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Abstract

We prove a form of Pontryagin’s principle for a class of optimal

control problems governed by a state equation with memory. Several

examples and applications are then considered.

1 Introduction

The aim of this paper is to study deterministic optimal control problems of
the form

inf
u(.)∈K

J(u) with J(u) :=

∫ T

0

L(s, yu(s), u(s))ds+ g(yu(T )). (1)

Here, u is the control variable, taking values in the admissible set K, and
the state equation governing the dynamics of the state variable y = yu ∈ R

d

is an integrodifferential equation modelling quite general memory or delay
effects. More precisely, yu is the solution of the Cauchy problem:

ẋ(t) = f(t, 〈x, νt〉 , u(t)), x(0) = x0 (2)

where for each t, νt is a nonnegative measure supported by [0, t] and 〈x, νt〉
denotes:

〈x, νt〉 :=

∫ T

0

x(s)dνt(s) =

∫ t

0

x(s)dνt(s).

Problems of the form above arise in various applied fields in engineer-
ing, economics, biology... It is typically the case when studying the optimal
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performances of a system in which the response to a given input occurs not
instantaneously but only after a certain elapse of time. Such problems have in
general been modelled by delayed or deviating arguments differential equa-
tions which both are particular cases of (2). We refer for instance to the
classical book of Bellman and Cooke [2] for a general overview of such func-
tional equations. In the state equation (2), introducing general parametrized
measures νt (that can be varying sums of Dirac masses, given by some kernel,
combinations of both...) allows to treat more general memory effects. Let
us also mention that, in [3], the first and third authors, studied the optimal
control of a state equation with memory of the following form which is linear
in the control:

ẋ(t) =

∫ t

0

f(s, x(s))dνt(s) + u(t).

The paper is organized as follows. In section 2, we briefly discuss the
Cauchy problem for (2). Our main result is then formulated in section 3
where a generalization of Pontryagin’s principle for the optimal control prob-
lem (1) is established. Finally, in section 4, we apply our results to several
examples where the Pontryagin’s principle enables us to derive qualitative
properties of optimal controls. In particular, we consider an economic model
of consumption where the payment of interests may involve some delays and
we discuss an extension to more general state equations.

2 On the Cauchy problem

In the sequel, we shall simply write C0, Lp, W 1,p instead respectively of
C0([0, T ],Rd), Lp((0, T ),Rd), W 1,p((0, T ),Rd). For x and y in R

d, the usual
inner product of x and y will be denoted x · y and the euclidean norm of x,
|x| and for any matrix A, AT denotes the transpose of A.

Throughout the paper, we will make the following assumptions

• (H1) the control space K is a compact metric space, f ∈ C0([0, 1] ×
R

d ×K,Rd), and there exists a constant C > 0 such that:

|f(t, η, u)− f(t, η′, u)| ≤ C|η − η′|, ∀(t, η, η′, u) ∈ [0, T ]× R
d × R

d ×K

(3)

• (H2) for each t ∈ [0, T ], νt is a nonnegative finite measure such that
νt((t, T ]) = 0 and t 7→ νt is measurable in the sense that t 7→ 〈g, νt〉 is
measurable for every g ∈ C0([0, T ],R),

• (H3) defining α(t) := νt([0, T ]) = νt([0, t]), we assume α ∈ L1(0, T ).
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Compactness of the control space K is not really necessary for the rest of
the paper, this assumption is only made for the sake of simplicity. When K

is not compact, it is easy to check that all our results remain true provided
f satisfies some linear growth condition with respect to η uniformly in t and
u.

We first have the following easy Lemma (see [3] for details):

Lemma 1 Let λ > 0 and define for every t ∈ [0, T ],

ϕλ(t) :=

∫ t

0

eλ(s−t)α(s)ds

then ϕλ converges uniformly to 0 on [0, T ] as λ→ +∞.

We then have existence and uniqueness for the Cauchy problem:

Proposition 1 Under the assumpions above, for any measurable function u
: [0, T ] → K, the Cauchy problem

ẋ(t) = f(t, 〈x, νt〉 , u(t)), x(0) = x0 (4)

possesses a unique W 1,1 solution which will be denoted yu from now on.

