
spt ν = πX(spt γ)

⋂
πY (spt γ) our assertion is true. �

We proceed to derive several consequences of this theorem. For the ratio 0 <
βi/αi < 1, it is clear that (8.3) cannot be satisfied if for some i, xi, yi and zi are all
close to 1. Quantifying this observation allows us to establish the following result.

Proposition 8.4 (Role segregation in a narrow skill band). Let γ be an opti-
mal pairing for ω. If for some i, πxi(sptω) is contained in ](βi/αi)

1
αi+βi , 1], then

|sptµ
⋂

spt ν| = 0.

Proof. To derive a contradiction, suppose |sptµ
⋂

spt ν| 6= 0. Then Theorem 8.3
provides z ∈ sptµ ∩ spt ν and x, y ∈ sptω such that equality (8.3) is true. For the
moment set a := (βi/αi)

1
αi+βi . We note that yi > a, zi > a and 1

zi
≥ 1, hence(

yi

zi

)βi

> aβi . However, equality (8.3) implies that

1
xαi

i

βi

αi
=
aαi+βi

xαi
i

<

(
zi

xi

)αi

aβi <

(
zi

xi

)αi
(
yi

zi

)βi

=
βi

αi
,

but that means xi > 1, which is the desired contradiction. �

The preceding proposition illustrates how clustering of skill levels in a narrow
range can lead to essentially complete segregation of managers from assistants ac-
cording to their different skill levels. We now would like to develop a class of
examples that illustrate the opposite phenomenon, in which there is a full interval
of skill levels where both managers and assistants need to be represented to achieve
optimal productivity. To do this we can use Proposition 7.1 in Li and Suen [14],
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where they have shown that the pairwise matching with constant degree of segre-

gation
(

β
α

) 1
α+β

is optimal if it is feasible. We will confirm their Proposition by first

showing that for p ∈ C1(R ×R) of the form p(x, y) = xαyβ there is precisely one
line through the origin which is p-optimal in the plane.

Lemma 8.5. For Cobb-Douglas production function p(x, y) = xαyβ in C1([0, 1]2),
there exists a unique line through the origin which restricted to [0, 1]2 is p-optimal.
The slope of this line is λ := (β/α)1/(α+β).

Proof. Suppose that some line S through the origin described by y(x) = λx is
p-optimal, then proposition 7.3 gives us existence of canonical feasible potential v
such that Sv ⊃ S.

Recall that canonical potential v is Lipschitz. Let now (x0, λx0) be a point in
S, then notice that v(x) + v(λx0)− p(x, λx0) as a function of x attains its infimum
at x0, hence for almost all x0 it is the case that v′(x0) = ∂p

∂x (x0, λx0). This in
particular implies that v′(x) = αxα+β−1λβ . Integrating both sides and using the
fact that 2v(0) = p(0, 0) = 0, we derive that v(x) = λβ α

α+βx
α+β . Substituting back

into equation v(x) + v(λx) = p(x, λx), we obtain

λβxα+β = λβ α

α+ β
xα+β + λ2β+α α

α+ β
xα+β .

Therefore λ must necessarily be equal to (β
α )

1
α+β . This proves uniqueness of p-

optimal line. At this point to prove existence it suffices to show that v(x) is a
feasible potential, since Proposition 7.1 would then imply S ⊂ Sv is p-optimal. To
do this we need only to show that inequality v(x) + v(y) ≥ p(x, y) holds for all
points (x, y) ∈ [0, 1]2 for v(x) = (β

α )
β

α+β α
α+βx

α+β . To do that it suffices to check

that the minimum of (β
α )

β
α+β α

α+βx
α+β + (β

α )
β

α+β α
α+β y

α+β − xαyβ on [0, 1]2 is zero,
however this is not hard to do. Therefore, as claimed above there is only one line
through the origin that is also a p-optimal subset of [0, 1]2 and its slope is equal to
(β

α )
1

α+β . �

Now we state Proposition which allow us to construct examples of optimal pair-
ing.

Proposition 8.6. Fix p(x, y) = xαyβ . Let λ = (β
α )

1
α+β and denote by lλ(x) = λx

the line through the origin with slope λ. If µ is any measure supported in [0, 1]
which is absolutely continuous with respect to Lebesgue, then (µ, lλ) is the unique
optimal pairing for ω = µ+ (lλ)#µ.

Proof. By Lemma 8.5 and Theorem 7.4 the measure (id × lλ)#µ is optimal and
to conclude uniqueness we need only then check that the diagonal is a p-cyclically
monotone subset of the plane. To do that consider functions u(x) := α

α+βx
α+β and

w(y) := β
α+β y

α+β . It is easy to see that

(8.4)
α

α+ β
xα+β +

β

α+ β
yα+β − xαyβ ≥ 0,

with equality when x = y. This implies that u = wp̃ and w = up. Hence u is
p-convex and since equality in (8.4) holds for x = y, diagonal {(x, x) ∈ X×X} ⊆
∂pu and therefore the diagonal is p-cyclically monotone. Now, since p satisfies
assumption of Corollary 6.3, we conclude the proof of the Proposition. �
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Corollary 8.7. If f is any function in L1([0, 1]), then (fL1, lλ) is an optimal
pairing for ω := hL1, where 2h(x) = f(x) + f(x/λ)/λ.

Proof. This follows immediately from the fact that (lλ)#fL1 = hL1, where h(x) =
f(x/λ)/λ. �

The Corollary above immediately provides us with a series of examples in which
managers and assistants share same skill levels. The observation contained in the
statement of the above Lemma also appears in Li and Suen’s work. We refer the
reader to [14] for an economic interpretation.

In conclusion we would like to note that our approach not only provides a rigor-
ous foundation for the economic partitioning model discussed in [13, 14], but also
uncovers a hidden geometric structure enjoyed by this model. This structure can be
exploited, as we have done in the examples, to provide further insight into optimal
partitioning.
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[2] Häım Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Mâıtrise.
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