Proof. Let us rewrite (4) as

x = Tx, with Tx(t) := x0 +

∫ t

0

f(s, 〈x, νs〉 , u(s))ds

and equip the space C0([0, T ],Rd) with the norm

‖x‖λ := sup
t∈[0,T ]

e−λt|x(t)|. (5)

where λ > 0 will be chosen later on. Of course, (C0, ‖.‖λ) is a Banach space
and T (C0) ⊂ C0. Defining ϕλ as in Lemma 1, our assumptions ensure that
for x1 and x2 in C0, one has:

‖Tx1 − Tx2‖λ ≤ C max
t∈[0,T ]

ϕλ(t)‖x1 − x2‖λ.

By Lemma 1, choosing λ large enough, we deduce that T is a strict contrac-
tion of (C0, ‖.‖λ) and therefore admits a unique fixed point that we denote
yu. The fact that yu is in W 1,1 follows from the inequality

|Tx(t2) − Tx(t1)| ≤

∫ t2

t1

(a + C‖x‖∞α(s))ds (6)

for a := sup{|f(t, 0, u)|, t ∈ [0, T ], u ∈ K}, any x in C0 and any t1 and t2
such that 0 ≤ t1 ≤ t2 ≤ T .
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3 Pontryagin principle

Now, we consider the optimal control problem

inf
u(.)∈K

J(u) with J(u) :=

∫ T

0

L(s, yu(s), u(s))ds+ g(yu(T )). (7)

where as before, yu denotes the solution of (4). In addition, to assumptions
(H1), (H2) and (H3) we further assume.

• (H4) for every t ∈ [0, T ] and u ∈ K, η ∈ R
d → f(t, η, u) is of class C1

and Dηf is continuous in all its arguments,

• (H5) g is of class C1 on R
d, L is continuous in all its arguments and

for every t ∈ [0, T ] and u ∈ K, x ∈ R
d 7→ L(t, x, u) is of class C1 and

∇xL is continuous in all its arguments,

To define the adjoint state, we need a few definitions and notations. Let
us denote by L1 the Lebesgue measure on [0, T ] and let us introduce the
nonnegative measure γ := νt ⊗ L1 on [0, T ]2, and define ν as the second
marginal of γ. Using test-functions, γ and ν are then defined by:

∫

[0,T ]2
φ(t, s)dγ(t, s) =

∫ T

0

(
∫ T

0

φ(t, s)dνt(s)

)

dt, ∀φ ∈ C0([0, T ]2,R),

∫ T

0

ψ(s)dν(s) =

∫ T

0

(
∫ T

0

ψ(s)dνt(s)

)

dt, ∀ψ ∈ C0([0, T ],R).

Using the disintegration theorem (see for instance the book of Dellacherie
and Meyer [4] or the appendix in the lecture notes of Ambrosio [1]) we may
also write γ = ν⊗ν∗s where ν∗s is a measurable family of probability measures
on [0, T ]. We recall that φ ∈ L1(γ) if and only if:

• for L1-a.e. t ∈ [0, T ], φ(t, .) ∈ L1(νt), and

• t 7→ 〈φ(t, .), νt〉 ∈ L1(L1)

which is also equivalent to

• for ν-a.e. s ∈ [0, T ], φ(., s) ∈ L1(ν∗s ), and

• s 7→ 〈φ(., s), ν∗s 〉 ∈ L1(ν).
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Moreover, if φ ∈ L1(γ), then:

∫

[0,T ]2
φ(t, s)dγ(t, s) :=

∫ T

0

〈φ(t, .), νt〉 dt =

∫ T

0

〈φ(., s), ν∗s 〉 dν(s)

Let us also remark that since νt is supported by [0, t], ν∗s is supported by
[s, T ]. Our last assumption then is:

(H6) ν ∈ L1.

Next, let us remark that if φ ∈ L∞([0, T ],Rd), then (t, s) 7→ φ(t) ∈ L1(γ)
hence for ν-a.e. φ ∈ L1(ν∗s ) and s 7→ 〈φ, ν∗s 〉 ∈ L1(ν). By (H6) (and slightly
abusing notations denoting by ν the density of ν with respect to L1), we also
have that s 7→ 〈φ, ν∗s 〉 ν(s) is in L1 and the inequality

‖ 〈φ, ν∗. 〉 ν‖L1 =

∫ T

0

| 〈φ, ν∗s 〉 |ν(s)ds ≤ ‖φ‖∞‖ν‖L1.

Let us assume that u is an optimal control, i.e. solves (7), let us denote
x := yu the corresponding optimal trajectory. Let t ∈ (0, T ) satisfy

t is a Lebesgue point of s 7→ (〈x, νs〉 , L(s, x(s), u(s)), f(s, 〈x, νs〉 , u(s))).
(8)

Now let v ∈ K be an arbitrary admissible control and ε ∈ (0, t). Let us
remark that with (8) and (H1), t is a Lebesgue point of s 7→ f(s, 〈x, νs〉 , v)).
Let us then define

uε(s) =

{

v if s ∈ (t− ε, t]
u(s) otherwise.

and denote by xε := yuε
the associated state.

To shorten notations, let us also set:

A(s) := Dηf(s, 〈x, νs〉 , u(s)), and θ(s) := ∇xL(s, x(s), u(s)) (9)

and let us remark that both A and θ are in L∞.

Lemma 2 Let us define zε := ε−1(xε − x) then zε is bounded in L∞, zε

converges pointwise to z = 0 on [0, t) and zε converges uniformly on [t, T ] to
the function z that solves:

ż(s) = A(s) 〈z, νs〉 on (t, T ], z(t) = f(t, 〈x, νt〉 , v) − f(t, 〈x, νt〉 , u(t)). (10)
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Proof. By uniqueness for the Cauchy problem, zε = 0 on [0, t− ε] so that
zε converges pointwise to 0 on [0, t).

Step 1: zε is bounded in L∞.
For s > t, we have:

zε(s) = I(ε) +
1

ε

∫ s

t

[f(θ, 〈xε, νθ〉 , u(θ)) − f(θ, 〈x, νθ〉 , u(θ))]dθ (11)

where

I(ε) =
1

ε

∫ t

t−ε

[f(θ, 〈xε, νθ〉 , v) − f(θ, 〈x, νθ〉 , u(θ))]dθ.

It is easy to check that xε is bounded and then so is the integrand in I(ε)
and then |I(ε)| ≤M for some constant M . Defining the norm, ‖.‖λ as in the
proof of proposition 1, ϕλ as in Lemma 1 and using (H1) we then have

|zε(s)|e
−λs ≤Me−λs + C‖zε‖λϕλ(s). (12)

Thanks to lemma 1, we easily deduce that zε is bounded in L∞. Let then C0

be such that ‖xε − x‖∞ ≤ C0ε for every ε.

Step 2: Convergence of zε(t).
Let us write

zε(t) =
1

ε

∫ t

t−ε

[f(s, 〈x, νs〉 , v) − f(s, 〈x, νs〉 , u(s))]ds

+
1

ε

∫ t

t−ε

[f(s, 〈xε, νs〉 , v) − f(s, 〈x, νs〉 , v)]ds

The second term is bounded by C0C
∫ t

t−ε
α hence converges to 0. Since t is a

Lebesgue point of s 7→ f(s, 〈x, νs〉 , v) and s 7→ f(s, 〈x, νs〉 , u(s)), we deduce
that

lim
ε→0+

zε(t) = f(t, 〈x, νt〉 , v) − f(t, 〈x, νt〉 , u(t)). (13)

Step 3: zε is uniformly equicontinuous on [t, T ].
Let t1 and t2 be such that T ≥ t2 ≥ t1 ≥ t, we then have

|zε(t2) − zε(t1)| ≤
C

ε

∫ t2

t1

〈|xε − x|, νs〉 ds ≤ C0C

∫ t2

t1

α(s)ds. (14)

Ascoli’s theorem and (14) then prove that the family (zε)ε is relatively com-
pact in C0([t, T ],Rd).

Step 4: zε converges on [t, T ] to the solution of the linearized equation.
Thanks to Step 3, there is a sequence εn → 0 such that zn := zεn

converges
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uniformly to some z ∈ C0([t, T ]). Let t1 and t2 be such that T ≥ t2 ≥ t1 > t,
we have

zn(t2)−zn(t1) =
1

εn

∫ t2

t1

[f(s, 〈x+ εnzn, νs〉 , u(s))−f(s, 〈x, νs〉 , u(s)]ds. (15)

Thanks to (H4) and Lebesgue’s dominated convergence theorem, passing to
the limit in (15), yields

z(t2) − z(t1) =

∫ t2

t1

[Dηf(s, 〈x, νs〉 , u(s)) 〈z, νs〉]ds

=

∫ t2

t1

A(s) 〈z, νs〉 ds.

This proves that z solves

ż(s) = A(s) 〈z, νs〉 on (t, T ]. (16)

And with (13), z also satisfies the initial condition

z(t) = f(t, 〈x, νt〉 , v) − f(t, 〈x, νt〉 , u(t)). (17)

Finally, the system (16)-(17) admits z as unique solution, together with the
relative compactness of the family zε, this implies that the whole family zε

converges uniformly to z on [t, T ] as ε→ 0+ and the proof is complete.

Lemma 3 There exists a unique W 1,1 function p that solves the adjoint sys-
tem:

ṗ(s) = −
〈

ATp, ν∗s
〉

ν(s) − θ(s) (18)

together with the transversality condition:

p(T ) = ∇g(x(T )). (19)

Proof. The existence and uniqueness of a continuous solution to (18) can
be proven by similar arguments as for proposition 1. The fact that p is W 1,1

follows from the fact that, since ν ∈ L1, s 7→
〈

AT p, ν∗s
〉

ν(s) is L1 and:

‖
〈

ATp, ν∗s
〉

ν‖L1 ≤ ‖ATp‖∞

∫ T

0

ν = ‖ATp‖∞‖ν‖L1 .
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Lemma 4 Let z be as in Lemma 2 and p be the adjoint variable defined in
Lemma 3, then we have:

p(T ) · z(T ) = p(t) · z(t) −

∫ T

t

θ · z. (20)

Proof. Since both z and p are W 1,1 on (t, T ) we have:

p(T ) · z(T ) − p(t) · z(t) =

∫ T

t

(

p · ż + ṗ · z
)

=

∫ T

t

p(s) · A(s) 〈z, νs〉 ds−

∫ T

t

〈

ATp, ν∗s
〉

· z(s)ν(s)ds

−

∫ T

t

θ · z

Since p and A are in L∞ and s 7→ 〈z, νs〉 is L1, the map

(s, τ) 7→ A(τ)Tp(τ) · z(s)

belongs to L1(γ). Since z = 0 on [0, t) and then 〈z, ντ 〉 = 0 for τ < t, we
thus get

∫ T

t

p(τ) · A(τ) 〈z, ντ 〉 dτ =

∫ T

0

p(τ) · A(τ) 〈z, ντ 〉 dτ

=

∫

[0,T ]2
AT (τ)p(τ) · z(s)dγ(τ, s)

=

∫ T

0

〈

AT p, ν∗s
〉

· z(s)ν(s)ds

=

∫ T

t

〈

AT p, ν∗s
〉

· z(s)ν(s)ds

which proves (20).

Lemma 5 Let z be as in Lemma 2 and p be the adjoint variable defined in
Lemma 3, then if t satisfies (8), we have:

lim
ε→0+

1

ε
[J(uε)− J(u)] = p(T ) · z(T ) +

∫ T

t

θ · z +L(t, x(t), v)−L(t, x(t), u(t)).

(21)
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Proof. By construction, we have

1

ε
[J(uε) − J(u)] =

1

ε
[g(xε(T )) − g(x(T ))] +

1

ε

∫ t

t−ε

[L(s, xε(s), v) − L(s, x(s), u(s))]ds

+
1

ε

∫ T

t

[L(s, xε(s), u(s)) − L(s, x(s), u(s))]ds

Thanks to Lemma 2, assumption (H5) and (19), the first term above con-
verges to

∇g(x(T )) · z(T ) = p(T ) · z(T ).

Since t is a Lebesgue point of s 7→ L(s, x(s), u(s)), one easily deduces from
Lemma 2 that the second term converges to:

L(t, x(t), v) − L(t, x(t), u(t)).

Finally, recalling (9), by Lebesgue’s dominated convergence theorem, (H5)
and Lemma 2, the third term converges to:

∫ T

t

∇xL(s, x(s), u(s)) · z(s)ds =

∫ T

t

θ · z.

Our main result then states the following form of the Pontryagin’s prin-
ciple:

Theorem 1 If u solves (7) and x := yu denotes the corresponding trajectory
then for a.e. t ∈ (0, T ) one has

u(t) ∈ argminv∈K{p(t) · f(t, 〈x, νt〉 , v) + L(t, x(t), v)} (22)

where the adjoint variable p is the solution of

{

ṗ(s) = −
〈

Dηf(., 〈x, ν.〉, u(.))
Tp(.), ν∗s

〉

ν(s) −∇xL(s, x(s), u(s)),
p(T ) = ∇g(x(T )),

where 〈x, ν.〉 denotes τ 7→ 〈x, ντ 〉.

Proof. Almost every t ∈ (0, T ) is a Lebesgue point of

s 7→ 〈x, νs〉 , s 7→ L(s, x(s), u(s)), and s 7→ f(s, 〈x, νs〉 , u(s)).
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For such a t, we define uε and xε as above. Since u is an optimal control,
then J(uε) ≥ J(u). With Lemmas 4 and 5 we then have, defining z as in
Lemma 2 and p as in Lemma 3:

0 ≤ lim
ε→0+

1

ε
[J(uε) − J(u)] = p(T ) · z(T ) +

∫ T

t

θ + L(t, x(t), v) − L(t, x(t), u(t))

= p(t) · z(t) + L(t, x(t), v) − L(t, x(t), u(t))

= p(t) · (f(t, 〈x, νt〉 , v) − f(t, 〈x, νt〉 , u(t))) + L(t, x(t), v) − L(t, x(t), u(t))

since v is arbitrary in K in the previous inequality, we deduce (22) and the
proof is complete.

4 Applications and extensions

The aim of this section is to consider some examples and derive some quali-
tative properties of the optimal controls from the optimality conditions given
in Theorem 1. We also mention an extension of the Pontryagin’s principle of
Theorem 1 to more general state equations.

4.1 The case of a linear dynamic

Let us consider the case of the linear dynamic:

ẋ(t) = A(t)(〈x, νt〉) + u(t), x(0) = x0, (23)

where A is a continuous function from [0, T ] to the space of d×dmatrices. We
assume that the admissible set of controls K is some convex compact subset
of R

d and as before, for any measurable u taking values in K we denote by
yu the solution of (23). We now consider the optimal control problem (7)
in the convex case, i.e. when in addition to the general assumptions of the
paper, g is convex, and L is convex and differentiable with respect (x, u).
In this convex setting, the optimality conditions given in Theorem 1 are in
fact necessary and sufficient. More precisely, let us assume that the control
u and the associated state x = yu satisfy the conditions of the Pontryagin’s
principle:

u(t) ∈ argminv∈K{p(t) · v + L(t, x(t), v)}, for a.e. t (24)

where the adjoint variable p solves

ṗ(s) = −
〈

AT (.)p(.), ν∗s
〉

ν(s) −∇xL(s, x(s), u(s)), p(T ) = ∇g(x(T )). (25)
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Then, we claim that u is an optimal control. Indeed, let u be another admis-
sible control and x = yu be the corresponding state, then on the one hand,
the convexity of K and (24) yield

p(t) · (u(t) − u(t)) + ∇uL(t, x(t), u(t)) · (u(t) − u(t)) ≥ 0, for a.e. t. (26)

On the other hand, using our convexity assumptions, (23), (25) and (26) and
an integration by parts, we have

J(u) − J(u) ≥

∫ T

0

∇xL(t, x, u) · (x− x) + ∇uL(t, x, u) · (u− u)

+ p(T ) · (x(T ) − x(T ))

≥

∫ T

0

p · (ẋ− ẋ) −

∫ T

0

〈

ATp, ν∗.
〉

· (x− x)ν −

∫ T

0

p · (u− u)

=

∫ T

0

p · A(〈x− x, ν.〉) −

∫ T

0

〈

AT p, ν∗.
〉

· (x− x)ν = 0.

Let us further consider the case where

L(t, x, u) := h(t, x) +
1

2
|u|2

with h convex in x. Then there is a unique optimal control, u, that is
characterized as follows. First, condition (24) simplifies to

u(t) = πK(−p(t)) (27)

where πK denotes the projection on K. Note that since, πK is one-Lipschitz
then the optimal control is absolutely continuous. The optimal state and the
corresponding adjoint state are then obtained by solving:

{

ẋ(t) = A(t)(〈x, νt〉) + πK(−p(t)), x(0) = x0,

ṗ(s) = −
〈

AT (.)p(.), ν∗s
〉

ν(s) −∇xh(s, x(s)), p(T ) = ∇g(x(T )).

4.2 An economic example

A classical approach to study the tradeoff between consumption and saving
in continuous time is to consider the problem

sup
c

∫ T

0

e−δtU(c(t))dt + V (x(T )) (28)
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where c denotes the consumption (control) variable, x denotes the agent’s
wealth, δ > 0 is a discount factor and U and V are strictly concave increas-
ing utility functions. Usually, the state equation governing the evolution of
wealth is the linear equation:

ẋ = rx− c (29)

where r denotes the (possibly nonconstant) interest rate. In the case of a
constant interest rate r, it is well-known that the optimal consumption is
increasing when δ < r (i.e. when the agent is sufficiently patient), constant
when δ = r and decreasing when δ > r. Now, let us consider the more
general case where there may be some delay in the payment of interests and
where the state equation is given by

ẋ(t) = 〈rx, µt〉 − c(t) = 〈x, νt〉 − c(t), with νt = rµt. (30)

The (necessary and sufficient) optimality conditions for the optimal consump-
tion c are as follows:

U ′(c(t)) = eδtq(t)

where the adjoint state q is the solution of

q̇(s) = −〈q, ν∗s 〉 ν(s), q(T ) = V ′(x(T )) > 0. (31)

It is easy to check that q is positive and decreasing and since U ′ is decreasing,
we deduce that the optimal consumption is increasing exactly when eδtq is
decreasing (note that this condition does dot depend on the value q(T ) and
is satisfied for instance in the case of a large constant interest rate r).

4.3 Bang-bang control

As a first example, let us consider the case where L = 0 and the state equation
has the separable form:

ẋi(t) = fi(t, 〈x, νt〉 , ui(t)), i = 1, ..., d

where each fi is increasing with respect to ui and the admissible control set K
is of the form K = [a1, b1]× ...× [ad, bd]. In this case, the optimality condition
(22) implies some bang-bang property of the optimal controls: ui(t) = ai for
a.e. t such that pi(t) > 0 and ui(t) = bi for a.e. t such that pi(t) < 0.

As a second example, let us assume that g satisfies ∇g(x) ∈ R
d
+ for all

x, and f is such that Dηf(t, η, u) has nonnegative entries for every (t, η, u).
It is easy to check that this implies that the adjoint state p necessarily has
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nonnegative components. If, in addition, K is convex, L is strictly con-
cave with respect to u and each component of f is concave with respect
to u, then the optimality condition (22) implies that any optimal control
u(t) has to minimize over K, for a.e. t, the strictly concave Hamiltonian
v 7→ L(t, x(t), v) + p(t) · f(t, 〈x, νt〉 , v). This implies that optimal controls
necessarily take values in the set of extreme points of K. In particular if K
is a convex polytope, optimal controls take a finite number of values.

4.4 Extension to more general state equations

By the same arguments as above, one can consider the optimal control of the
more general state equation than (2):

ẋ(t) = f(t,
〈

h1(., x(.)), ν
1
t

〉

, ..., 〈hm(., x(.)), νm
t 〉 , u(t)), x(0) = x0 (32)

provided all the functions h1, ...., hm satisfy suitable Lipschitz and differen-
tiability conditions and the measures ν1

t , ...., ν
m
t satisfy the same conditions

as νt in the previous sections. For the sake of simplicity, let us assume that
x, f and each function hj are real-valued and denoting yu the solution of
(32), we consider the optimal control problem

inf
u(.)∈K

J(u) with J(u) :=

∫ T

0

L(s, yu(s), u(s))ds+ g(yu(T )). (33)

It is easy to check that the following generalization of Theorem 1 holds (under
natural assumptions that we do not make precise here). If u solves (33) and
x := yu then for a.e. t, one has

u(t) ∈ argminv∈K{p(t)·f(t,
〈

h1(., x(.)), ν
1
t

〉

, ..., 〈hm(., x(.)), νm
t 〉 , v)+L(t, x(t), v)}

for the adjoint variable p that solves:

ṗ(s) = −

m
∑

j=1

〈

∂ηj
f(., η(.), u(.))p(.), νj∗

s

〉

∂xhj(s, x(s))ν
j(s) − ∂xL(s, x(s), u(s)),

p(T ) = g′(x(T ))

where we have set:

η(τ) := (
〈

h1(., x(.)), ν
1
τ

〉

, ..., 〈hm(., x(.)), νm
τ 〉)

and the measures νj and νj∗
s are obtained as before by desintegrating the

measures γj := ν
j
t ⊗ L1.
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